Evaluation of the Shear Bond Strength of Immediate and Delayed Restorations of Various Calcium Silicate-Based Materials with Fiber-Reinforced Composite Resin Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Shear Bond Strength Testing
2.3. Evaluation of Stereomicroscope Images of the Interface between the Calcium Silicate and Composite Materials after the SBS Test
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Statistical Analysis
3. Results
3.1. The General Comparison of Composite Groups for Immediate and Delayed Restorations
3.2. The Comparison of Calcium-Silicate-Based Material Groups for Immediate and Delayed Restorations
3.3. The Evaluation of Failure Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, W.; Zhang, Z.; Zhao, X.; Dong, Q.; Schmalz, G.; Hu, S. The Understanding of Vital Pulp Therapy in Permanent Teeth: A New Perspective. Biomed. Res. Int. 2022, 2022, 8788358. [Google Scholar] [CrossRef] [PubMed]
- Philip, N.; Suneja, B. Minimally Invasive Endodontics: A New Era for Pulpotomy in Mature Permanent Teeth. Br. Dent. J. 2022, 233, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Donnermeyer, D.; Bürklein, S.; Dammaschke, T.; Schäfer, E. Endodontic Sealers Based on Calcium Silicates: A Systematic Review. Odontology 2019, 107, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; Yu, J.; Jiang, R.; Liu, X.; Li, X.; Islam, R.; Alam, M.K. Effectiveness of Direct Pulp Capping Bioactive Materials in Dentin Regeneration: A Systematic Review. Materials 2021, 14, 6811. [Google Scholar] [CrossRef] [PubMed]
- Göze Saygin, A.; Ünal, M.; Candan, M.; Demir, P.; Akinci, L.; Göze, Ö. Evaluation of the Effectiveness of Different Hemostatics and Bioactive Materials on the Success of Vital Pulp Therapy. Ann. Clin. Anal. Med. 2022, 13, 440–445. [Google Scholar] [CrossRef]
- Srinivasan, V.; Waterhouse, P.; Whitworth, J. Mineral Trioxide Aggregate in Paediatric Dentistry. Int. J. Paediatr. Dent. 2009, 19, 34–47. [Google Scholar] [CrossRef]
- Dawood, A.E.; Parashos, P.; Wong, R.H.K.; Reynolds, E.C.; Manton, D.J. Calcium Silicate-Based Cements: Composition, Properties, and Clinical Applications. J. Investig. Clin. Dent. 2017, 8, e12195. [Google Scholar] [CrossRef] [PubMed]
- Abedi-Amin, A.; Luzi, A.; Giovarruscio, M.; Paolone, G.; Darvizeh, A.; Agulló, V.V.; Sauro, S. Innovative Root-End Filling Materials Based on Calcium-Silicates and Calcium-Phosphates. J. Mater. Sci. Mater. Med. 2017, 28, 31. [Google Scholar] [CrossRef]
- NuSmile NeoMTA® 2. Available online: https://nusmile.com/pages/neomta2 (accessed on 9 August 2023).
- NuSmile NuSmile NeoPUTTY—2.4 g Professional Kit. Available online: https://nusmile.com/products/nusmile-neoputty-2-4-gram-professional-kit (accessed on 8 August 2023).
- Rathi, S.; Nikhade, P.; Chandak, M.; Motwani, N.; Rathi, C.; Chandak, M. Microleakage in Composite Resin Restoration—A Review Article. J. Evol. Med. Dent. Sci. 2020, 9, 1006–1011. [Google Scholar] [CrossRef]
- Aram, A.; Hong, H.; Song, C.; Bass, M.; Platt, J.A.; Chutinan, S. Physical Properties and Clinical Performance of Short Fiber Reinforced Resin-Based Composite in Posterior Dentition: Systematic Review and Meta-Analysis. Oper. Dent. 2023, 48, E119–E136. [Google Scholar] [CrossRef]
- Alshabib, A.; Jurado, C.A.; Tsujimoto, A. Short Fiber-Reinforced Resin-Based Composites (SFRCs); Current Status and Future Perspectives. Dent. Mater. J. 2022, 41, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Zafar, M.S.; Fareed, M.A.; AlMufareh, N.A.; Alshehri, F.; AlSunbul, H.; Lassila, L.; Garoushi, S.; Vallittu, P.K. Fiber-Reinforced Composites in Dentistry—An Insight into Adhesion Aspects of the Material and the Restored Tooth Construct. Dent. Mater. 2023, 39, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil, A.; Lassila, L.V.J.; Vallittu, P.K. The Shear Bond Strength of Bidirectional and Random-Oriented Fibre-Reinforced Composite to Tooth Structure. J. Dent. 2005, 33, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Sfeikos, T.; Dionysopoulos, D.; Kouros, P.; Naka, O.; Tolidis, K. Effect of a Fiber-Reinforcing Technique for Direct Composite Restorations of Structurally Compromised Teeth on Marginal Microleakage. J. Esthet. Restor. Dent. 2022, 34, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Mancino, D.; Bourgi, R.; Alvarado-Orozco, A.; Rodríguez-Vilchis, L.E.; Flores-Ledesma, A.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Eid, A.; Danhache, M.-L.; et al. Bond Strength of Adhesive Systems to Calcium Silicate-Based Materials: A Systematic Review and Meta-Analysis of In Vitro Studies. Gels 2022, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Koc-Dundar, B. Composite–Composite Adhesion in Dentistry: A Systematic Review and Meta-Analysis. J. Adhes. Sci. Technol. 2014, 28, 2209–2229. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Tsujimoto, Y.; Ookubo, A.; Shiraishi, T.; Watanabe, I.; Yamada, S.; Hayashi, Y. Timing for Composite Resin Placement on Mineral Trioxide Aggregate. J. Endod. 2013, 39, 1167–1170. [Google Scholar] [CrossRef]
- Palma, P.J.; Marques, J.A.; Antunes, M.; Falacho, R.I.; Sequeira, D.; Roseiro, L.; Santos, J.M.; Ramos, J.C. Effect of Restorative Timing on Shear Bond Strength of Composite Resin/Calcium Silicate-Based Cements Adhesive Interfaces. Clin. Oral Investig. 2021, 25, 3131–3139. [Google Scholar] [CrossRef]
- Palma, P.J.; Marques, J.A.; Falacho, R.I.; Vinagre, A.; Santos, J.M.; Ramos, J.C. Does Delayed Restoration Improve Shear Bond Strength of Different Restorative Protocols to Calcium Silicate-Based Cements? Materials 2018, 11, 2216. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Sulimany, A.M.; Alayad, A.S.; Alqahtani, A.S.; Bawazir, O.A. Evaluation of the Shear Bond Strength of Four Bioceramic Materials with Different Restorative Materials and Timings. Materials 2022, 15, 4668. [Google Scholar] [CrossRef]
- İpek, İ.; Ünal, M.; Güner, A.; Candan, M. Push-out Bond Strength of Biodentine, MTA Repair HP, and a New Pre-Mixed NeoPutty Bioactive Cement: Scanning Electron Microscopy Energy Dispersive X-Ray Spectroscopy Analysis. J. Aust. Ceram. Soc. 2022, 58, 171–179. [Google Scholar] [CrossRef]
- Chen, L.; Suh, B.I. Cytotoxicity and Biocompatibility of Resin-Free and Resin-Modified Direct Pulp Capping Materials: A State-of-the-Art Review. Dent. Mater. J. 2017, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- TheraCal PT. Bisco Global. Available online: https://global.bisco.com/theracal-pt-/ (accessed on 8 August 2023).
- Sanz, J.L.; Soler-Doria, A.; López-García, S.; García-Bernal, D.; Rodríguez-Lozano, F.J.; Lozano, A.; Llena, C.; Forner, L.; Guerrero-Gironés, J.; Melo, M. Comparative Biological Properties and Mineralization Potential of 3 Endodontic Materials for Vital Pulp Therapy: Theracal PT, Theracal LC, and Biodentine on Human Dental Pulp Stem Cells. J. Endod. 2021, 47, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Quiñonez-Ruvalcaba, F.; Bermúdez-Jiménez, C.; Aguilera-Galavíz, L.A.; Villanueva-Sánchez, F.G.; García-Cruz, S.; Gaitán-Fonseca, C. Histopathological Biocompatibility Evaluation of TheraCal PT, NeoMTA, and MTA Angelus in a Murine Model. J. Funct. Biomater. 2023, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- García-Mota, L.F.; Hardan, L.; Bourgi, R.; Zamarripa-Calderón, J.E.; Rivera-Gonzaga, J.A.; Hernández-Cabanillas, J.C.; Cuevas-Suárez, C.E. Light-Cured Calcium Silicate Based-Cements as Pulp Therapeutic Agents: A Meta-Analysis of Clinical Studies. J. Evid. Based Dent. Pract. 2022, 22, 101776. [Google Scholar] [CrossRef] [PubMed]
- Kaptan, A.; Oznurhan, F.; Candan, M. In Vitro Comparison of Surface Roughness, Flexural, and Microtensile Strength of Various Glass-Ionomer-Based Materials and a New Alkasite Restorative Material. Polymers 2023, 15, 650. [Google Scholar] [CrossRef] [PubMed]
- Celiksoz, O.; Recen, D.; Peskersoy, C. The Effect of Different Energy Levels of the Er: YAG Laser on the Repair Bond Strength of a Nanohybrid Composite Resin. Proc. Inst. Mech. Eng. H 2023, 237, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.E.C.; Braga, R.R.; Carrilho, M.R.O. Evaluation of Micro-Tensile, Shear and Tensile Tests Determining the Bond Strength of Three Adhesive Systems. Dent. Mater. 1998, 14, 394–398. [Google Scholar] [CrossRef]
- Kayahan, M.B.; Nekoofar, M.H.; Kazandağ, M.; Canpolat, C.; Malkondu, O.; Kaptan, F.; Dummer, P.M.H. Effect of Acid-Etching Procedure on Selected Physical Properties of Mineral Trioxide Aggregate. Int. Endod. J. 2009, 42, 1004–1014. [Google Scholar] [CrossRef]
- Schmidt, A.; Schäfer, E.; Dammaschke, T. Shear Bond Strength of Lining Materials to Calcium-Silicate Cements at Different Time Intervals. J. Adhes Dent. 2017, 19, 129–135. [Google Scholar] [CrossRef]
- Cengiz, E.; Ulusoy, N. Microshear Bond Strength of Tri-Calcium Silicate-Based Cements to Different Restorative Materials. J. Adhes Dent. 2016, 18, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Alzraikat, H.; Taha, N.A.; Qasrawi, D.; Burrow, M.F. Shear Bond Strength of a Novel Light Cured Calcium Silicate Based-Cement to Resin Composite Using Different Adhesive Systems. Dent. Mater. J. 2016, 35, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Falakaloğlu, S.; Özata, M.Y.; Plotino, G. Micro-Shear Bond Strength of Different Calcium Silicate Materials to Bulk-Fill Composite. PeerJ 2023, 11, e15183. [Google Scholar] [CrossRef] [PubMed]
- Özata, M.Y.; Falakaloğlu, S.; Plotino, G.; Adıgüzel, Ö. The Micro-Shear Bond Strength of New Endodontic Tricalcium Silicate-Based Putty: An in Vitro Study. Aust. Endod. J. 2023, 49, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Mayya, A.; George, A.M.; Mayya, A.; D’souza, S.P.; Mayya, S.S. Impact of Maturation Time on the Shear Bond Strength of an Alkasite Restorative Material to Pure Tricalcium Silicate Based Cement: An in vitro Experimental Study. J. Int. Oral Health 2022, 14, 494–499. [Google Scholar]
- Farah, J.W.; Craig, R.G. Finite Element Stress Analysis of a Restored Axisymmetric First Molar. J. Dent. Res. 1974, 53, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Sekimoto, T.; Derkson, G.D.; Richardson, A.S. Effect of Cutting Instruments on Permeability and Morphology of the Dentin Surface. Oper. Dent. 1999, 24, 130–136. [Google Scholar]
- Thurmond, J.W.; Barkmeier, W.W.; Wilwerding, T.M. Effect of Porcelain Surface Treatments on Bond Strengths of Composite Resin Bonded to Porcelain. J. Prosthet. Dent. 1994, 72, 355–359. [Google Scholar] [CrossRef]
- Lüthy, H.; Loeffel, O.; Hammerle, C.H.F. Effect of Thermocycling on Bond Strength of Luting Cements to Zirconia Ceramic. Dent. Mater. 2006, 22, 195–200. [Google Scholar] [CrossRef]
- Fathpour, K.; Ahmadabadi, M.N.; Atash, R.; Fathi, A.H. Effect of Different Surface Treatment Methods on the Shear Bond Strength of Resin Composite/Zirconia for Intra-Oral Repair of Zirconia Restorations. Eur. J. Dent. 2022. ahead of print. [Google Scholar] [CrossRef]
- Hemadri, M.; Saritha, G.; Rajasekhar, V.; Pachlag, K.A.; Purushotham, R.; Reddy, V.K.K. Shear Bond Strength of Repaired Composites Using Surface Treatments and Repair Materials: An In Vitro Study. J. Int. Oral Health 2014, 6, 22–25. [Google Scholar]
Trade Name | Type/Form | Composition | Manufacturer | Lot Number | |
---|---|---|---|---|---|
Dental Restorative Materials | EverX FlowTM | Short fiber-reinforced flowable composite | Bis-MEPP, TEGDMA, UDMA, 140 μm length and 6 μm diameter E-glass fibers, barium glass fiber filler, silicon dioxide | GC, Japan | 2104081 |
EverX PosteriorTM | Short fiber-reinforced packable composite | Bis-GMA, TEGDMA, 800 μm length and 17 μm diameter E-glass fibers, barium glass fiber filler, silicon dioxide | GC, Japan | 2106171 | |
Filtek Z550 | Nanohybrid composite | Bis-GMA, UDMA, Bis-EMA/PEGDMA/TEGDMA/zirconia and silica fillers | 3M ESPE, St. Paul, MN, USA | NC45123 | |
Calcium Silicate Based Materials | NeoMTA 2 | Bioceramic MTA/ powder–liquid form | Di- and tricalcium silicate/tantalum oxide/tricalcium aluminate | NuSmile, Houston, TX, USA | 2022102806 |
NeoPUTTY | Premixed bioceramic MTA/ dough-like form | Di- and tricalcium silicate/calcium aluminate/tantalum oxide/tricalcium aluminate/calcium sulfate/proprietary organic liquid and stabilizers | NuSmile, Houston, TX, USA | 2022080402 | |
TheraCal PT | Resin-modified calcium silicate cement/ flowable form | Base: silicate-glass-mixed cement/polyethylene glycol/dimethacrylate/BisGMA/barium zirconate catalyst: barium zirconate/ytterbium fluoride/initiator | Bisco Inc., Schaumburg, IL, USA | 2100000559 | |
Bonding Agent | Scotchbond Universal Plus Adhesive Refill | Universal adhesive | 10-MDP monomer/dimethacrylate resins/HEMA/methacrylate-modified polyalkenoic acid copolymer/filler/ethanol, water/initiators/silane | 3M ESPE Dental Products, St. Paul, MN, USA | 8101151 |
Immediate Restoration | Delayed Restoration | |||
---|---|---|---|---|
Calcium-Silicate-Based Materials | Dental Restorative Materials | Shear Bond Strength (MPa) (Mean ± Standard Deviation) | Shear Bond Strength (MPa) (Mean ± Standard Deviation) | |
NeoMTA2 | EverX FlowTM | 4.41 ± 1.73 A,a | 10.45 ± 2.35 B,b,c | t = 17.75 p = 0.001 * |
EverX PosteriorTM | 4.55 ± 0.66 A,a | 7.57 ± 3.20 B,b | t = 3.47 p = 0.007 * | |
Filtek Z550 | 3.55 ± 1.55 A,a | 14.40 ± 7.12 B,c | t = 6.15 p = 0.001 * | |
F = 1.50 P = 0.241 | F = 5.29 P = 0.011 * | |||
NeoPutty | EverX FlowTM | 4.71 ± 1.04 A,a | 15.04 ± 4.91 B,b | t = 8.11 p = 0.001 * |
EverX PosteriorTM | 4.51 ± 1.79 A,a | 12.82 ± 4.68 B,b,c | t = 8.90 p = 0.001 * | |
Filtek Z550 | 4.37 ± 0.84 A,a | 8.94 ± 1.12 B,c | t = 30.66 p = 0.001 * | |
F = 1.17 P = 0.843 | F = 6.04 P = 0.007 * | |||
Theracal PT | EverX FlowTM | 34.96 ± 6.02 A,a,b | 27.34 ± 9.89 B,c | t = 4.52 p = 0.001 * |
EverX PosteriorTM | 30.70 ± 6.72 A,a | 24.71 ± 7.45 B,c | t = 4.03 p = 0.003 * | |
Filtek Z550 | 39.29 ± 7.03 A,b | 25.80 ± 5.83 B,c | t = 12.31 p = 0.001 * | |
F = 4.23 P = 0.025 * | F = 0.28 P = 0.758 |
Immediate Restoration | Delayed Restoration | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dental Restorative Materials | Dental Restorative Materials | ||||||||||||||||||
EverX FlowTM | EverX PosteriorTM | Filtek Z550 | EverX FlowTM | EverX PosteriorTM | Filtek Z550 | ||||||||||||||
The Type of Failure | AF | CF | MF | AF | CF | MF | AF | CF | MF | AF | CF | MF | AF | CF | MF | AF | CF | MF | |
Calcium Silicate Based Materials | NeoMTA2 | - | 10 | - | - | 9 | 1 | - | 9 | 1 | 6 | 1 | 2 | 6 | 2 | 1 | - | 10 | - |
NeoPutty | 4 | 6 | - | - | 8 | 2 | - | 10 | - | 2 | 6 | 2 | 2 | 6 | 2 | 2 | 6 | 2 | |
Theracal PT | - | 7 | 3 | - | 7 | 3 | - | 8 | 2 | - | 10 | - | 6 | 1 | 3 | - | 9 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candan, M.; Altinay Karaca, F.K.; Öznurhan, F. Evaluation of the Shear Bond Strength of Immediate and Delayed Restorations of Various Calcium Silicate-Based Materials with Fiber-Reinforced Composite Resin Materials. Polymers 2023, 15, 3971. https://doi.org/10.3390/polym15193971
Candan M, Altinay Karaca FK, Öznurhan F. Evaluation of the Shear Bond Strength of Immediate and Delayed Restorations of Various Calcium Silicate-Based Materials with Fiber-Reinforced Composite Resin Materials. Polymers. 2023; 15(19):3971. https://doi.org/10.3390/polym15193971
Chicago/Turabian StyleCandan, Merve, Fatıma Kübra Altinay Karaca, and Fatih Öznurhan. 2023. "Evaluation of the Shear Bond Strength of Immediate and Delayed Restorations of Various Calcium Silicate-Based Materials with Fiber-Reinforced Composite Resin Materials" Polymers 15, no. 19: 3971. https://doi.org/10.3390/polym15193971
APA StyleCandan, M., Altinay Karaca, F. K., & Öznurhan, F. (2023). Evaluation of the Shear Bond Strength of Immediate and Delayed Restorations of Various Calcium Silicate-Based Materials with Fiber-Reinforced Composite Resin Materials. Polymers, 15(19), 3971. https://doi.org/10.3390/polym15193971