Preparation and Mechanism of Toughened and Flame-Retardant Bio-Based Polylactic Acid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLA/MKF/NTPA Biocomposites
2.3. Characterization
3. Results and Discussion
3.1. Mechanical Property Analysis of PLA/MKF Biocomposites
3.2. Fire Safety Analysis of PLA/MKF/NTPA Biocomposites
3.3. Thermal Stability of PLA/MKF/NTPA Biocomposites
3.4. Flame-Retardant Mechanism of PLA/NTPA/MKF Biocomposites
3.5. Mechanical Properties and Toughening Mechanism of PLA/MKF/NTPA Biocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Castro-Aguirre, E. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 34, 333–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, S.; Wang, W.; Li, H.; Liu, X.; Gu, X.; Bourbigot, S.; Wang, Z.; Sun, J.; Zhang, S. The Flammability and Mechanical Properties of Poly (Lactic Acid) Composites Containing Ni-MOF Nanosheets with Polyhydroxy Groups. Compos. Part B Eng. 2020, 183, 107568. [Google Scholar] [CrossRef]
- Râpă, M.; Miteluţ, A.C.; Tănase, E.E.; Grosu, E.; Popescu, P.; Popa, M.E.; Rosnes, J.T.; Sivertsvik, M.; Darie-Niţă, R.N.; Vasile, C. Influence of Chitosan on Mechanical, Thermal, Barrier and Antimicrobial Properties of PLA-Biocomposites for Food Packaging. Compos. Part B Eng. 2016, 102, 112–121. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent Advances in 3D-Printed Polylactide and Polycaprolactone-Based Biomaterials for Tissue Engineering Applications. Int. J. Biol. Macromol. 2022, 218, 930–968. [Google Scholar] [CrossRef]
- Tawiah, B.; Yu, B.; Fei, B. Advances in Flame Retardant Poly(Lactic Acid). Polymers 2018, 10, 876. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Sun, Y.; Song, P.; Lei, W.; Wu, Q.; Liu, L.; Yu, Y.; Wang, H. Fire-Resistant, Strong, and Green Polymer Nanocomposites Based on Poly(Lactic Acid) and Core–Shell Nanofibrous Flame Retardants. ACS Sustain. Chem. Eng. 2017, 11, 7894–7904. [Google Scholar] [CrossRef]
- Morgan, A.B. Flame Retarded Polymer Layered Silicate Nanocomposites: A Review of Commercial and Open Literature Systems. Polym. Adv. Technol. 2006, 17, 206–217. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Jiang, J.; Huang, J.; Liu, H. Flame Retardant Properties and Mechanism of an Efficient Intumescent Flame Retardant PLA Composites. Polym. Adv. Technol. 2016, 27, 693–700. [Google Scholar] [CrossRef]
- Liao, F.; Ju, Y.; Dai, X.; Cao, Y.; Li, J.; Wang, X. A Novel Efficient Polymeric Flame Retardant for Poly (Lactic Acid) (PLA): Synthesis and Its Effects on Flame Retardancy and Crystallization of PLA. Polym. Degrad. Stab. 2015, 120, 251–261. [Google Scholar] [CrossRef]
- Xue, Y.; Shen, M.; Zheng, Y.; Tao, W.; Han, Y.; Li, W.; Song, P.; Wang, H. One-Pot Scalable Fabrication of an Oligomeric Phosphoramide towards High-Performance Flame Retardant Polylactic Acid with a Submicron-Grained Structure. Compos. Part B Eng. 2020, 183, 107695. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, Y.; Yan, C.; Liu, L.; Xu, M. A Novel and Multifunctional Flame Retardant Nucleating Agent towards Superior Fire Safety and Crystallization Properties for Biodegradable Poly (Lactic Acid). Adv. Powder 2021, 12, 4210–4221. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Di, Y.; Xu, M.; Pan, Y.; Li, B. Simultaneously Enhancing the Fire Retardancy and Crystallization Rate of Biodegradable Polylactic Acid with Piperazine-1,4-Diylbis(Diphenylphosphine Oxide). Compos. Part B Eng. 2020, 202, 108407. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Pan, Y.; Xu, M.; Di, Y.; Li, B. Facile Synthesis of an Efficient Phosphonamide Flame Retardant for Simultaneous Enhancement of Fire Safety and Crystallization Rate of Poly (Lactic Acid). Chem. Eng. J. 2021, 421, 127761. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Xu, M.; Li, Z.; Hu, Y.; Li, B. Economical and Facile Synthesis of a Highly Efficient Flame Retardant for Simultaneous Improvement of Fire Retardancy, Smoke Suppression and Moisture Resistance of Epoxy Resins. Compos. Part B Eng. 2019, 167, 422–433. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Qiu, Y.; Xu, M.; Li, B.; Liu, L. Preparation and Mechanism Study of a High Efficiency Bio-Based Flame Retardant for Simultaneously Enhancing Flame Retardancy, Toughness and Crystallization Rate of Poly (Lactic Acid). Compos. Part B Eng. 2022, 238, 109913. [Google Scholar] [CrossRef]
- Woo, Y.; Cho, D. Effect of Aluminum Trihydroxide on Flame Retardancy and Dynamic Mechanical and Tensile Properties of Kenaf/Poly(Lactic Acid) Green Composites. Adv. Compos. Mater. 2013, 22, 451–464. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Leuteritz, A.; Wang, Y.-Z.; Wagenknecht, U.; Heinrich, G. Preparation and Burning Behaviors of Flame Retarding Biodegradable Poly(Lactic Acid) Nanocomposite Based on Zinc Aluminum Layered Double Hydroxide. Polym. Degrad. Stab. 2010, 95, 2474–2480. [Google Scholar] [CrossRef]
- Fukushima, K.; Murariu, M.; Camino, G.; Dubois, P. Effect of Expanded Graphite/Layered-Silicate Clay on Thermal, Mechanical and Fire Retardant Properties of Poly(Lactic Acid). Polym. Degrad. Stab. 2010, 95, 1063–1076. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Trossarelli, L. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part I—Thermal Degradation of Ammonium Polyphosphate-Pentaerythritol Mixtures. Polym. Degrad. Stab. 1984, 6, 243–252. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Trossarelli, L. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part III—Effect of Urea on the Ammonium Polyphosphate-Pentaerythritol System. Polym. Degrad. Stab. 1984, 7, 221–229. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, H.; Wang, Y. Advanced Flame-retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Zhang, R.; Xiao, X.; Tai, Q.; Huang, H.; Hu, Y. Modification of Lignin and Its Application as Char Agent in Intumescent Flame-Retardant Poly(Lactic Acid). Polym. Eng. Sci. 2012, 52, 2620–2626. [Google Scholar] [CrossRef]
- Wang, X.; Peng, S.; Chen, H.; Yu, X.; Zhao, X. Mechanical Properties, Rheological Behaviors, and Phase Morphologies of High-Toughness PLA/PBAT Blends by in-Situ Reactive Compatibilization. Compos. Part B Eng. 2019, 173, 107028. [Google Scholar] [CrossRef]
- Li, D.-F.; Zhao, X.; Jia, Y.-W.; He, L.; Wang, X.-L.; Wang, Y.-Z. Simultaneously Enhance Both the Flame Retardancy and Toughness of Polylactic Acid by the Cooperation of Intumescent Flame Retardant and Bio-Based Unsaturated Polyester. Polym. Degrad. Stab. 2019, 168, 108961. [Google Scholar] [CrossRef]
- Ma, M.; Wang, X.; Liu, K.; Chen, S.; Shi, Y.; He, H.; Wang, X. Achieving Simultaneously Toughening and Flame-Retardant Modification of Poly(Lactic Acid) by in-Situ Formed Cross-Linked Polyurethane and Reactive Blending with Ammonium Polyphosphate. J. Mater. Sci. 2022, 57, 5645–5657. [Google Scholar] [CrossRef]
- Yang, R.; Gu, G.; Tang, C.; Miao, Z.; Cao, H.; Zou, G.; Li, J. Super-Tough and Flame-Retardant Poly(Lactic Acid) Materials Using a Phosphorus-Containing Malic Acid-Based Copolyester by Reactive Blending. Polym. Degrad. Stab. 2022, 198, 109889. [Google Scholar] [CrossRef]
- Wu, G.; Liu, S.; Wu, X.; Ding, X. Core-Shell Structure of Carbon Nanotube Nanocapsules Reinforced Poly(Lactic Acid) Composites. J. Appl. Polym. Sci. 2017, 134, 44919. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Xi, L.; Zhao, Z.; Huo, S.; Huang, G.; Fang, Z.; Song, P. Interface Nanoengineering of a Core-Shell Structured Biobased Fire Retardant for Fire-Retarding Polylactide with Enhanced Toughness and UV Protection. J. Clean. Prod. 2022, 336, 130372. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Z.; Ge, H.; Ni, L.; Zhang, T.; Huo, S.; Song, P.; Fang, Z. Core–Shell Bioderived Flame Retardants Based on Chitosan/Alginate Coated Ammonia Polyphosphate for Enhancing Flame Retardancy of Polylactic Acid. ACS Sustain. Chem. Eng. 2020, 8, 6402–6412. [Google Scholar] [CrossRef]
- Dong, X.; Wu, Z.; Wang, Y.; Li, T.; Yuan, H.; Zhang, X.; Ma, P.; Chen, M.; Huang, J.; Dong, W. Improving the Toughness and Flame Retardancy of Poly (Lactic Acid) with Phosphorus-Containing Core-Shell Particles. J. Appl. Polym. Sci. 2022, 139, e52390. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C.-Y.; Chen, C.; Hsiao, B.S.; Zhong, G.-J.; Li, Z.-M. Easy Alignment and Effective Nucleation Activity of Ramie Fibers in Injection-Molded Poly(Lactic Acid) Biocomposites. Biopolymers 2012, 97, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Liu, L.; Liu, C.; Wang, W. Improvement in the Performance of the Polylactic Acid Composites by Using Deep Eutectic Solvent Treated Pulp Fiber. J. Renew. Mater. 2021, 9, 1897–1911. [Google Scholar] [CrossRef]
- Qian, S.; Sheng, K. PLA Toughened by Bamboo Cellulose Nanowhiskers: Role of Silane Compatibilization on the PLA Bionanocomposite Properties. Compos. Sci. Technol. 2017, 148, 59–69. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, Y.; Wang, Q.; Wei, W.; Huang, F.; Li, Y.; Li, J.; Zhou, Z. Improved Fracture Toughness and Ductility of PLA Composites by Incorporating a Small Amount of Surface-Modified Helical Carbon Nanotubes. Compos. Part B Eng. 2019, 162, 54–61. [Google Scholar] [CrossRef]
- Niu, Q.; Yue, X.; Guo, Z.; Yan, H.; Fang, Z.; Li, J. Flame Retardant Bamboo Fiber Reinforced Polylactic Acid Composites Regulated by Interfacial Phosphorus-Silicon Aerogel. Polymer 2022, 252, 124961. [Google Scholar] [CrossRef]
- Liu, L.; Yao, M.; Zhang, H.; Zhang, Y.; Feng, J.; Fang, Z.; Song, P. Aqueous Self-Assembly of Bio-Based Flame Retardants for Fire-Retardant, Smoke-Suppressive, and Toughened Polylactic Acid. ACS Sustain. Chem. Eng. 2022, 10, 16313–16323. [Google Scholar] [CrossRef]
- Han, D.; Wang, H.; Lu, T.; Cao, L.; Dai, Y.; Cao, H.; Yu, X. Scalable Manufacturing Green Core–Shell Structure Flame Retardant, with Enhanced Mechanical and Flame-Retardant Performances of Polylactic Acid. J. Polym. Environ. 2022, 30, 2516–2533. [Google Scholar] [CrossRef]
- Yiga, V.A.; Lubwama, M.; Pagel, S.; Benz, J.; Olupot, P.W.; Bonten, C. Flame Retardancy and Thermal Stability of Agricultural Residue Fiber-Reinforced Polylactic Acid: A Review. Polym. Compos. 2021, 42, 15–44. [Google Scholar] [CrossRef]
- Shukor, F.; Hassan, A.; Islam, S.; Mokhtar, M.; Hasan, M. Effect of Ammonium Polyphosphate on Flame Retardancy, Thermal Stability and Mechanical Properties of Alkali Treated Kenaf Fiber Filled PLA Biocomposites. Mater. Des. 2014, 54, 425–429. [Google Scholar] [CrossRef]
- Shumao, L.; Jie, R.; Hua, Y.; Tao, Y.; Weizhong, Y. Influence of Ammonium Polyphosphate on the Flame Retardancy and Mechanical Properties of Ramie Fiber-Reinforced Poly(Lactic Acid) Biocomposites. Polym. Int. 2010, 59, 242–248. [Google Scholar] [CrossRef]
- Suardana, N.P.G.; Ku, M.S.; Lim, J.K. Effects of Diammonium Phosphate on the Flammability and Mechanical Properties of Bio-Composites. Mater. Des. 2011, 32, 1990–1999. [Google Scholar] [CrossRef]
- Hapuarachchi, T.D.; Peijs, T. Multiwalled Carbon Nanotubes and Sepiolite Nanoclays as Flame Retardants for Polylactide and Its Natural Fibre Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 954–963. [Google Scholar] [CrossRef]
- Niu, Q.; Yue, X.; Guo, Z.; Fang, Z.; Li, J. Strengthening and Flame Retarding Effect of Bamboo Fiber Modified by Silica Aerogel on Polylactic Acid Composites. Constr. Build. Mater. 2022, 340, 127696. [Google Scholar] [CrossRef]
- Niu, Q.; Yue, X.; Cao, W.; Guo, Z.; Fang, Z.; Chen, P.; Li, J. Interfacial Silicon-nitrogen Aerogel Raise Flame Retardancy of Bamboo Fiber Reinforced Polylactic Acid Composites. Int. J. Biol. Macromol. 2022, 222, 2697–2708. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Wang, A. Recent Advances in the Potential Applications of Hollow Kapok Fiber-Based Functional Materials. Cellulose 2021, 28, 5269–5292. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Liu, L.; Min, C.; Liang, S.; Xu, Z. Construction of MoS2/Mxene Heterostructure on Stress-Modulated Kapok Fiber for High-Rate Sodium-Ion Batteries. J. Colloid Interface Sci. 2022, 605, 472–482. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, L.; Sun, G.; Su, F.; Kong, Q.-Q.; Li, F.; Ma, W.; Shi, J.; Jiang, D.; Lu, C.; et al. Hollow Carbon Microtubes from Kapok Fiber: Structural Evolution and Energy Storage Performance. Sustain. Energy Fuels 2018, 2, 455–465. [Google Scholar] [CrossRef]
- Wu, N.; Fu, G.; Yang, Y.; Xia, M.; Yun, H.; Wang, Q. Fire Safety Enhancement of a Highly Efficient Flame Retardant Poly (Phenylphosphoryl Phenylenediamine) in Biodegradable Poly(Lactic Acid). J. Hazard. Mater. 2019, 363, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, H.; Kandola, B.; Saeb, M. Flame Retardancy Index for Thermoplastic Composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinehart, D.F. The Beer-Lambert Law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Xu, K.; Tian, X.; Cao, Y.; He, Y.; Xia, Y.; Quan, F. Suppression of Smoldering of Calcium Alginate Flame-Retardant Paper by Flame-Retardant Polyamide-66. Polymers 2021, 13, 430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Guo, J.; Fei, B.; Feng, Z.; Gu, X.; Li, H.; Sun, J.; Zhang, S. Preparation of Methacrylic Acid Modified Microcrystalline Cellulose and Their Applications in Polylactic Acid: Flame Retardancy, Mechanical Properties, Thermal Stability and Crystallization Behavior. Cellulose 2020, 27, 2309–2323. [Google Scholar] [CrossRef]
Sample | Components (wt%) | PLA Biocomposites | |||||
---|---|---|---|---|---|---|---|
PLA | NTPA | MKF | t1/t2 (s) | UL-94 | LOI (%) | Dripping/Ignition of Cotton | |
PLA0 | 99.5 | 0 | 0.5 | 10.16/92.16 | Fail | 19.2 | Yes/Yes |
PLA2.5 | 97.0 | 2.5 | 0.5 | 9.09/2.18 | V-1 | 27.2 | Yes/No |
PLA3.0 | 96.5 | 3.0 | 0.5 | 2.31/0.72 | V-0 | 28.3 | Yes/No |
PLA3.5 | 96.0 | 3.5 | 0.5 | 1.11/0.62 | V-0 | 29.6 | Yes/No |
Samples | TTI (s) | pHRR (kW·m−2) | TPHRR (s) | THR (MJ·m−2) | av-EHC (MJ·kg−1) | TSR (m−2·m−2) | FRI |
---|---|---|---|---|---|---|---|
PLA0 | 51 | 657.1 | 222 | 120.4 | 26.64 | 4.96 | 1.00 |
PLA2.5 | 67 | 678.5 | 217 | 112.7 | 25.12 | 42.43 | 1.36 |
PLA3.0 | 67 | 715.0 | 218 | 107.8 | 24.03 | 125.51 | 1.35 |
PLA3.5 | 74 | 705.4 | 239 | 104.7 | 23.36 | 268.02 | 1.55 |
Sample | Tinitial (°C) | Rmax/Tmax (%·min−1/°C) | Char Residue (wt%, 800 °C) |
---|---|---|---|
PLA0 | 326.5 | 31.8/359.1 | 0.48 |
PLA2.5 | 316.6 | 27.8/358.4 | 0.84 |
PLA3.0 | 293.4 | 24.1/349.9 | 1.44 |
Fillers | Loading (wt%) | UL-94 | Increment in Impact Strength (%) | Reference |
---|---|---|---|---|
PN-FR@CNF | 15 | V-0 | −5.5 | [8] |
APP + MCC | 7 + 3 | V-0 | −13.3 | [54] |
APP + IBF-Si | 10 + 20 | V-0 | 47.3 | [45] |
APP + MBF | 9 + 20 | V-0 | 36.8 | [46] |
APP + BF-SiP | 8 + 20 | V-0 | 39.5 | [37] |
APP + MA-MCC | 7 + 3 | V-0 | 4.5 | [54] |
NTPA + MKF | 3 + 0.5 | V-0 | 18.8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Yan, C.; Du, C.; Xu, Y.; Li, B.; Liu, L. Preparation and Mechanism of Toughened and Flame-Retardant Bio-Based Polylactic Acid Composites. Polymers 2023, 15, 300. https://doi.org/10.3390/polym15020300
Xu K, Yan C, Du C, Xu Y, Li B, Liu L. Preparation and Mechanism of Toughened and Flame-Retardant Bio-Based Polylactic Acid Composites. Polymers. 2023; 15(2):300. https://doi.org/10.3390/polym15020300
Chicago/Turabian StyleXu, Kai, Chentao Yan, Chunlin Du, Yue Xu, Bin Li, and Lubin Liu. 2023. "Preparation and Mechanism of Toughened and Flame-Retardant Bio-Based Polylactic Acid Composites" Polymers 15, no. 2: 300. https://doi.org/10.3390/polym15020300
APA StyleXu, K., Yan, C., Du, C., Xu, Y., Li, B., & Liu, L. (2023). Preparation and Mechanism of Toughened and Flame-Retardant Bio-Based Polylactic Acid Composites. Polymers, 15(2), 300. https://doi.org/10.3390/polym15020300