Optimisation of 3D Printing for Microcellular Polymers
Abstract
:1. Introduction
2. Experimental Design
2.1. 3D Printer
2.2. Test Part and Printer Settings
2.3. Tensile Testing
2.4. Design of Experiments
3. Results
3.1. Microcellular Foaming
3.2. Part Weight
3.2.1. Mean Results
3.2.2. Print Parameters’ Contribution to Optimum Weight
3.3. Tensile Testing Results
3.3.1. Mean Results
3.3.2. Print Parameters’ Contribution to Strength
3.4. Optimisation for Part Weight and Strength
- It is possible to compromise with a high σ and εf but with an increased weight (8.35–8.40 g).
- For a low weight of 8.20 g, a medium σ of 16.90 MPa and high εf of 0.139% is achievable.
- For a low weight of 8.20 g, a high σ of 20.00 MPa and low εf of 0.120% is achievable.
- A high k and εf can be realised but with an increased weight of 8.30–8.35 g.
- A low weight of 8.20 g is possible with a medium k of 1.62 GPa and high εf of 0.139%.
- A low weight of 8.20 g and a high k of 1.78 GPa is possible but with a compromise of a low εf of 0.123%.
- The most important finding is that it is possible to achieve a low weight of 8.20 g together with a high σ of 20.16 MPa and k of 1.78 GPa.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sanders, W.; Gibson, L. Mechanics of BCC and FCC hollow-sphere foams. Mater. Sci. Eng. A 2003, 352, 150–161. [Google Scholar] [CrossRef]
- Fiedler, T.; Öchsner, A. On the anisotropy of adhesively bonded metallic hollow sphere structures. Scr. Mater. 2008, 58, 695–698. [Google Scholar] [CrossRef]
- Boomsma, K.; Poulikakos, D.; Zwick, F. Metal foams as compact high performance heat exchangers. Mech. Mater. 2003, 35, 1161–1176. [Google Scholar] [CrossRef]
- Hong, S.T.; Herling, D.R. Open-cell aluminum foams filled with phase change materialsas compact heat sinks. Scr. Mater. 2006, 55, 887–890. [Google Scholar] [CrossRef]
- Sanders, W.; Gibson, L. Mechanics of hollow sphere foams. Mater. Sci. Eng. A 2003, 347, 70–85. [Google Scholar] [CrossRef]
- Mills, N.; Fitzgerald, C.; Gilchrist, A.; Verdejo, R. Polymer foams for personal protection: Cushions, shoes and helmets. Compos. Sci. Technol. 2003, 63, 2389–2400. [Google Scholar] [CrossRef]
- Tammaro, D.; Walker, C.; Lombardi, L.; Trommsdorff, U. Effect of extrudate swell on extrusion foam of polyethylene terephthalate. J. Cell. Plast. 2020, 57, 911–925. [Google Scholar] [CrossRef]
- Wong, A.; Guo, H.; Kumar, V.; Park, C.B.; Suh, N.P. Microcellular plastics. Encycl. Polym. Sci. Technol. 2016, 1, 11–57. [Google Scholar]
- Martini-Vvedensky, J.E.; Suh, N.P.; Waldman, F.A. Microcellular Closed Cell Foams and Their Method of Manufacture. U.S. Patent 4473665, 25 September 1984. [Google Scholar]
- Doroudiani, S.; Park, C.B.; Kortschot, M.T. Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polym. Eng. Sci. 1998, 38, 1205–1215. [Google Scholar] [CrossRef]
- Xu, J. Microcellular Injection Molding, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Shaayegan, V.; Mark, L.H.; Park, C.B.; Wang, G. Identification of cell-nucleation mechanism in foam injection molding with gas-counter pressure via mold visualization. AIChE J. 2016, 62, 4035–4046. [Google Scholar] [CrossRef]
- Shaayegan, V.; Wang, G.; Park, C.B. Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chem. Eng. Sci. 2016, 155, 27–37. [Google Scholar] [CrossRef]
- Shaayegan, V.; Wang, G.; Park, C.B. Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization. Eur. Polym. J. 2016, 76, 2–13. [Google Scholar] [CrossRef]
- Shaayegan, V.; Mark, L.H.; Tabatabaei, A.; Park, C.B. A new insight into foaming mechanisms in injection molding via a novel visualization mold. Express Polym. Lett. 2016, 10, 462–469. [Google Scholar] [CrossRef]
- Jasiuk, I.; Abueidda, D.W.; Kozuch, C.; Pang, S.; Su, F.Y.; McKittrick, J. An Overview on Additive Manufacturing of Polymers. Jom 2018, 70, 275–283. [Google Scholar] [CrossRef]
- Agrawal, R. Sustainable material selection for additive manufacturing technologies: A critical analysis of rank reversal approach. J. Clean. Prod. 2021, 296, 126500. Available online: https://www.sciencedirect.com/science/article/pii/S0959652621007204 (accessed on 2 March 2022). [CrossRef]
- Karaş, B.; Smith, P.J.; Fairclough, J.P.A.; Mumtaz, K. Additive manufacturing of high density carbon fibre reinforced polymer composites. Addit. Manuf. 2022, 58, 103044. [Google Scholar] [CrossRef]
- Picard, M.; Mohanty, A.K.; Misra, M. Recent advances in additive manufacturing of engineering thermoplastics: Challenges and opportunities. RSC Adv. 2020, 10, 36058–36089. [Google Scholar] [CrossRef]
- Nofar, M.; Utz, J.; Geis, N.; Altstädt, V.; Ruckdäschel, H. Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology. Adv. Sci. 2022, 9, 2105701. [Google Scholar] [CrossRef]
- Kwon, Y.; Seo, S.E.; Lee, J.; Berezvai, S.; de Alaniz, J.R.; Eisenbach, C.D.; McMeeking, R.M.; Hawker, C.J.; Valentine, M.T. 3D-printed polymer foams maintain stiffness and energy dissipation under repeated loading. Compos. Commun. 2023, 37, 101453. [Google Scholar] [CrossRef]
- Watson, M.; Gonzalez, F. Design and Implementation of a Low-Cost Folding-Wing UAV for Model Rocket Deployment. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Sundar, A.; Bain, S. A Feasibility Study of Lightweight Polylactic Acid Fused Deposition Modeled Propeller Prototyping. J. Stud. Res. 2022, 11. [Google Scholar] [CrossRef]
- Ellis, R.A. Dynamic Fused Deposition Modeling for Rapid Development of Aerial Swarms. In Proceedings of the 2022 IEEE Integrated STEM Education Conference (ISEC), Princeton, NJ, USA, 16–17 June 2022; p. 414. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, H.; Wang, Z.; He, Q.; Chen, L.; Li, W.; Li, R.; Cui, W. A Manta Ray Robot with Soft Material Based Flapping Wing. J. Mar. Sci. Eng. 2022, 10, 962. [Google Scholar] [CrossRef]
- Marascio, M.G.M.; Antons, J.; Pioletti, D.P.; Bourban, P.E. 3D Printing of Polymers with Hierarchical Continuous Porosity. Adv. Mater. Technol. 2017, 2, 1700145. [Google Scholar] [CrossRef]
- Prajapati, M.J.; Kumar, A.; Lin, S.C.; Jeng, J.Y. Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties. Addit. Manuf. 2022, 54, 102766. [Google Scholar] [CrossRef]
- Flagiello, D.; Tammaro, D.; Erto, A.; Maffettone, P.L.; Lancia, A.; Di Natale, F. Foamed structured packing for mass-transfer equipment produced by an innovative 3D printing technology. Chem. Eng. Sci. 2022, 260, 117853. [Google Scholar] [CrossRef]
- Pastore Carbone, M.G.; Tammaro, D.; Manikas, A.C.; Paterakis, G.; Di Maio, E.; Galiotis, C. Wettability of graphene by molten polymers. Polymer 2019, 180, 121708. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, K.; Bourell, D.L. Preparation and laser sintering of limestone PA 12 composite. Polym. Test. 2014, 37, 210–215. [Google Scholar] [CrossRef]
- Singh, A.K.; Patil, B.; Hoffmann, N.; Saltonstall, B.; Doddamani, M.; Gupta, N. Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments. JOM 2018, 70, 303–309. [Google Scholar] [CrossRef]
- Griffiths, C.A.; Howarth, J.; De Almeida-Rowbotham, G.; Rees, A.; Kerton, R. A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing. J. Clean. Prod. 2016, 139, 74–85. [Google Scholar] [CrossRef]
- Peng, T.; Kellens, K.; Tang, R.; Chen, C.; Chen, G. Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Addit. Manuf. 2018, 21, 694–704. [Google Scholar] [CrossRef]
- Harding, O.J.; Griffiths, C.A.; Rees, A.; Pletsas, D. Methods to Reduce Energy and Polymer Consumption for Fused Filament Fabrication 3D Printing. Polymers 2023, 15, 1874. [Google Scholar] [CrossRef]
- ISO 527-2; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
Default | |
---|---|
Layer Height | 0.2 mm |
Nozzle Diameter | 0.4 mm |
Line Width | 0.4 mm |
Support Line Width | 0.4 mm |
Wall Line Count | 2 |
Top Layers | 4 |
Bottom Layers | 4 |
Printing Temperature | 230 °C |
Build Plate Temperature | 60 °C |
Support Overhang Angle | 45° |
Connect Support Zig-Zags | On |
Support Density | 20% |
Support Interface | Off |
Build Plate Adhesion | Skirt |
Skirt Line Count | 3 |
Run | DOE | Lh [mm] | T [°C] | S [mm/s] | ||
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0.28 | 240 | 40 |
2 | 1 | 2 | 2 | 0.28 | 250 | 45 |
3 | 1 | 3 | 3 | 0.28 | 260 | 50 |
4 | 2 | 1 | 2 | 0.24 | 240 | 45 |
5 | 2 | 2 | 3 | 0.24 | 250 | 50 |
6 | 2 | 3 | 1 | 0.24 | 260 | 40 |
7 | 3 | 1 | 3 | 0.18 | 240 | 50 |
8 | 3 | 2 | 1 | 0.18 | 250 | 40 |
9 | 3 | 3 | 2 | 0.18 | 260 | 45 |
Experiment | Mean W (g) | SE Mean | StDev |
---|---|---|---|
1 | 8.416 | 0.014 | 0.031 |
2 | 8.500 | 0.009 | 0.023 |
3 | 8.393 | 0.016 | 0.040 |
4 | 8.223 | 0.025 | 0.061 |
5 | 8.152 | 0.016 | 0.044 |
6 | 8.206 | 0.017 | 0.042 |
7 | 8.408 | 0.023 | 0.057 |
8 | 8.436 | 0.009 | 0.024 |
9 | 8.425 | 0.027 | 0.068 |
Polymer | Mean | StDev | SE Mean |
---|---|---|---|
Part weight | |||
LW-PLA DOE Pooled | 8.351 | 0.123 | 0.041 |
Original PLA | 10.346 | 0.031 | 0.010 |
T-Value | p-Value | ||
−47.23 | 0.000 | ||
Build time | |||
LW-PLA DOE Pooled | 88.11 | 12.93 | 4.31 |
Level | Lh | T | S |
---|---|---|---|
1 | 8.43 | 8.34 | 8.35 |
2 | 8.19 | 8.36 | 8.38 |
3 | 8.42 | 8.34 | 8.31 |
Difference (δ) | 0.24 | 0.02 | 0.06 |
Rank importance | 1 | 3 | 2 |
ANOVA p-Value | 0.021 | 0.773 | 0.280 |
Experiment | σ [MPa] | k [GPa] | εf [%] |
---|---|---|---|
1 | 16.26 | 1.56 | 0.14 |
2 | 13.94 | 1.41 | 0.13 |
3 | 13.28 | 1.32 | 0.13 |
4 | 20.46 | 1.80 | 0.12 |
5 | 17.06 | 1.61 | 0.14 |
6 | 14.56 | 1.53 | 0.13 |
7 | 18.74 | 1.65 | 0.13 |
8 | 17.78 | 1.57 | 0.14 |
9 | 14.18 | 1.31 | 0.12 |
Original PLA |
Polymer | Mean | StDev | SE Mean |
---|---|---|---|
σ [MPa] | |||
LW-PLA DOE Pooled | 16.25 | 2.45 | 0.366 |
Original PLA | 36.41 | 1.41 | 0.45 |
T-Value | p-Value | ||
−21.64 | 0.000 | ||
k [GPa] | |||
LW-PLA DOE Pooled | 1.53 | 0.16 | 0.02 |
Original PLA | 2.48 | 0.19 | 0.06 |
T-Value | p-Value | ||
−11.76 | 0.000 | ||
εf [%] | |||
LW-PLA DOE Pooled | 0.134 | 0.006 | 0.002 |
Original PLA | 0.095 | 0.030 | 0.009 |
T-Value | p-Value | ||
3.98 | 0.003 |
Level | Lh | T | S |
---|---|---|---|
σ [MPa] | |||
1 | 14.49 | 18.49 | 16.20 |
2 | 17.36 | 16.26 | 16.19 |
3 | 16.90 | 14.01 | 16.36 |
Difference (δ) | 2.87 | 4.48 | 0.17 |
Rank importance | 2 | 1 | 3 |
ANOVA p-Value | 0.213 | 0.113 | 0.986 |
Predicted for high σ | 19.70 [MPa] | ||
k [GPa] | |||
1 | 1.435 | 1.671 | 1.556 |
2 | 1.652 | 1.534 | 1.513 |
3 | 1.513 | 1.394 | 1.530 |
Difference (δ) | 0.217 | 0.277 | 0.043 |
Rank importance | 2 | 1 | 3 |
ANOVA p-Value | 0.090 | 0.059 | 0.723 |
Predicted for high k | 1.81 [GPa] | ||
εf [%] | |||
1 | 0.1373 | 0.1325 | 0.1380 |
2 | 0.1322 | 0.1393 | 0.1288 |
3 | 0.1337 | 0.1313 | 0.1363 |
Difference (δ) | 0.0052 | 0.0080 | 0.0092 |
Rank importance | 3 | 2 | 1 |
ANOVA p-Value | 0.346 | 0.167 | 0.135 |
Predicted for high εf | 0.145% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffiths, C.A.; Rees, A.; Morgan, A.; Korkees, F. Optimisation of 3D Printing for Microcellular Polymers. Polymers 2023, 15, 3910. https://doi.org/10.3390/polym15193910
Griffiths CA, Rees A, Morgan A, Korkees F. Optimisation of 3D Printing for Microcellular Polymers. Polymers. 2023; 15(19):3910. https://doi.org/10.3390/polym15193910
Chicago/Turabian StyleGriffiths, Christian Andrew, Andrew Rees, Adam Morgan, and Feras Korkees. 2023. "Optimisation of 3D Printing for Microcellular Polymers" Polymers 15, no. 19: 3910. https://doi.org/10.3390/polym15193910
APA StyleGriffiths, C. A., Rees, A., Morgan, A., & Korkees, F. (2023). Optimisation of 3D Printing for Microcellular Polymers. Polymers, 15(19), 3910. https://doi.org/10.3390/polym15193910