Enhanced Activity and Stability of Heteroatom-Doped Carbon/Bimetal Oxide for Efficient Water-Splitting Reaction
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Synthesis of Hetero-Doped Carbon from Benzoxazine
3.2. Synthesis of HC/NiCo Oxides
3.3. Fabrication of Working Electrode
4. Instrumentation
5. Results and Discussion
5.1. XRD
5.2. Raman
5.3. BET Analysis
5.4. XPS Analysis
5.5. SEM Analysis
5.6. TEM Analysis
5.7. Electrochemical Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, C.-S.; Chung, S.-H. Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell. Chem. Eng. J. 2022, 429, 132257. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Rathinam, Y.; Ganesan, R.; Nagaraj, V.; Velauthapillai, D. Role of Different Catalysts on a Direct Growth Carbon Nanotube for Supercapacitor Electrodes. Energy Fuels 2023, 37, 3991–3999. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, X.L.; Tao, B.X.; Wang, X.H.; Deng, Y.H.; Gu, X.Y.; Li, L.J.; Xiao, W.; Li, N.B.; Luo, H.Q. CoNi Based Alloy/Oxides@N-Doped Carbon Core-Shell Dendrites as Complementary Water Splitting Electrocatalysts with Significantly Enhanced Catalytic Efficiency. Appl. Catal. B Environ. 2019, 254, 634–646. [Google Scholar] [CrossRef]
- Xu, X.; Song, F.; Hu, X. A Nickel Iron Diselenide-Derived Efficient Oxygen-Evolution Catalyst. Nat. Commun. 2016, 7, 12324. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Liardet, L.; Hu, X. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)Hydroxides as Oxygen Evolution Catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957. [Google Scholar] [CrossRef]
- Grimaud, A.; May, K.J.; Carlton, C.E.; Lee, Y.L.; Risch, M.; Hong, W.T.; Zhou, J.; Shao-Horn, Y. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution. Nat. Commun. 2013, 4, 2439. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, C.; Li, X.L.; Deng, Y.H.; Tao, B.X.; Xiao, W.; Li, L.J.; Li, N.B.; Luo, H.Q. Self-Interconnected Porous Networks of NiCo Disulfide as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 27723–27733. [Google Scholar] [CrossRef]
- Michalsky, R.; Zhang, Y.J.; Peterson, A.A. Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts. ACS Catal. 2014, 4, 1274–1278. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Zhang, M.; Zhong, Y.; Weng, Z.; Mi, Y.; Zhou, Y.; Li, M.; Cha, J.J.; Tang, Z.; et al. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis. Nano Lett. 2017, 17, 2057–2063. [Google Scholar] [CrossRef]
- Sun, Q.; Dong, Y.; Wang, Z.; Yin, S.; Zhao, C. Synergistic Nanotubular Copper-Doped Nickel Catalysts for Hydrogen Evolution Reactions. Small 2018, 14, e1704137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, M.Y.; Yan, D.Y.; Mao, J.; Liu, H.; Hu, W.B.; Du, X.W.; Ling, T.; Qiao, S.Z. Engineering Oxygen Vacancy on NiO Nanorod Arrays for Alkaline Hydrogen Evolution. Nano Energy 2018, 43, 103–109. [Google Scholar] [CrossRef]
- Huang, J.; Han, J.; Wang, R.; Zhang, Y.; Wang, X.; Zhang, X.; Zhang, Z.; Zhang, Y.; Song, B.; Jin, S. Improving Electrocatalysts for Oxygen Evolution Using NixFe3−XO4/Ni Hybrid Nanostructures Formed by Solvothermal Synthesis. ACS Energy Lett. 2018, 3, 1698–1707. [Google Scholar] [CrossRef]
- Lu, X.F.; Gu, L.F.; Wang, J.W.; Wu, J.X.; Liao, P.Q.; Li, G.R. Bimetal-Organic Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1604437. [Google Scholar] [CrossRef]
- Zhuang, L.; Ge, L.; Yang, Y.; Li, M.; Jia, Y.; Yao, X.; Zhu, Z. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1606793. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Mckone, J.R.; Sadtler, B.F.; Werlang, C.A.; Lewis, N.S.; Gray, H.B. Ni-Mo Nanopowders for E Ffi Cient Electrochemical Hydrogen Evolution. ACS Catal. 2013, 3, 166–169. [Google Scholar] [CrossRef]
- Nikolic, V.M.; Maslovara, S.L.; Tasic, G.S.; Brdaric, T.P.; Lausevic, P.Z.; Radak, B.B.; Marceta Kaninski, M.P. Kinetics of Hydrogen Evolution Reaction in Alkaline Electrolysis on a Ni Cathode in the Presence of Ni-Co-Mo Based Ionic Activators. Appl. Catal. B Environ. 2015, 179, 88–94. [Google Scholar] [CrossRef]
- Kwak, I.H.; Im, H.S.; Jang, D.M.; Kim, Y.W.; Park, K.; Lim, Y.R.; Cha, E.H.; Park, J. CoSe2 and NiSe2 Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 5327–5334. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, G.H.; Zeng, J.H.; Yu, S.H.; Liu, X.M.; Qian, Y.T. Shape Control and Characterization of Transition Metal Diselenides MSe2 (M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process. Chem. Mater. 2001, 13, 848–853. [Google Scholar] [CrossRef]
- Zhuang, Z.; Peng, Q.; Zhuang, J.; Wang, X.; Li, Y. Controlled Hydrothermal Synthesis and Structural Characterization of a Nickel Selenide Series. Chem.–A Eur. J. 2005, 12, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Luan, W.; Tu, S.T. One-Step Solvothermal Synthesis of Nickel Selenide Series: Composition and Morphology Control. CrystEngComm 2012, 14, 2145–2151. [Google Scholar] [CrossRef]
- Yuan, B.; Luan, W.; Tu, S.T. One-Step Synthesis of Cubic FeS2 and Flower-like FeSe2 Particles by a Solvothermal Reduction Process. Dalt. Trans. 2012, 41, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Martini, B.K.; Bezerra, L.S.; Artemkina, S.; Fedorov, V.; Boruah, P.K.; Das, M.R.; Maia, G. Efficient OER Nanocomposite Electrocatalysts Based on Ni and/or Co Supported on MoSe2 Nanoribbons and MoS2 Nanosheets. Chem. Eng. J. Adv. 2022, 9, 100206. [Google Scholar] [CrossRef]
- Wen, Y.; Wei, Z.; Ma, C.; Xing, X.; Li, Z.; Luo, D. MXene Boosted CoNi-ZIF-67 as Highly Efficient Electrocatalysts for Oxygen Evolution. Nanomaterials 2019, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, B.; Li, Y.; Zhang, E.; Zhang, Y.; Wang, Q.; Cong, Y. Multi-Active Site CoNi-MOFs as Non-Noble Bifunctional Electrocatalysts for Highly Efficient Overall Water Splitting. Int. J. Hydrog. Energy 2022, 47, 1633–1643. [Google Scholar] [CrossRef]
- She, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Chung, D.Y.; Jun, S.W.; Yoon, G.; Kim, H.; Yoo, J.M.; Lee, K.S.; Kim, T.; Shin, H.; Sinha, A.K.; Kwon, S.G.; et al. Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674. [Google Scholar] [CrossRef]
- Van Phuc, T.; Jana, J.; Ravi, N.; Kang, S.G.; Chung, J.S.; Choi, W.M.; Hur, S.H. Highly Active Ni/Co-Metal Organic Framework Bifunctional Electrocatalyst for Water Splitting Reaction. Int. J. Hydrog. Energy 2022, 47, 22787–22795. [Google Scholar] [CrossRef]
- Niu, Y.; Huang, X.; Zhao, L.; Hu, W.; Li, C.M. One-Pot Synthesis of Co/CoFe2O4 Nanoparticles Supported on N-Doped Graphene for Efficient Bifunctional Oxygen Electrocatalysis. ACS Sustain. Chem. Eng. 2018, 6, 3556–3564. [Google Scholar] [CrossRef]
- Sheng, W.; Myint, M.; Chen, J.G.; Yan, Y. Correlating the Hydrogen Evolution Reaction Activity in Alkaline Electrolytes with the Hydrogen Binding Energy on Monometallic Surfaces. Energy Environ. Sci. 2013, 6, 1509–1512. [Google Scholar] [CrossRef]
- Petitto, S.C.; Marsh, E.M.; Carson, G.A.; Langell, M.A. Cobalt Oxide Surface Chemistry: The Interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4(1 1 1) with Oxygen and Water. J. Mol. Catal. A Chem. 2008, 281, 49–58. [Google Scholar] [CrossRef]
- Watzele, S.; Hauenstein, P.; Liang, Y.; Xue, S.; Fichtner, J.; Garlyyev, B.; Scieszka, D.; Claudel, F.; Maillard, F.; Bandarenka, A.S. Determination of Electroactive Surface Area of Ni-, Co-, Fe-, and Ir-Based Oxide Electrocatalysts. ACS Catal. 2019, 9, 9222–9230. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Feng, J.X.; Ding, L.X.; Ye, S.H.; He, X.J.; Xu, H.; Tong, Y.X.; Li, G.R. Co(OH)2@PANI Hybrid Nanosheets with 3D Networks as High-Performance Electrocatalysts for Hydrogen Evolution Reaction. Adv. Mater. 2015, 27, 7051–7057. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Xu, J.; Li, J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S.M.; Liu, Y.; et al. High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano 2019, 13, 10612–10621. [Google Scholar] [CrossRef]
- Xiao, Z.; Bao, Y.; Li, Z.; Huai, X.; Wang, M.; Liu, P.; Wang, L. Construction of Hollow Cobalt-Nickel Phosphate Nanocages through a Controllable Etching Strategy for High Supercapacitor Performances. ACS Appl. Energy Mater. 2019, 2, 1086–1092. [Google Scholar] [CrossRef]
- Ma, R.; Liang, J.; Takada, K.; Sasaki, T. Topochemical Synthesis of Co-Fe Layered Double Hydroxides at Varied Fe/Co Ratios: Unique Intercalation of Triiodide and Its Profound Effect. J. Am. Chem. Soc. 2011, 133, 613–620. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, L.; Meng, W.; Liang, Z.; Zhu, B.; Dang, D.; Dai, S.; Zhao, B.; Tabassum, H.; Gao, S.; et al. MOF-Derived α-NiS Nanorods on Graphene as an Electrode for High-Energy-Density Supercapacitors. J. Mater. Chem. A 2018, 6, 4003–4012. [Google Scholar] [CrossRef]
- Liang, J.; Renzhi, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical Synthesis, Anion Exchange, and Exfoliation of Co-Ni Layered Double Hydroxides: A Route to Positively Charged Co-Ni Hydroxide Nanosheets with Tunable Composition. Chem. Mater. 2010, 22, 371–378. [Google Scholar] [CrossRef]
- Jayakumar, A.; Antony, R.P.; Wang, R.; Lee, J.M. MOF-Derived Hollow Cage NixCo3−xO4 and Their Synergy with Graphene for Outstanding Supercapacitors. Small 2017, 13, 1603102. [Google Scholar] [CrossRef]
- Wei, Y.J.; Yan, L.Y.; Wang, C.Z.; Xu, X.G.; Wu, F.; Chen, G. Effects of Ni Doping on [MnO6] Octahedron in LiMn2O4. J. Phys. Chem. B 2004, 108, 18547–18551. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, M.; Reddeppa, N.; Xu, D.; Jing, Q.; Zha, R. Nitrogen Self-Doped Carbon Aerogels Derived from Trifunctional Benzoxazine Monomers as Ultralight Supercapacitor Electrodes. Nanoscale 2018, 10, 6549–6557. [Google Scholar] [CrossRef]
- Fan, Z.J.; Yan, J.; Wei, T.; Ning, G.Q.; Zhi, L.J.; Liu, J.C.; Cao, D.X.; Wang, G.L.; Wei, F. Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano 2011, 5, 2787–2794. [Google Scholar] [CrossRef]
- Galán-Mascarós, J.R. Water Oxidation at Electrodes Modified with Earth-Abundant Transition-Metal Catalysts. ChemElectroChem 2015, 2, 37–50. [Google Scholar] [CrossRef]
- Stern, L.A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351. [Google Scholar] [CrossRef]
- Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. Angew. Chem. 2015, 54, 9351–9355. [Google Scholar] [CrossRef]
- Swesi, A.T.; Masud, J.; Nath, M. Nickel Selenide as a High-Efficiency Catalyst for Oxygen Evolution Reaction. Energy Environ. Sci. 2016, 9, 1771–1782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periyasamy, T.; Asrafali, S.P.; Jang, A.; Kim, S.-C.; Lee, J. Enhanced Activity and Stability of Heteroatom-Doped Carbon/Bimetal Oxide for Efficient Water-Splitting Reaction. Polymers 2023, 15, 3588. https://doi.org/10.3390/polym15173588
Periyasamy T, Asrafali SP, Jang A, Kim S-C, Lee J. Enhanced Activity and Stability of Heteroatom-Doped Carbon/Bimetal Oxide for Efficient Water-Splitting Reaction. Polymers. 2023; 15(17):3588. https://doi.org/10.3390/polym15173588
Chicago/Turabian StylePeriyasamy, Thirukumaran, Shakila Parveen Asrafali, Ayoung Jang, Seong-Cheol Kim, and Jaewoong Lee. 2023. "Enhanced Activity and Stability of Heteroatom-Doped Carbon/Bimetal Oxide for Efficient Water-Splitting Reaction" Polymers 15, no. 17: 3588. https://doi.org/10.3390/polym15173588
APA StylePeriyasamy, T., Asrafali, S. P., Jang, A., Kim, S. -C., & Lee, J. (2023). Enhanced Activity and Stability of Heteroatom-Doped Carbon/Bimetal Oxide for Efficient Water-Splitting Reaction. Polymers, 15(17), 3588. https://doi.org/10.3390/polym15173588