Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Molecular Identification of Cellulose-Producing Bacteria
2.2. Bacterial Cellulose Synthesis, Functionalization Process, and Yield
- (I)
- Synthesis method I:First, the warm solution (80 °C) of 0.5 M Ca(OH)2 (Centrohem, Stara Pazova, Serbia, extra pure > 96%) was stirred with a magnetic stirrer and titrated with 0.3 M solutions of NaH2PO4 × H2O (≥99.0%, Sigma Aldrich, St. Louis, Missouri, USA, p.a.). At the beginning of the titration process, TiO2 (99.5%, p.a. Sigma Aldrich) was added. The pH value was adjusted by NH4OH (Centrohem, p.a., 25%) to reach pH 12. The formed HAp/TiO2 slurry was rinsed four times with distilled water and once with 96% ethanol. The powder was dried at 40 °C and calcined at 300 °C for 6 h in the air in a tube furnace (Protherm PTF16/75/450, Ankara, Turkey) using the following temperature program: heating to 300 °C at a rate of 10 °C/min, dwell time at 300 °C for 6 h, and cooling to room temperature naturally. In the second step, BC hydrogels were immersed into 50 mL of distilled water containing 75 mg previously added HAp/TiO2. The mixture was treated with ultrasonic cleaner (UCP-02, JeioTech co., Ltd., Daejeon, Republic of Korea) for 45 min, rinsed with distilled water and 96% v/v ethanol, and oven dried at 40 °C. The BC/HAp/TiO2 samples obtained by the first functionalization process of BC hydrogels were labeled as 4I and 7I according to days of BC growing.
- (II)
- Synthesis method II:To prepare BC/HAp/TiO2 by the second method, TiO2 was added in the Ca(OH)2 solution at the beginning of the process. During the titration of Ca(OH)2 solution with NaH2PO4 on magnetic stirring, BC hydrogel was immersed into the reaction mixture and kept for 1 h in it. Afterwards, the composites were rinsed four times with distilled water and once with 96% v/v ethanol, followed by oven drying at 40 °C. The obtained BC/HAp/TiO2 composites were marked as 4II and 7II.
2.3. Characterization of Bacterial Cellulose and Bacterial Cellulose-Based Composites
2.4. Antimicrobial Activity Assay
3. Results and Discussion
3.1. Identification of the Cellulose-Producing Isolate and Yields of BCs and Composites
3.2. Characterization of BC/HAp/TiO2 Composites
3.2.1. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDS)
3.2.2. XRD Analysis
3.2.3. FTIR Analysis
3.2.4. Mechanical Characterization
3.2.5. Thermogravimetric Analysis (TGA)
3.2.6. Contact Angle
3.3. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumaravel, V.; Nair, K.M.; Mathew, S.; Bartlett, J.; Kennedy, J.E.; Manning, H.G.; Whelan, B.J.; Leyland, N.S.; Pillai, S.C. Antimicrobial TiO2 Nanocomposite Coatings for Surfaces, Dental and Orthopaedic Implants. Chem. Eng. J. 2021, 416, 129071. [Google Scholar] [CrossRef]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.N.; Tay, F.R. Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Malmir, S.; Karbalaei, A.; Pourmadadi, M.; Hamedi, J.; Yazdian, F.; Navaee, M. Antibacterial Properties of a Bacterial Cellulose CQD-TiO2 Nanocomposite. Carbohydr. Polym. 2020, 234, 115835. [Google Scholar] [CrossRef]
- Mirković, M.; Filipović, S.; Kalijadis, A.; Mašković, P.; Mašković, J.; Vlahović, B.; Pavlović, V. Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties. Antibiotics 2022, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Nonami, T.; Hase, H.; Funakoshi, K. Apatite-Coated Titanium Dioxide Photocatalyst for Air Purification. Catal. Today 2004, 96, 113–118. [Google Scholar] [CrossRef]
- Janovák, L.; Deák, Á.; Tallósy, S.P.; Sebők, D.; Csapó, E.; Bohinc, K.; Abram, A.; Pálinkó, I.; Dékány, I. Hydroxyapatite-Enhanced Structural, Photocatalytic and Antibacterial Properties of Photoreactive TiO2/HAp/Polyacrylate Hybrid Thin Films. Surf. Coat. Technol. 2017, 326, 316–326. [Google Scholar] [CrossRef]
- Pogorelova, N.; Rogachev, E.; Digel, I.; Chernigova, S.; Nardin, D. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials 2020, 13, 2849. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef]
- Cacicedo, M.L.; Castro, M.C.; Servetas, I.; Bosnea, L.; Boura, K.; Tsafrakidou, P.; Dima, A.; Terpou, A.; Koutinas, A.; Castro, G.R. Progress in Bacterial Cellulose Matrices for Biotechnological Applications. Bioresour. Technol. 2016, 213, 172–180. [Google Scholar] [CrossRef]
- Nicoara, A.I.; Stoica, A.E.; Ene, D.I.; Vasile, B.S.; Holban, A.M.; Neacsu, I.A. In Situ and Ex Situ Designed Hydroxyapatite: Bacterial Cellulose Materials with Biomedical Applications. Materials 2020, 13, 4793. [Google Scholar] [CrossRef]
- He, X.; Meng, H.; Song, H.; Deng, S.; He, T.; Wang, S.; Wei, D.; Zhang, Z. Novel Bacterial Cellulose Membrane Biosynthesized by a New and Highly Efficient Producer Komagataeibacter Rhaeticus TJPU03. Carbohydr. Res. 2020, 493, 108030. [Google Scholar] [CrossRef]
- Machado, R.T.A.; Gutierrez, J.; Tercjak, A.; Trovatti, E.; Uahib, F.G.M.; de Padua Moreno, G.; Nascimento, A.P.; Berreta, A.A.; Ribeiro, S.J.L.; Barud, H.S. Komagataeibacter Rhaeticus as an Alternative Bacteria for Cellulose Production. Carbohydr. Polym. 2016, 152, 841–849. [Google Scholar] [CrossRef]
- Fernandes, M.; Gama, M.; Dourado, F.; Souto, A.P. Development of Novel Bacterial Cellulose Composites for the Textile and Shoe Industry. Microb. Biotechnol. 2019, 12, 650–661. [Google Scholar] [CrossRef]
- Andriani, D.; Apriyana, A.Y.; Karina, M. The Optimization of Bacterial Cellulose Production and Its Applications: A Review. Cellulose 2020, 27, 6747–6766. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, L.; Ling, J.; Yang, L.Y.; Ouyang, X.K. A Quaternized Chitosan and Carboxylated Cellulose Nanofiber-Based Sponge with a Microchannel Structure for Rapid Hemostasis and Wound Healing. Int. J. Biol. Macromol. 2023, 233, 123631. [Google Scholar] [CrossRef] [PubMed]
- Abdelraof, M.; Hasanin, M.S.; Farag, M.M.; Ahmed, H.Y. Green Synthesis of Bacterial Cellulose/Bioactive Glass Nanocomposites: Effect of Glass Nanoparticles on Cellulose Yield, Biocompatibility and Antimicrobial Activity. Int. J. Biol. Macromol. 2019, 138, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.K.; Zhao, L.; Jiang, F.; Ling, J.; Yang, L.Y.; Wang, N. Cellulose Nanocrystal/Calcium Alginate-Based Porous Microspheres for Rapid Hemostasis and Wound Healing. Carbohydr. Polym. 2022, 293, 119688. [Google Scholar] [CrossRef]
- Xuchao, P.; Yong, H.; Semirumi, D.T.; Zhong, F.; Rezaie, R. Development of Cellulose/Hydroxyapatite/TiO2 Scaffolds for Efficient Removal of Lead (II) Ions Pollution: Characterization, Kinetic Analysis, and Artificial Neural Network Modeling. Int. J. Biol. Macromol. 2023, 246, 125630. [Google Scholar] [CrossRef]
- Amoa-Awua, W.K.; Sampson, E.; Tano-Debrah, K. Growth of Yeasts, Lactic and Acetic Acid Bacteria in Palm Wine during Tapping and Fermentation from Felled Oil Palm (Elaeis Guineensis) in Ghana. J. Appl. Microbiol. 2007, 102, 599–606. [Google Scholar] [CrossRef]
- Hopwood, D.A. Genetic Manipulation of Streptomyces: A Laboratory Manual; The John Innes Foundation: Norwich, UK, 1985. [Google Scholar]
- Jovčić, B.; Begović, J.; Lozo, J.; Topisirović, L.; Kojić, M.J. Dynamics of Sodium Dodecyl Sulfate Utilization. Arch. Biol. Sci. 2009, 61, 159–164. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs; Oxford University Press: Oxford, UK, 1997; Volume 25. [Google Scholar]
- Obradović, N.; Blagojević, V.; Filipović, S.; Đorđević, N.; Kosanović, D.; Marković, S.; Kachlik, M.; Maca, K.; Pavlović, V. Kinetics of Thermally Activated Processes in Cordierite-Based Ceramics. J. Therm. Anal. Calorim. 2019, 138, 2989–2998. [Google Scholar] [CrossRef]
- Dima, S.O.; Panaitescu, D.M.; Orban, C.; Ghiurea, M.; Doncea, S.M.; Fierascu, R.C.; Nistor, C.L.; Alexandrescu, E.; Nicolae, C.A.; Trica, B.; et al. Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties. Polymers 2017, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Semjonovs, P.; Ruklisha, M.; Paegle, L.; Saka, M.; Treimane, R.; Skute, M.; Rozenberga, L.; Vikele, L.; Sabovics, M.; Cleenwerck, I. Cellulose Synthesis by Komagataeibacter Rhaeticus Strain P 1463 Isolated from Kombucha. Appl. Microbiol. Biotechnol. 2017, 101, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Wang, Y.L.; Jia, S.R.; Huang, Y.; Gao, C.; Wan, Y.Z. Hydroxyapatite/Bacterial Cellulose Composites Synthesized via a Biomimetic Route. Mater. Lett. 2006, 60, 1710–1713. [Google Scholar] [CrossRef]
- Núñez, D.; Cáceres, R.; Ide, W.; Varaprasad, K.; Oyarzún, P. An Ecofriendly Nanocomposite of Bacterial Cellulose and Hydroxyapatite Efficiently Removes Lead from Water. Int. J. Biol. Macromol. 2020, 165, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Rigaku. Integrated X-ray Powder Diffraction Software PDXL. Rigaku J. 2010, 26, 23–27. [Google Scholar]
- Zmejkoski, D.; Spasojević, D.; Orlovska, I.; Kozyrovska, N.; Soković, M.; Glamočlija, J.; Dmitrović, S.; Matović, B.; Tasić, N.; Maksimović, V.; et al. Bacterial Cellulose-Lignin Composite Hydrogel as a Promising Agent in Chronic Wound Healing. Int. J. Biol. Macromol. 2018, 118, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Dayal, M.S.; Catchmark, J.M. Mechanical and Structural Property Analysis of Bacterial Cellulose Composites. Carbohydr. Polym. 2016, 144, 447–453. [Google Scholar] [CrossRef]
- Ruka, D.R.; Simon, G.P.; Dean, K.M. Altering the Growth Conditions of Gluconacetobacter Xylinus to Maximize the Yield of Bacterial Cellulose. Carbohydr. Polym. 2012, 89, 613–622. [Google Scholar] [CrossRef]
- Wang, S.S.; Han, Y.H.; Ye, Y.X.; Shi, X.X.; Xiang, P.; Chen, D.L.; Li, M. Physicochemical Characterization of High-Quality Bacterial Cellulose Produced by Komagataeibacter Sp. Strain W1 and Identification of the Associated Genes in Bacterial Cellulose Production. RSC Adv. 2017, 7, 45145–45155. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, Y.; Wang, Y.; Chen, M.; Huang, Y.; Cao, J.; Ho, W.; Lee, S.C. Enhanced Photocatalytic Removal of NO over Titania/Hydroxyapatite (TiO2/HAp) Composites with Improved Adsorption and Charge Mobility Ability. RSC Adv. 2017, 7, 24683–24689. [Google Scholar] [CrossRef]
- Pushpakanth, S.; Srinivasan, B.; Sreedhar, B.; Sastry, T.P. An in Situ Approach to Prepare Nanorods of Titania-Hydroxyapatite (TiO2-HAp) Nanocomposite by Microwave Hydrothermal Technique. Mater. Chem. Phys. 2008, 107, 492–498. [Google Scholar] [CrossRef]
- Taha, S.; Begum, S.; Narwade, V.N.; Halge, D.I.; Dadge, J.W.; Mahabole, M.P.; Khairnar, R.S.; Bogle, K.A. Development of Alcohol Sensor Using TiO2-Hydroxyapatite Nano-Composites. Mater. Chem. Phys. 2020, 240, 122228. [Google Scholar] [CrossRef]
- Janićijević, A.; Pavlović, V.P.; Kovačević, D.; Perić, M.; Vlahović, B.; Pavlović, V.B.; Filipović, S. Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials. Polymers 2022, 14, 1819. [Google Scholar] [CrossRef] [PubMed]
- Rashidian, E.; Babaeipour, V.; Chegeni, A.; Khodamoradi, N.; Omidi, M. Synthesis and Characterization of Bacterial Cellulose/Graphene Oxide Nano-Biocomposites. Polym. Compos. 2021, 42, 4698–4706. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Ivanović, J.Z.; Pavlović, V.B.; Rakić, V.M.; Rančić, M.P.; Djokić, V.; Marinković, A.D. Novel Modified Nanocellulose Applicable as Reinforcement in High-Performance Nanocomposites. Carbohydr. Polym. 2017, 164, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Walling, B.; Bharali, P.; Ramachandran, D.; Viswanathan, K.; Hazarika, S.; Dutta, N.; Mudoi, P.; Manivannan, J.; Manjunath Kamath, S.; Kumari, S.; et al. In-Situ Biofabrication of Bacterial Nanocellulose (BNC)/Graphene Oxide (GO) Nano-Biocomposite and Study of Its Cationic Dyes Adsorption Properties. Int. J. Biol. Macromol. 2023, 251, 126309. [Google Scholar] [CrossRef] [PubMed]
- Tongon, W.; Chawengkijwanich, C.; Chiarakorn, S. Multifunctional Ag/TiO2/MCM-41 Nanocomposite Film Applied for Indoor Air Treatment. Build. Environ. 2014, 82, 481–489. [Google Scholar] [CrossRef]
- Lemnaru, G.M.; Truşcă, R.D.; Ilie, C.I.; Ţiplea, R.E.; Ficai, D.; Oprea, O.; Stoica-Guzun, A.; Ficai, A.; Diţu, L.M. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules 2020, 25, 4069. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Talebian, N.; Amininezhad, S.M.; Doudi, M. Controllable Synthesis of ZnO Nanoparticles and Their Morphology-Dependent Antibacterial and Optical Properties. J. Photochem. Photobiol. B Biol. 2013, 120, 66–73. [Google Scholar] [CrossRef] [PubMed]
Sample | Dry Weight (mg/50 mL) | Incorporated HAp/TiO2 (mg) |
---|---|---|
4K | 116.1 ± 3.3 | |
4I | 166.7 ± 4.1 | 50.6 ± 0.8 |
4II | 146.5 ± 6.2 | 30.4 ± 2.9 |
7K | 145.6 ± 2.0 | |
7I | 194.5 ± 3.8 | 48.9 ± 1.8 |
7II | 199.4 ± 5.1 | 53.8 ± 3.1 |
Sample | Tensile Strength σm (MPa) | Elongation at Break εm (%) | Young’s Modulus E (MPa) |
---|---|---|---|
4K | 28.75 ± 2.55 | 3.98 ± 0.22 | 1639.55 ± 61.22 |
4I | 3.55 ± 0.30 | 1.97 ± 0.16 | 165.75 ± 11.31 |
4II | 5.77 ± 0.40 | 6.09 ± 0.44 | 167.77 ± 10.58 |
7K | 34.29 ± 2.12 | 6.24 ± 0.50 | 2129.14 ± 149.18 |
7I | 8.45 ± 0.91 | 4.63 ± 0.47 | 771.42 ± 58.14 |
7II | 12.47 ± 1.15 | 5.04 ± 0.33 | 570.27 ± 23.37 |
Sample | Value Measurement Angle (°) |
---|---|
4K | 35.85 |
7K | 44.65 |
4I | 36.73 |
7I | 32.11 |
4II | 34.92 |
7II | 22.79 |
Sample | Candida albicans ATCC 10231 | Staphylococcus aureus ATCC 25923 | Escherichia coli ATCC 25922 | Proteus mirabilis ATCC 12453 | ||||
---|---|---|---|---|---|---|---|---|
Reduction | Reduction | Reduction | Reduction | |||||
Positive control 1 | 7.77 ± 0.1 a,2 | 8.87 ± 0.16 a | 8.68 ± 0.08 a | 9.61 ± 0.11 a | ||||
4K | 7.61 ± 0.13 a | 0.16 ± 0.03 a | 8.87 ± 0.03 a | 0.00 ± 0.13 a | 8.53 ± 0.03 a | 0.15 ± 0.05 a | 9.59 ± 0.01 a | 0.02 ± 0.08 a |
4I | 7.53 ± 0.30 a | 0.24 ± 0.04 a | 8.67 ± 0.07 a | 0.21 ± 0.08 a | 8.57 ± 0.11 a | 0.11 ± 0.03 a | 9.50 ± 0.07 a | 0.11 ± 0.04 a |
4II | 4.10 ± 0.28 b | 3.67 ± 0.21 b | 4.30 ± 0.12 b | 4.57 ± 0.04 b | 2.48 ± 0.16 b | 6.20 ± 0.08 b | 8.08 ± 0.03 b | 1.53 ± 0.08 b |
7K | 7.50 ± 0.14 a | 0.27 ± 0.04 a | 8.86 ± 0.01 a | 0.01 ± 0.03 a | 8.54 ± 0.13 a | 0.14 ± 0.05 a | 9.61 ± 0.01 a | 0.00 ± 0.01 a |
7I | 6.24 ± 0.08 c | 1.53 ± 0.02 c | 8.80 ± 0.04 a | 0.07 ± 0.12 a | 8.36 ± 0.03 a | 0.32 ± 0.05 a | 9.58 ± 0.14 a | 0.03 ± 0.03 a |
7II | 4.38 ± 0.01 b | 3.39 ± 0.09 b | 8.78 ± 0.07 a | 0.09 ± 0.09 a | 7.65 ± 0.17 c | 1.03 ± 0.01 c | 9.57 ± 0.00 a | 0.04 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sknepnek, A.; Filipović, S.; Pavlović, V.B.; Mirković, N.; Miletić, D.; Gržetić, J.; Mirković, M. Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. Polymers 2024, 16, 470. https://doi.org/10.3390/polym16040470
Sknepnek A, Filipović S, Pavlović VB, Mirković N, Miletić D, Gržetić J, Mirković M. Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. Polymers. 2024; 16(4):470. https://doi.org/10.3390/polym16040470
Chicago/Turabian StyleSknepnek, Aleksandra, Suzana Filipović, Vladimir B. Pavlović, Nemanja Mirković, Dunja Miletić, Jelena Gržetić, and Miljana Mirković. 2024. "Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material" Polymers 16, no. 4: 470. https://doi.org/10.3390/polym16040470
APA StyleSknepnek, A., Filipović, S., Pavlović, V. B., Mirković, N., Miletić, D., Gržetić, J., & Mirković, M. (2024). Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. Polymers, 16(4), 470. https://doi.org/10.3390/polym16040470