Investigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Extraction
2.2. Physical Properties of Butea Parviflora (BP) Fiber
3. Characterization Studies
3.1. X-ray Diffraction (XRD) Analysis
3.2. Scanning Electron Microscopy (SEM)
3.3. Thermogravimetric Analysis
3.4. Thermal Conductivity Using Lee’s Disc Method
3.5. CHNS Analyzer
3.6. Single Fiber Tensile Testing
3.7. FTIR Analysis
4. Results and Discussion
4.1. Determination of Chemical Composition
4.2. X-ray Diffraction (XRD) Analysis
4.3. CHNS Analysis
4.4. FESEM Analysis
4.5. Thermogravimetric Analysis
4.6. Differential Scanning Calorimetry
4.7. Activation Energy of Fibers
4.8. Thermal Conductivity
4.9. Single Fiber Tensile Test
4.10. FTIR Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arockiam, N.J.; Jawaid, M.; Saba, N. Sustainable Bio Composites for Aircraft Components. In Sustainable Composites for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 109–123. [Google Scholar]
- Jawaid, M.; Abdul Khalil, H.P.S. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Sanjay, M.; Yogesha, B. Studies on Natural/Glass Fiber Reinforced Polymer Hybrid Composites: An Evolution. Mater. Today Proc. 2017, 4, 2739–2747. [Google Scholar] [CrossRef]
- Yusriah, L.; Sapuan, S.M.; Zainudin, E.S.; Mariatti, M. Characterization of Physical, Mechanical, Thermal and Morphological Properties of Agro-Waste Betel Nut (Areca catechu) Husk Fibre. J. Clean. Prod. 2014, 72, 174–180. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic Treatment of Natural Fibers and Their Composites—A Review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of Chemical Treatments on Mechanical Properties of Hemp Fiber Reinforced Composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Ray, D.; Mohanty, A.K.; Mishra, M. Natural-Fiber Composites in the Automotive Sector. In Properties and Performance of Natural-Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2008; pp. 221–268. [Google Scholar]
- Biswas, S.; Kindo, S.; Patnaik, A. Effect of Fiber Length on Mechanical Behavior of Coir Fiber Reinforced Epoxy Composites. Fibers Polym. 2011, 12, 73–78. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Valenza, A. Effect of Sodium Bicarbonate Treatment on Mechanical Properties of Flax-Reinforced Epoxy Composite Materials. J. Compos. Mater. 2018, 52, 1061–1072. [Google Scholar] [CrossRef]
- Rajeshkumar, G. An Experimental Study on the Interdependence of Mercerization, Moisture Absorption and Mechanical Properties of Sustainable Phoenix Sp. Fibre-Reinforced Epoxy Composites. J. Ind. Text. 2020, 49, 1233–1251. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Kavitha, S.A.; Krishna Priya, R.; Arunachalam, K.P.; Avudaiappan, S.; Maureira-Carsalade, N.; Roco-Videla, Á. Investigation on Properties of Raw and Alkali Treated Novel Cellulosic Root Fibres of Zea Mays for Polymeric Composites. Polymers 2023, 15, 1802. [Google Scholar] [CrossRef]
- Arunachalam, K.P.; Avudaiappan, S.; Flores, E.I.S.; Parra, P.F. Experimental Study on the Mechanical Properties and Microstructures of Cenosphere Concrete. Materials 2023, 16, 3518. [Google Scholar] [CrossRef]
- Avudaiappan, S.; Cendoya, P.; Arunachalam, K.P.; Maureira-Carsalade, N.; Canales, C.; Amran, M.; Parra, P.F. Innovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar. J. Compos. Sci. 2023, 7, 214. [Google Scholar] [CrossRef]
- Arunachalam, K.P.; Avudaiappan, S.; Maureira, N.; Da Costa Garcia Filho, F.; Monteiro, S.N.; Batista, I.D.; de Azevedo, A.R.G. Innovative Use of Copper Mine Tailing as an Additive in Cement Mortar. J. Mater. Res. Technol. 2023, 25, 2261–2274. [Google Scholar] [CrossRef]
- Sathish, S.; Karthi, N.; Prabhu, L.; Gokulkumar, S.; Balaji, D.; Vigneshkumar, N.; Ajeem Farhan, T.S.; AkilKumar, A.; Dinesh, V.P. A Review of Natural Fiber Composites: Extraction Methods, Chemical Treatments and Applications. Mater. Today Proc. 2021, 45, 8017–8023. [Google Scholar] [CrossRef]
- Sivasubramanian, P.; Kalimuthu, M.; Palaniappan, M.; Alavudeen, A.; Rajini, N.; Santulli, C. Effect of Alkali Treatment on the Properties of Acacia Caesia Bark Fibres. Fibers 2021, 9, 49. [Google Scholar] [CrossRef]
- Santhiarsa, I.G.N.N. Effects of Alkaline Treatment and Fiber Length towards the Static and Dynamic Properties of Ijuk Fiber Strengthened–Epoxy Composite. In Proceedings of the International Mechanical Engineering and Engineering Education Conferences, East Java, Indonesia, 7–8 October 2016; p. 030022. [Google Scholar]
- Kaki, S.S.; Jabeen, T.; Reddy, J.R.C.; Ram Mohan, M.; Anjaneyulu, E.; Prasad, R.B.N.; Rao, B.V.S.K. Isolation and Physico-Chemical Characterization of Butea Parviflora Seed Oil. Grasas Aceites 2016, 67, e151. [Google Scholar] [CrossRef]
- RajeshKumar, K.; Awoyera, P.O.; Shyamala, G.; Kumar, V.; Gurumoorthy, N.; Kayikci, S.; Romero, L.M.B.; Prakash, A.K. Structural Performance of Biaxial Geogrid Reinforced Concrete Slab. Int. J. Civ. Eng. 2022, 20, 349–359. [Google Scholar] [CrossRef]
- Mayandi, K.; Rajini, N.; Pitchipoo, P.; Sreenivasan, V.; Jappes, J.W.; Alavudeen, A. A Comparative Study on Characterisations of Cissus Quadrangularis and Phoenix Reclinata Natural Fibres. J. Reinf. Plast. Compos. 2015, 34, 269–280. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Prakash, S.O.; Sahu, P.; Madhan, M.; Johnson Santhosh, A. A Review on Natural Fibre-Reinforced Biopolymer Composites: Properties and Applications. Int. J. Polym. Sci. 2022, 2022, 7820731. [Google Scholar] [CrossRef]
- Dorneles de Castro, B.; Machado Neves Silva, K.M.; Maziero, R.; de Faria, P.E.; Pereira Silva-Caldeira, P.; Campos Rubio, J.C. Influence of Gamma Radiation Treatment on the Mechanical Properties of Sisal Fibers to Use into Composite Materials. Fibers Polym. 2020, 21, 1816–1823. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Fangueiro, R. Physical Modification of Natural Fibers and Thermoplastic Films for Composites—A Review. J. Thermoplast. Compos. Mater. 2009, 22, 135–162. [Google Scholar] [CrossRef]
- Moon, C.K.; Lee, J.-O.; Cho, H.H.; Kim, K.S. Effect of Diameter and Surface Treatment of Fiber on Interfacial Shear Strength in Glass Fiber/Epoxy and HDPE. J. Appl. Polym. Sci. 1992, 45, 443–450. [Google Scholar] [CrossRef]
- Danso, H.; Martinson, D.B.; Ali, M.; Williams, J. Effect of Fibre Aspect Ratio on Mechanical Properties of Soil Building Blocks. Constr. Build. Mater. 2015, 83, 314–319. [Google Scholar] [CrossRef]
- Abisha, M.; Priya, R.K.; Arunachalam, K.P.; Avudaiappan, S.; Saavedra Flores, E.I.; Parra, P.F. Biodegradable Green Composites: Effects of Potassium Permanganate (KMnO4) Treatment on Thermal, Mechanical, and Morphological Behavior of Butea Parviflora (BP) Fibers. Polymers 2023, 15, 2197. [Google Scholar] [CrossRef] [PubMed]
- Truong, M.; Zhong, W.; Boyko, S.; Alcock, M. A Comparative Study on Natural Fibre Density Measurement. J. Text. Inst. 2009, 100, 525–529. [Google Scholar] [CrossRef]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Isolation and Characterization of Cellulose Fibers from Thespesia Populnea Barks: A Study on Physicochemical and Structural Properties. Int. J. Biol. Macromol. 2019, 129, 396–406. [Google Scholar] [CrossRef]
- Fan, M.; Weclawski, B. Long Natural Fibre Composites. In Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 141–177. [Google Scholar]
- Arthanarieswaran, V.P.; Kumaravel, A.; Saravanakumar, S.S. Characterization of New Natural Cellulosic Fiber from Acacia Leucophloea Bark. Int. J. Polym. Anal. Charact. 2015, 20, 367–376. [Google Scholar] [CrossRef]
- Jebadurai, S.G.; Raj, R.E.; Sreenivasan, V.S.; Binoj, J.S. Comprehensive Characterization of Natural Cellulosic Fiber from Coccinia Grandis Stem. Carbohydr. Polym. 2019, 207, 675–683. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Sheeba, K.R.J.; Priya, R.K.; Arunachalam, K.P.; Avudaiappan, S.; Maureira-Carsalade, N.; Roco-Videla, Á. Characterisation of Sodium Acetate Treatment on Acacia Pennata Natural Fibres. Polymers 2023, 15, 1996. [Google Scholar] [CrossRef] [PubMed]
- Belouadah, Z.; Ati, A.; Rokbi, M. Characterization of New Natural Cellulosic Fiber from Lygeum spartum L. Carbohydr. Polym. 2015, 134, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Van De Velde, K.; Kiekens, P. Thermal Degradation of Flax: The Determination of Kinetic Parameters with Thermogravimetric Analysis. J. Appl. Polym. Sci. 2002, 83, 2634–2643. [Google Scholar] [CrossRef]
- Alam, M. Lee’s and Charlton’s Method for Investigation of Thermal Conductivity of Insulating Materials. IOSR J. Mech. Civ. Eng. 2012, 3, 53–60. [Google Scholar] [CrossRef]
- Gaba, E.W.; Asimeng, B.O.; Kaufmann, E.E.; Katu, S.K.; Foster, E.J.; Tiburu, E.K. Mechanical and Structural Characterization of Pineapple Leaf Fiber. Fibers 2021, 9, 51. [Google Scholar] [CrossRef]
- Ganapathy, T.; Sathiskumar, R.; Senthamaraikannan, P.; Saravanakumar, S.S.; Khan, A. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibres Extracted from the Aerial Roots of Banyan Tree. Int. J. Biol. Macromol. 2019, 138, 573–581. [Google Scholar] [CrossRef]
- Maepa, C.E.; Jayaramudu, J.; Okonkwo, J.O.; Ray, S.S.; Sadiku, E.R.; Ramontja, J. Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel. Int. J. Polym. Anal. Charact. 2015, 20, 99–109. [Google Scholar] [CrossRef]
- Binoj, J.S.; Edwin Raj, R.; Sreenivasan, V.S.; Rexin Thusnavis, G. Morphological, Physical, Mechanical, Chemical and Thermal Characterization of Sustainable Indian Areca Fruit Husk Fibers (Areca catechu L.) as Potential Alternate for Hazardous Synthetic Fibers. J. Bionic Eng. 2016, 13, 156–165. [Google Scholar] [CrossRef]
- Yu, H.; Yu, C. Study on Microbe Retting of Kenaf Fiber. Enzyme Microb. Technol. 2007, 40, 1806–1809. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Sudhakar, P.; Baskaran, R. Characterization of a Novel Natural Cellulosic Fiber from Prosopis Juliflora Bark. Carbohydr. Polym. 2013, 92, 1928–1933. [Google Scholar] [CrossRef]
- Svärd, A.; Brännvall, E.; Edlund, U. Rapeseed Straw as a Renewable Source of Hemicelluloses: Extraction, Characterization and Film Formation. Carbohydr. Polym. 2015, 133, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Meyer, A.S.; Fernando, D.; Silva, D.A.S.; Daniel, G.; Thygesen, A. Effect of Pectin and Hemicellulose Removal from Hemp Fibres on the Mechanical Properties of Unidirectional Hemp/Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 724–735. [Google Scholar] [CrossRef]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical Properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Pejic, B.M.; Kostic, M.M.; Skundric, P.D.; Praskalo, J.Z. The Effects of Hemicelluloses and Lignin Removal on Water Uptake Behavior of Hemp Fibers. Bioresour. Technol. 2008, 99, 7152–7159. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Manna, S.; Chowdhury, S.R.; Sen, R.; Roy, D.; Adhikari, B. Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment. Bioresour. Technol. 2010, 101, 3182–3187. [Google Scholar] [CrossRef]
- Manral, A.; Bajpai, P.K. Analysis of Natural Fiber Constituents: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 012115. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Mo, B.H.; Hao, M.Y. Study of Contents Ratio of Cellulose, Hemicellulose and Lignin on the Mechanical Properties of Sisal Fibers Reinforced Polylactic Acid (PLA) Composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 544, 012012. [Google Scholar] [CrossRef]
- Das, R.; Dash, C.; Behera, P.; Bisoyi, D.K. Influence Of Dewaxing on Mechanical Properties of Kapok Fiber-Reinforced Polymer Composite. IOP Conf. Ser. Earth Environ. Sci. 2022, 1086, 012054. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Characterizing Natural Cellulose Fibers from Velvet Leaf (Abutilon theophrasti) Stems. Bioresour. Technol. 2008, 99, 2449–2454. [Google Scholar] [CrossRef]
- Pan, M.-Z.; Zhou, D.-G.; Deng, J.; Zhang, S.Y. Preparation and Properties of Wheat Straw Fiber-Polypropylene Composites. I. Investigation of Surface Treatments on the Wheat Straw Fiber. J. Appl. Polym. Sci. 2009, 114, 3049–3056. [Google Scholar] [CrossRef]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Assessment of Cellulose in Bark Fibers of Thespesia Populnea: Influence of Stem Maturity on Fiber Characterization. Carbohydr. Polym. 2019, 212, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, P.; Senthamaraikannan, P.; Murugananthan, K.; Sanjay, M.R. Physicochemical Properties of New Cellulosic Fibers from Azadirachta Indica Plant. J. Nat. Fibers 2018, 15, 29–38. [Google Scholar] [CrossRef]
- Kamal, M. Scanning Electron Microscopy Study of Fiber Reinforced Polymeric Nanocomposites. In Scanning Electron Microscopy; InTech: London, UK, 2012. [Google Scholar]
- Gonçalves, A.P.B.; De Miranda, C.S.; Guimarães, D.H.; De Oliveira, J.C.; Cruz, A.M.F.; Da Silva, F.L.B.M.; Luporini, S.; José, N.M. Physicochemical, Mechanical and Morphologic Characterization of Purple Banana Fibers. Mater. Res. 2015, 18, 205–209. [Google Scholar] [CrossRef]
- Surya Rajan, B.; Balaji, M.A.S.; Saravanakumar, S.S. Effect of Chemical Treatment and Fiber Loading on Physico-Mechanical Properties of Prosopis Juliflora Fiber Reinforced Hybrid Friction Composite. Mater. Res. Express 2018, 6, 035302. [Google Scholar] [CrossRef]
- Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A.; Parameswaranpillai, J. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibers from Tridax Procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef]
- Seki, Y.; Sarikanat, M.; Sever, K.; Durmuşkahya, C. Extraction and Properties of Ferula communis (Chakshir) Fibers as Novel Reinforcement for Composites Materials. Compos. Part B Eng. 2013, 44, 517–523. [Google Scholar] [CrossRef]
- Maache, M.; Bezazi, A.; Amroune, S.; Scarpa, F.; Dufresne, A. Characterization of a Novel Natural Cellulosic Fiber from Juncus effusus L. Carbohydr. Polym. 2017, 171, 163–172. [Google Scholar] [CrossRef]
- Prithivirajan, R.; Narayanasamy, P.; Al-Dhabi, N.A.; Balasundar, P.; Shyam Kumar, R.; Ponmurugan, K.; Ramkumar, T.; Senthil, S. Characterization of Musa Paradisiaca L. Cellulosic Natural Fibers from Agro-Discarded Blossom Petal Waste. J. Nat. Fibers 2020, 17, 1640–1653. [Google Scholar] [CrossRef]
- Sinha, E.; Rout, S.K. Influence of Fibre-Surface Treatment on Structural, Thermal and Mechanical Properties of Jute Fibre and Its Composite. Bull. Mater. Sci. 2009, 32, 65–76. [Google Scholar] [CrossRef]
- Paswan, S.K.; Kumari, S.; Kar, M.; Singh, A.; Pathak, H.; Borah, J.P.; Kumar, L. Optimization of Structure-Property Relationships in Nickel Ferrite Nanoparticles Annealed at Different Temperature. J. Phys. Chem. Solids 2021, 151, 109928. [Google Scholar] [CrossRef]
- Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis. Polym. Degrad. Stab. 2008, 93, 90–98. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of Raw and Alkali Treated New Natural Cellulosic Fiber from Coccinia Grandis.L. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, A.P.; Zhao, X.; Fedderwitz, R.; Ramakrishnan, K.; Dai, J.; Gong, A.; Zhu, J.Y.; Kośny, J.; Hu, L. Sustainable Wood-Waste-Based Thermal Insulation Foam for Building Energy Efficiency. Buildings 2023, 13, 840. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, F.; Li, H.; Lu, C. An Environment-Friendly Thermal Insulation Material from Cotton Stalk Fibers. Energy Build. 2010, 42, 1070–1074. [Google Scholar] [CrossRef]
- Chethan, G.; Sunil, K.C.; Sandesh, A.; Narayana, Y. Determination of Thermal Conductivity of Areca Husk Fiber by Lee’s Disc Method. Res. J. Chem. Env. 2020, 24, 17–20. [Google Scholar]
- Divyah, N.; Prakash, R.; Srividhya, S.; Avudaiappan, S.; Guindos, P.; Carsalade, N.M.; Arunachalam, K.P.; Noroozinejad Farsangi, E.; Roco-Videla, Á. Experimental and Numerical Investigations of Laced Built-Up Lightweight Concrete Encased Columns Subjected to Cyclic Axial Load. Buildings 2023, 13, 1444. [Google Scholar] [CrossRef]
- Jayanthi, V.; Avudaiappan, S.; Amran, M.; Arunachalam, K.P.; Qader, D.N.; Delgado, M.C.; Saavedra Flores, E.I.; Rashid, R.S.M. Innovative Use of Micronized Biomass Silica-GGBS as Agro-Industrial by-Products for the Production of a Sustainable High-Strength Geopolymer Concrete. Case Stud. Constr. Mater. 2023, 18, e01782. [Google Scholar] [CrossRef]
- Djafari Petroudy, S.R. Physical and Mechanical Properties of Natural Fibers. In Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 59–83. [Google Scholar]
- Kommula, V.P.; Reddy, K.O.; Shukla, M.; Marwala, T.; Rajulu, A.V. Physico-Chemical, Tensile, and Thermal Characterization of Napier Grass (Native African) Fiber Strands. Int. J. Polym. Anal. Charact. 2013, 18, 303–314. [Google Scholar] [CrossRef]
- Jayaramudu, J.; Maity, A.; Sadiku, E.R.; Guduri, B.R.; Varada Rajulu, A.; Ramana, C.V.V.; Li, R. Structure and Properties of New Natural Cellulose Fabrics from Cordia Dichotoma. Carbohydr. Polym. 2011, 86, 1623–1629. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R. Characterization of New Cellulose Sansevieria Ehrenbergii Fibers for Polymer Composites. Compos. Interfaces 2013, 20, 575–593. [Google Scholar] [CrossRef]
- Ridzuan, M.J.M.; Abdul Majid, M.S.; Afendi, M.; Aqmariah Kanafiah, S.N.; Zahri, J.M.; Gibson, A.G. Characterisation of Natural Cellulosic Fibre from Pennisetum Purpureum Stem as Potential Reinforcement of Polymer Composites. Mater. Des. 2016, 89, 839–847. [Google Scholar] [CrossRef]
- Fan, M.; Dai, D.; Huang, B.; Fan, M.; Dai, D.; Huang, B. Fourier Transform Infrared Spectroscopy for Natural Fibres. In Fourier Transform: Materials Analysis; BoD—Books on Demand: Norderstedt, Germany, 2012. [Google Scholar] [CrossRef]
- Amroune, S.; Bezazi, A.; Belaadi, A.; Zhu, C.; Scarpa, F.; Rahatekar, S.; Imad, A. Tensile Mechanical Properties and Surface Chemical Sensitivity of Technical Fibres from Date Palm Fruit Branches (Phoenix dactylifera L.). Compos. Part A Appl. Sci. Manuf. 2015, 71, 95–106. [Google Scholar] [CrossRef]
- Manimaran, P.; Saravanakumar, S.S.; Mithun, N.K.; Senthamaraikannan, P. Physicochemical Properties of New Cellulosic Fibers from the Bark of Acacia arabica. Int. J. Polym. Anal. Charact. 2016, 21, 548–553. [Google Scholar] [CrossRef]
- Reddy, K.O.; Uma Maheswari, C.; Muzenda, E.; Shukla, M.; Rajulu, A.V. Extraction and Characterization of Cellulose from Pretreated Ficus (Peepal Tree) Leaf Fibers. J. Nat. Fibers 2016, 13, 54–64. [Google Scholar] [CrossRef]
- Elalami, D.; Barakat, A. Clean Energy and Resources Recovery; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780323852234. [Google Scholar]
- Hossain, S.; Jalil, M.A.; Islam, T.; Rahman, M.M. A Low-Density Cellulose Rich New Natural Fiber Extracted from the Bark of Jack Tree Branches and Its Characterizations. Heliyon 2022, 8, e11667. [Google Scholar] [CrossRef] [PubMed]
- Sandak, J.; Niemz, P.; Hänsel, A.; Mai, J.; Sandak, A. Feasibility of Portable NIR Spectrometer for Quality Assurance in Glue-Laminated Timber Production. Constr. Build. Mater. 2021, 308, 125026. [Google Scholar] [CrossRef]
Fibers | Diameter | Aspect Ratio (L/D) | Linear Density | Density (g/cc) | Reference |
---|---|---|---|---|---|
Raw BP | 0.048 mm | 174.59 | 312 tex | 1.238 | Present work |
Treated BP | 0.027 mm | 203.91 | 346 tex | 1.340 | Present work |
Acacia leucophlea | 168.5 µm | - | - | 1.385 | [32] |
Coccinia grandis | 543–621 µm | - | 130.9 tex | 1.517 | [33] |
Fibers | Cellulose (wt%) | Hemicellulose (wt%) | Lignin (wt%) | Moisture (wt%) | Wax (wt%) | Pectin (wt%) |
---|---|---|---|---|---|---|
Raw BP | 58.5 | 40.13 | 18.09 | 11.63 | 0.31 | 6.77 |
Treated BP | 60.72 | 19.2 | 20.5 | 12.4 | 0.25 | 3.4 |
Acacia leucophlea | 68.09 | 13.6 | 17.73 | 8.83 | - | - |
Coccinia grandis | 63.22 | - | 24.42 | 9.14 | 0.32 | - |
Prosopis juliflora bark | 61.65 | 16.14 | 17.11 | 9.48 | 0.61 | - |
Sample | Crystallinity Index (%) | Crystallite Size (nm) | Reference |
---|---|---|---|
Untreated BP | 83.63 | 7.50 | Present work |
Alkali-treated BP | 86.03 | 8.04 | Present work |
Thespesia populnea | 48.17 | 3.57 | [55] |
Sida cordifolia stem | 56.92 | 18 | [56] |
Sample | N% | C% | H% | S% | Weight (mg) |
---|---|---|---|---|---|
0.1 M KOH-treated | 0.93 | 41.66 | 6.60 | ND | 7.60 |
Untreated | 0.84 | 39.75 | 6.30 | ND | 7.12 |
Fibers | Temperature (°C) | Mass Loss (%) | Residual Char (%) |
---|---|---|---|
Raw BP | 54–251 | 17.72 | 0.4 |
251–394 | 50.78 | ||
394–540 | 39.1 | ||
KOH-treated BP | 42–209 | 11.68 | 2.59 |
209–356 | 45.06 | ||
356–544 | 40.67 |
Fibers | Activation Energy (Ea) | Max Degradation Temperature (°C) | Thermal Conductivity (K) |
---|---|---|---|
Raw BP | 73.15 kJ/mol | 365 | 0.029 W/mk |
Alkalized BP | 55.95 kJ/mol | 324 | 0.020 W/mk |
Fibers | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation at Break (%) | Microfibril Angle (°) | References |
---|---|---|---|---|---|
Raw BP | 92.64 | 2.164 | 7.2 ± 3.1 | 21.11 ± 14.08 | Present work |
Alkalized BP | 192.97 | 3.462 | 6.2 ± 1.7 | 19.67 ± 10.49 | Present work |
Napier grass | 75 | 6.8 | 2.8 | - | [74] |
Cordia dichotoma | 36.2 | 3.6 | 2.0 | - | [75] |
Sansevieria ehrenbergii | 50–585 | 1.5–7.67 | 2.8–21.7 | - | [76] |
Aerial roots of Banyan | 19.37 ± 7.72 | 1.8 ± 0.40 | 1.8 ± 0.40 | 10.88 ± 1.198 | [40] |
Pennisetum purpureum | 73 ± 6 | 5.68 ± 0.14 | 1.40 ± 0.23 | - | [77] |
Wavenumber (cm)−1 | Vibrational Band Assignments | |
---|---|---|
Raw BP | KOH-Treated BP | |
3451 | 3452 | O–H stretching with hydrogen bonding in cellulose/hemicellulose |
2922 | 2916 | C–H stretching of cellulose |
2850 | 2850 | C–H stretching of hemicelluloses |
1644 | 1644 | Stretching of C=O in the acetyl group of hemicellulose |
- | 1418 | C–H2 symmetric bending in cellulose |
1383 | - | Asymmetric stretching of C–O–C in lignin |
1064 | - | C–O and C–C stretching of cellulose |
847 | - | β-glycosidic linkage in monosaccharides |
781 | 781 | CO stretching |
517 | - | Off-plane OH bending |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohan, A.; Priya, R.K.; Arunachalam, K.P.; Avudaiappan, S.; Maureira-Carsalade, N.; Roco-Videla, A. Investigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites. Polymers 2023, 15, 3522. https://doi.org/10.3390/polym15173522
Mohan A, Priya RK, Arunachalam KP, Avudaiappan S, Maureira-Carsalade N, Roco-Videla A. Investigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites. Polymers. 2023; 15(17):3522. https://doi.org/10.3390/polym15173522
Chicago/Turabian StyleMohan, Abisha, Retnam Krishna Priya, Krishna Prakash Arunachalam, Siva Avudaiappan, Nelson Maureira-Carsalade, and Angel Roco-Videla. 2023. "Investigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites" Polymers 15, no. 17: 3522. https://doi.org/10.3390/polym15173522
APA StyleMohan, A., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Maureira-Carsalade, N., & Roco-Videla, A. (2023). Investigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites. Polymers, 15(17), 3522. https://doi.org/10.3390/polym15173522