In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of the Fabricated Scaffolds—Porosity, Pore, and Strut Sizes
2.2. In Vitro Simulated Physiological Condition Degradation
2.2.1. Swelling, Mass Loss, pH
2.2.2. Thermal Properties and Crystallinity
2.2.3. Molecular Weight Changes
2.2.4. Mechanical Properties
2.3. Cellular Response to the Degradation of Scaffolds
2.3.1. Human Bone Marrow-Derived Mesenchymal Stem Cell (HBMSC) Culture
2.3.2. HBMSC Seeding onto Scaffolds
2.3.3. Cell Viability on 3D Printed Scaffolds
2.3.4. Cell Attachment, Morphology, and Distribution Using SEM
2.4. Accelerated Degradation
3. Results
3.1. Characterisation of the 3D-Printed Scaffold
3.2. In Vitro Degradation at Physiological Temperature
3.2.1. Visual Inspection
3.2.2. Swelling, Change in Mass and pH with Degradation
3.2.3. Change in Thermal Properties with Degradation Time
3.2.4. Change in Molecular Weight with Degradation (GPC)
3.2.5. Change in Mechanical Properties with Degradation
3.3. In Vitro Cell Culture Study
3.3.1. Cell Viability Study
3.3.2. Characterisation of Cell Attachment and Morphology Using SEM
3.4. Accelerated Degradation
3.4.1. Visual Inspection
3.4.2. Swelling, Change in Mass and pH with Degradation
3.4.3. Change in Thermal Properties with Degradation Time
3.4.4. Change in Molecular Weight with Degradation (GPC)
3.4.5. Change in Mechanical Properties with Degradation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, B.; Yang, Y.; Mohandas, A.; Stucker, B.; Nguyen, K.T. A Review of Materials, Fabrication Methods, and Strategies Used to Enhance Bone Regeneration in Engineered Bone Tissues. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 85, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Park, T.G. Surface Engineered and Drug Releasing Pre-Fabricated Scaffolds for Tissue Engineering. Adv. Drug. Deliv. Rev. 2007, 59, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.J.; Meredith, C.; Johnson, C.; Galis, Z.S. The Effect of Scaffold Degradation Rate on Three-Dimensional Cell Growth and Angiogenesis. Biomaterials 2004, 25, 5735–5742. [Google Scholar] [CrossRef]
- Yeo, A.; Rai, B.; Sju, E.; Cheong, J.J.; Teoh, S.H. The Degradation Profile of Novel, Bioresorbable PCL-TCP Scaffolds: An in Vitro and in Vivo Study. J. Biomed. Mater. Res. A 2008, 84, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Farrar, D. Development of Bioresorbable Polymers in Orthopaedics. Plast. Rubber Compos. 2008, 37, 46–49. [Google Scholar] [CrossRef]
- Moretti, M.; Wendt, D.; Dickinson, S.C.; Sims, T.J.; Hollander, A.P.; Kelly, D.J.; Prendergast, P.J.; Herberer, M.; Martin, I. Effects of in Vitro Preculture on in Vivo Development of Human Engineered Cartilage in an Ectopic Model. Tissue Eng. 2005, 11, 1421–1428. [Google Scholar] [CrossRef]
- Veronesi, F.; Maglio, M.; Tschon, M.; Aldini, N.N.; Fini, M. Adipose-Derived Mesenchymal Stem Cells for Cartilage Tissue Engineering: State-of-the-Art in in Vivo Studies. J. Biomed. Mater. Res. A 2014, 102, 2448–2466. [Google Scholar] [CrossRef]
- Ginjupalli, K.; Shavi, G.V.; Averineni, R.K.; Bhat, M.; Udupa, N.; Nagaraja Upadhya, P. Poly(α-Hydroxy Acid) Based Polymers: A Review on Material and Degradation Aspects. Polym. Degrad. Stab. 2017, 144, 520–535. [Google Scholar] [CrossRef]
- Geddes, L.; Carson, L.; Themistou, E.; Buchanan, F. A Comparison of the Increased Temperature Accelerated Degradation of Poly(D,L-Lactide-Co-Glycolide) and Poly(L-Lactide-Co-Glycolide). Polym. Test. 2020, 91, 106853. [Google Scholar] [CrossRef]
- Tavakoli, E.; Mehdikhani-Nahrkhalaji, M.; Sarafbidabad, M. Poly (Lactic-Co-Glycolic) Acid (PLGA)-Based Compounds for Articular Cartilage Regeneration. J. Rep. Pharm. Sci. 2016, 5, 94–103. [Google Scholar]
- Guo, T.; Holzberg, T.R.; Lim, C.G.; Gao, F.; Gargava, A.; Trachtenberg, J.E.; Mikos, A.G.; Fisher, J.P. 3D Printing PLGA: A Quantitative Examination of the Effects of Polymer Composition and Printing Parameters on Print Resolution. Biofabrication 2017, 9, 024101. [Google Scholar] [CrossRef] [PubMed]
- Mansour, J.M. Biomechanics of Cartilage. In Kinesiology: The Mechanics and Pathomechanics of Human Movement; Lippincott Williams & Wilkens: Philadelphia, PA, USA, 2003; Volume 2, pp. 66–79. [Google Scholar]
- Emans, P.J.; Jansen, E.J.P.; van Iersel, D.; Welting, T.J.M.; Woodfield, T.B.F.; Bulstra, S.K.; Riesle, J.; van Rhijn, L.W.; Kuijer, R. Tissue-Engineered Constructs: The Effect of Scaffold Architecture in Osteochondral Repair. J. Tissue Eng. Regen. Med. 2013, 7, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Deng, Z.; Zhang, K.; Li, S. A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations. Compos. B Eng. 2019, 163, 393–402. [Google Scholar] [CrossRef]
- Langer, R. Perspectives and Challenges in Tissue Engineering and Regenerative Medicine. Adv. Mater. 2009, 21, 3235–3236. [Google Scholar] [CrossRef] [PubMed]
- Gantenbein, S.; Masania, K.; Woigk, W.; Sesseg, J.P.W.; Tervoort, T.A.; Studart, A.R. Three-Dimensional Printing of Hierarchical Liquid-Crystal-Polymer Structures. Nature 2018, 561, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Balla, V.K.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive Manufacturing of Natural Fiber Reinforced Polymer Composites: Processing and Prospects. Compos. B Eng. 2019, 174, 106956. [Google Scholar] [CrossRef]
- Darestani, F.T.; Entezami, A.A.; Mobedi, H.; Abtahi, M. Degradation of Poly(D,L-Lactide-Co-Glycolide) in Aqueaous Medium. Iran. Polym. J. 2005, 14, 753–763. [Google Scholar]
- Dorati, R.; Colonna, C.; Genta, I.; Modena, T.; Conti, B. Effect of Porogen on the Physico-Chemical Properties and Degradation Performance of PLGA Scaffolds. Polym. Degrad. Stab. 2010, 95, 694–701. [Google Scholar] [CrossRef]
- Boimvaser, S.; Mariano, R.N.; Turino, L.N.; Vega, J.R. In Vitro Bulk/Surface Erosion Pattern of PLGA Implant in Physiological Conditions: A Study Based on Auxiliary Microsphere Systems. Polym. Bull. 2016, 73, 209–227. [Google Scholar] [CrossRef]
- Weir, N.A.; Buchanan, F.J.; Orr, J.F.; Farrar, D.F.; Dickson, G.R. Degradation of Poly-L-Lactide. Part 2: Increased Temperature Accelerated Degradation. Proc. Inst. Mech. Eng. H 2004, 218, 321–330. [Google Scholar] [CrossRef]
- Agrawal, C.M.; Huang, D.; Schmitz, J.P.; Athanasiou, K.A. Elevated Temperature Degradation of a 50:50 Copolymer of PLA-PGA; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 1997; Volume 3. [Google Scholar]
- Lyu, S.P.; Schley, J.; Loy, B.; Lind, D.; Hobot, C.; Sparer, R.; Untereker, D. Kinetics and Time-Temperature Equivalence of Polymer Degradation. Biomacromolecules 2007, 8, 2301–2310. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Leary, P.E.; Burgess, D.J. Elevated Temperature Accelerated Release Testing of PLGA Microspheres. J. Control. Release 2006, 112, 293–300. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- ISO 13781:2017; Implants for Surgery—Homopolymers, Copolymers and Blends on Poly(lactide)—In Vitro Degradation Testing. International Organization for Standardization: Geneva, Switzerland, 2017.
- Hazehara-Kunitomo, Y.; Hara, E.S.; Ono, M.; Aung, K.T.; Komi, K.; Pham, H.T.; Akiyama, K.; Okada, M.; Oohashi, T.; Matsumoto, T.; et al. Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells. Int. J. Mol. Sci. 2019, 20, 1097. [Google Scholar] [CrossRef] [PubMed]
- Abdal-hay, A.; Raveendran, N.T.; Fournier, B.; Ivanovski, S. Fabrication of Biocompatible and Bioabsorbable Polycaprolactone/ Magnesium Hydroxide 3D Printed Scaffolds: Degradation and in Vitro Osteoblasts Interactions. Compos. B Eng. 2020, 197, 108158. [Google Scholar] [CrossRef]
- Freyman, T.M.; Yannas, I.V.; Gibson, L.J. Cellular Materials as Porous Scaffolds for Tissue Engineering. Prog. Mater. Sci. 2001, 46, 273–282. [Google Scholar] [CrossRef]
- Gannon, A.R.; Nagel, T.; Kelly, D.J. The Role of the Superficial Region in Determining the Dynamic Properties of Articular Cartilage. Osteoarthr. Cartil. 2012, 20, 1417–1425. [Google Scholar] [CrossRef]
- Beck, E.C.; Barragan, M.; Tadros, M.H.; Gehrke, S.H.; Detamore, M.S. Approaching the Compressive Modulus of Articular Cartilage with a Decellularized Cartilage-Based Hydrogel. Acta Biomater. 2016, 38, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Little, C.J.; Bawolin, N.K.; Chen, X. Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. Tissue Eng. Part. B Rev. 2011, 17, 213–227. [Google Scholar] [CrossRef]
- Jurvelin, J.S.; Buschmannf, M.D.; Hunziker, E.B. Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage. J. Biomech. 1997, 30, 235–241. [Google Scholar] [CrossRef]
- Alexis, F. Factors Affecting the Degradation and Drug-Release Mechanism of Poly(Lactic Acid) and Poly[(Lactic Acid)-Co-(Glycolic Acid)]. Polym. Int. 2005, 54, 36–46. [Google Scholar] [CrossRef]
- Leenslag, J.W.; Pennings, A.J.; Bos, R.R.M.; Rozema, F.R.; Boering, G. Resorbable Materials of Poly(l-Lactide): VII. In Vivo and in Vitro Degradation. Biomaterials 1987, 8, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Hooper, K.A.; Macon, N.D.; Kohn, J. Comparative Histological Evaluation of New Tyrosine-Derived Polymers and Poly (L-Lactic Acid) as a Function of Polymer Degradation. J. Biomed. Mater. Res. 1998, 41, 443–454. [Google Scholar] [CrossRef]
- Wu, L.; Ding, J. Effects of Porosity and Pore Size on in Vitro Degradation of Three-Dimensional Porous Poly(D,L-Lactide-Co-Glycolide) Scaffolds for Tissue Engineering. J. Biomed. Mater. Res. A 2005, 75, 767–777. [Google Scholar] [CrossRef]
- Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic Degradation of Devices Based on Poly[m-Lactic Acid) Size-Dependence. Biomaterials 1995, 16, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Kim, J.Y.; Park, J.K.; Hahn, S.K.; Rhie, J.W.; Kang, S.W.; Lee, S.H.; Cho, D.W. Effect of Thermal Degradation of SFF-Based PLGA Scaffolds Fabricated Using a Multi-Head Deposition System Followed by Change of Cell Growth Rate. J. Biomater. Sci. Polym. Ed. 2010, 21, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Houchin, M.L.; Topp, E.M. Physical Properties of PLGA Films during Polymer Degradation. J. Appl. Polym. Sci. 2009, 114, 2848–2854. [Google Scholar] [CrossRef]
- Lam, C.X.F.; Savalani, M.M.; Teoh, S.-H.; Hutmacher, D.W. Dynamics of in Vitro Polymer Degradation of Polycaprolactone-Based Scaffolds: Accelerated versus Simulated Physiological Conditions. Biomed. Mater. 2008, 3, 034108. [Google Scholar] [CrossRef]
- Li, S.M.; Garreau, H.; Vert, M. Structure-Property Relationships in the Case of the Degradation of Massive aliphatic Poly-(α-Hydroxy Acids) in Aqueous Media. J. Mater. Sci. Mater. Med. 1990, 1, 123–130. [Google Scholar] [CrossRef]
- Perron, J.K.; Naguib, H.E.; Daka, J.; Chawla, A.; Wilkins, R. A Study on the Effect of Degradation Media on the Physical and Mechanical Properties of Porous PLGA 85/15 Scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91B, 876–886. [Google Scholar] [CrossRef]
- Soltz, M.A.; Ateshian, G.A. Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage. Ann. Biomed. Eng. 2000, 28, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, C.G. Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J. Biomech. Eng. 1980, 102, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, A.S.A.; Florea, C.; Tanska, P.; Hung, H.-H.K.; Frank, E.H.; Mikkonen, S.; Nieminen, P.; Julkunen, P.; Grodzinsky, A.J.; Korhonen, R.K. Cyclic Loading Regime Considered Beneficial Does Not Protect Injured and Interleukin-1-Inflamed Cartilage from Post-Traumatic Osteoarthritis. J. Biomech. 2022, 141, 111181. [Google Scholar] [CrossRef]
- Yang, D.; Xiao, J.; Wang, B.; Li, L.; Kong, X.; Liao, J. The Immune Reaction and Degradation Fate of Scaffold in Cartilage/Bone Tissue Engineering. Mater. Sci. Eng. C 2019, 104, 109927. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Ahn, H.H.; Shin, Y.N.; Cho, M.H.; Khang, G.; Lee, H.B. An in Vivo Study of the Host Tissue Response to Subcutaneous Implantation of PLGA- and/or Porcine Small Intestinal Submucosa-Based Scaffolds. Biomaterials 2007, 28, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
- Geddes, L.; Themistou, E.; Burrows, J.F.; Buchanan, F.J.; Carson, L. Evaluation of the in Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-Lactide-Co-Glycolide) and Poly(L-Lactide-Co-Glycolide). Acta Biomater. 2021, 134, 261–275. [Google Scholar] [CrossRef]
- Cameron, R.E.; Kamvari-Moghaddam, A. Synthetic Bioresorbable Polymers. In Degradation Rate of Bioresorbable Materials: Prediction and Evaluation; Elsevier Inc.: Amsterdam, The Netherlands, 2008; pp. 43–66. ISBN 9781845693299. [Google Scholar]
37 °C | |||
---|---|---|---|
Degradation Time (Days) | Tg (°C) | Tm (°C) | Crystallinity (%) |
3 | 58.40 ± 0.01 | - | - |
14 | 58.31 ± 0.01 | - | - |
28 | 58.27 ± 0.07 | - | - |
56 | 57.85 ± 0.31 | - | - |
47 °C | |||
3 | 58.40 ± 0.08 | - | - |
10 | 57.10 ± 0.23 | - | - |
21 | 54.84 ± 0.91 | 162.17 ± 0.4 | 2.97 ± 1% |
28 | 53.34 ± 0.03 | 159.22 ± 0.5 | 11.75 ± 1.5% |
37 °C | |
---|---|
Degradation Time (Days) | Mn (g/mol) |
0 | 125,481 |
3 | 106,339 |
7 | 105,628 |
10 | 104,000 |
14 | 103,759 |
21 | 99,708 |
28 | 95,975 |
42 | 80,263 |
56 | 75,900 |
47 °C | Degradation Time (Days) | 0 | 3 | 7 | 10 | 14 | 21 | 28 |
Mn (g/mol) | 125,481 | 92,506 | 76,770 | 64,700 | 53,481 | 23,584 | 9585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh Dastidar, A.; Clarke, S.A.; Larrañeta, E.; Buchanan, F.; Manda, K. In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications. Polymers 2023, 15, 3714. https://doi.org/10.3390/polym15183714
Ghosh Dastidar A, Clarke SA, Larrañeta E, Buchanan F, Manda K. In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications. Polymers. 2023; 15(18):3714. https://doi.org/10.3390/polym15183714
Chicago/Turabian StyleGhosh Dastidar, Anushree, Susan A Clarke, Eneko Larrañeta, Fraser Buchanan, and Krishna Manda. 2023. "In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications" Polymers 15, no. 18: 3714. https://doi.org/10.3390/polym15183714
APA StyleGhosh Dastidar, A., Clarke, S. A., Larrañeta, E., Buchanan, F., & Manda, K. (2023). In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications. Polymers, 15(18), 3714. https://doi.org/10.3390/polym15183714