Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Amino Acid Resins
2.3. Characterization
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Preparation and Characterization
3.2. Batch Adsorption
3.2.1. Effect of pH
3.2.2. Adsorption Kinetics: Effect of Adsorption Time
3.2.3. Adsorption Isotherms: Effect of Initial Concentration
3.2.4. Thermodynamics: Effect of Temperature on Adsorption
3.2.5. Effect of NaCl
3.2.6. Reuse Property
3.3. Adsorption Mechanism
3.3.1. XRD
3.3.2. XPS Analysis
3.3.3. FTIR and EDX
3.4. Practical Application of Au(III) Ion Recovery from Leaching Solutions
3.4.1. Gold Recovery from Gold Slag Leaching Solutions
3.4.2. Gold Recovery from PCB Leaching Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syed, S. Recovery of Au from secondary sources—A review. Hydrometallurgy 2012, 115–116, 30–51. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, Z.; Hao, F.; Xie, K.; Qi, W.; Zhai, M.; Zhao, L. Ultrahigh and selective adsorption of Au (III) by rich sulfur and nitrogen-bearing cellulose microspheres and their applications in Au recovery from Au slag leaching solution. Sep. Purif. Technol. 2021, 274, 119016. [Google Scholar] [CrossRef]
- Nguyen, T.S.; Hong, Y.; Dogan, N.A.; Yavuz, C.T. Au Recovery from E-Waste by Porous Porphyrin–Phenazine Network Polymers. Chem. Mater. 2020, 32, 5343–5349. [Google Scholar] [CrossRef]
- Liu, Z.; Kou, J.; Xing, Y.; Sun, C. Recovery of Au from Ore with Potassium Ferrocyanide Solution under UV Light. Minerals 2021, 11, 387. [Google Scholar] [CrossRef]
- Natarajan, G.; Ting, Y.P. Au biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification. Chemosphere 2015, 136, 232–238. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, L. Surface modification of cellulose microsphere with imidazolium-based ionic liquid as adsorbent: Effect of anion variation on adsorption ability towards Au(III)Au(III) ions. Cellulose 2018, 25, 2205–2216. [Google Scholar] [CrossRef]
- Yang, F.; Yan, Z.; Zhao, J.; Miao, S.; Wang, D.; Yang, P. Rapid capture of trace precious metals by amyloid-like protein membrane with high adsorption capacity and selectivity. J. Mater. Chem. A 2020, 8, 3438. [Google Scholar] [CrossRef]
- Nguyen, N.V.; Jeong, J.; Shin, D. Simultaneous Recovery of Au and Iodine from the Waste Rinse Water of the Semiconductor Industry Using Activated Carbon. Mater. Trans. 2012, 53, 760–765. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.K.; Yung, K.C. Prerequisites for achieving Au adsorption by multiwalled carbon nanotubes in Au recovery. Chem. Eng. Sci. 2014, 107, 58–65. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Q.Q.; Xiao, S.J.; Chen, J.Q.; Jiang, W.; Cui, W.R.; Yang, G.P.; Liang, R.P.; Qiu, J.D. Covalent Organic Frameworks Constructed by Flexible Alkyl Amines for Efficient Au Recovery from Leaching Solution of E-Waste. Chem. Eng. J. 2021, 426, 131865. [Google Scholar] [CrossRef]
- Mon, M.; Ferrando-Soria, J.; Grancha, T.; Fortea-Pérez, F.R.; Gascon, J.; Leyva-Perez, A.; Armentano, D.; Pardo, E. Selective Au Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal-Organic Framework. J. Am. Chem. Soc. 2016, 138, 7864–7867. [Google Scholar] [CrossRef]
- Trieu, Q.A.; Pellet-Rostaing, S.; Arrachart, G.; Traore, Y.; Kimbel, S.; Daniele, S. Interfacial study of surface-modified ZrO2 nanoparticles with thioctic acid for the selective recovery of palladium and Au from electronic industrial wastewater. Sep. Purif. Technol. 2020, 237, 116353. [Google Scholar] [CrossRef]
- Panzarasa, G.; Osypova, A.; Consolati, G.; Quasso, F.; Soliveri, S.; Ribera, J.; Schwarze, F.W.M.R. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification. Nanomaterials 2018, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, M.; Barcellona, M.; Purrello, R.; Fragala, M.E.; D’Urso, A. Hybrid Porphyrin/DOPA-melanin film as self-assembled material and smart device for dye-pollutant removal in water. Chem. Eng. J. 2022, 433, 133262. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Miao, Y.E.; Tjiu, W.W.; Liu, T. Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. Chem. Eng. J. 2015, 259, 53–61. [Google Scholar] [CrossRef]
- Pangeni, B.; Paudyal, H.; Inoue, K.; Kawakita, H.; Alam, S. Selective recovery of Au(III) using cotton cellulose treated with concentrated sulfuric acid. Cellulose 2012, 19, 381–391. [Google Scholar] [CrossRef]
- Bediako, J.K.; Choi, J.W.; Song, M.H.; Zhao, Y.; Yun, Y.S. Recovery of Au via adsorption-incineration techniques using banana peel and its derivatives: Selectivity and mechanisms. Waste Manag. 2020, 113, 225–235. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Z.; Wang, S.; Zhang, L. Ultrahigh efficient and selective adsorption of Au(III) from water by novel Chitosan-coated MoS2 biosorbents: Performance and mechanisms. Chem. Eng. J. 2020, 401, 126006. [Google Scholar] [CrossRef]
- Guo, J.; Fan, X.; Li, Y.; Yu, S.; Ren, X. Mechanism of Selective Au Adsorption on Ion-Imprinted Chitosan Resin Modified by Thiourea. J. Hazard. Mater. 2021, 415, 125617. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Dubey, S.P.; Hokkanen, S.; Fallah, R.N.; Sillanp, M. Recovery of Au from aqueous solutions by taurine modified cellulose: An adsorptive–reduction pathway. Chem. Eng. J. 2014, 255, 97–106. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, Y.; Wen, D.; Peng, J.; Zhao, L.; Zhai, M.L. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review. J. Hazard. Mater. 2022, 424, 126887. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhang, M.; Dong, Z.; Yang, X.; Zhao, L. Facile fabrication of tannic acid functionalized microcrystalline cellulose for selective recovery of Ga(III) and In(III) from potential leaching solution. Sep. Purif. Technol. 2022, 286, 120442. [Google Scholar] [CrossRef]
- Fotoohi, B.; Mercier, L. Some insights into the chemistry of Au adsorption by thiol and amine functionalized mesoporous silica in simulated thiosulfate system. Hydrometallurgy 2015, 156, 28–39. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, J.; Yuan, W.; Yi, Y.; Zhao, L. Recovery of Au(III) by radiation synthesized aminomethyl pyridine functionalized adsorbents based on cellulose. Chem. Eng. J. 2016, 283, 504–513. [Google Scholar] [CrossRef]
- Saman, N.; Rashid, M.U.; Lye, J.W.P.; Mat, H. Recovery of Au(III) from an aqueous solution by aminopropyltriethoxysilane-functionalized lignocellulosic based adsorbents. React. Funct. Polym. 2018, 123, 106–114. [Google Scholar] [CrossRef]
- Yang, X.; Pan, Q.; Ao, Y.; Du, J.; Zhao, L. Facile preparation of L-cysteine–modified cellulose microspheres as a low-cost adsorbent for selective and efficient adsorption of Au(III) from the aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 38334–38343. [Google Scholar] [CrossRef]
- Kotte, P.; Yun, Y.S. L-cysteine impregnated alginate capsules as a sorbent for Au recovery. Polym. Degrad. Stabil. 2014, 109, 424–429. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, J.; Du, J.; Li, C.; Zhao, L. Radiation synthesis of spherical cellulose-based adsorbent for efficient adsorption and detoxification of Cr(VI). Radiat. Phys. Chem. 2016, 126, 68–74. [Google Scholar] [CrossRef]
- Dong, Z.; Du, J.F.; Wang, A.; Yang, X.; Zhao, L. Removal of methyl orange and acid fuschin from aqueous solution by guanidinium functionalized cellulose prepared by radiation grafting. Radiat. Phys. Chem. 2022, 198, 110290. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, M.; Dong, Z.; Qi, W.; Zhai, M.; Zhao, L. Efficient and selective adsorption of Pd(II) by amino acid-functionalized cellulose microspheres and their applications in palladium recovery from PCBs leaching solution. Sep. Purif. Technol. 2022, 301, 122307. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, X.; Pan, Q.; Ao, Y.; Du, J.; Zhai, M.; Zhao, L. Performance and mechanism of selective adsorption of silver to L-cysteine functionalized cellulose microsphere. Cellulose 2020, 27, 3249–3261. [Google Scholar] [CrossRef]
- Lin, G.; Wang, S.; Zhang, L.; Hu, T.; Peng, J.; Cheng, S.; Fu, L.; Srinivasakannan, C. Selective recovery of Au(III) from aqueous solutions using 2-aminothiazole functionalized corn bract as low-cost bioadsorbent. J. Clean. Prod. 2018, 196, 1007–1015. [Google Scholar] [CrossRef]
- Du, J.; Dong, Z.; Pi, Y.; Yang, X.; Zhao, L. Fabrication of Cotton Linter-Based Adsorbents by Radiation Grafting Polymerization for Humic Acid Removal from Aqueous Solution. Polymers 2019, 11, 962. [Google Scholar] [CrossRef] [Green Version]
- Mosoarca, G.; Vancea, C.; Popa, S.; Dan, M.; Boran, S. Crystal Violet Adsorption on Eco-Friendly Lignocellulosic Material Obtained from Motherwort (Leonurus cardiaca L.). Biomass. Polym. 2022, 14, 3825. [Google Scholar] [CrossRef]
- Du, J.F.; Wu, Y.Z.; Dong, Z.; Zhang, M.; Yang, X.; Xiong, H.; Zhao, L. Single and competitive adsorption between Indigo Carmine and Methyl orange dyes on quaternized kapok fiber adsorbent prepared by radiation technique. Sep. Purif. Technol. 2022, 292, 121103. [Google Scholar] [CrossRef]
- Yu, J.; Lan, J.; Wang, S.; Zhang, P.; Liu, K.; Yuan, L.; Chai, Z.; Shi, W. Robust covalent organic frameworks with tailor made chelating sites for synergistic capture of U(VI) ions from highly acidic radioactive waste. Dalton Trans. 2021, 50, 3792. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Wang, S.; Zhang, L.; Zhang, B. Efficient and Selective Adsorption of Gold Ions from Wastewater with Polyaniline Modified by TrimethylPhosphate: Adsorption Mechanism and Application. Polymers 2019, 11, 652. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wang, L.; Du, K.; Wang, S.; Huang, Z.; Yuan, L.; Li, Z.; Wang, H.; Zheng, L.; Chai, Z.; et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. J. Hazard. Mater. 2020, 396, 122731. [Google Scholar] [CrossRef]
- Du, J.F.; Dong, Z.; Yang, X.; Zhao, L. Facile fabrication of sodium styrene sulfonate-grafted ethylene-vinyl alcohol copolymer as adsorbent for ammonium removal from aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 27235–27244. [Google Scholar] [CrossRef]
- Liu, F.; Peng, G.; Li, T.; Yu, G.; Deng, S. Au(III) adsorption and reduction to gold particles on cost-effective tannin acid immobilized dialdehyde corn starch. Chem. Eng. J. 2019, 370, 228–236. [Google Scholar] [CrossRef]
- Wang, C.; Lin, G.; Zhao, J.; Wang, S.; Zhang, L.; Xi, Y.; Li, X.; Ying, Y. Highly selective recovery of Au(III) from wastewater by thioctic acid modified Zr-MOF: Experiment and DFT calculation. Chem. Eng. J. 2020, 380, 122511. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, C.; Wang, S.; Zhang, L.; Zhang, B. Selective recovery of Au(III) from wastewater by a recyclable magnetic Ni0.6Fe2.4O4 nanoparticels with mercaptothiadiazole: Interaction models and adsorption mechanisms. J. Clean. Prod. 2019, 236, 117605. [Google Scholar] [CrossRef]
- Mladenovic, N.; Petkovska, J.; Dimova, V.; Dimitrovsk, D.; Jordanov, I. Circular economy approach for rice husk modification: Equilibrium, kinetic, thermodynamic aspects and mechanism of Congo red adsorption. Cellulose 2022, 29, 503–525. [Google Scholar] [CrossRef]
- Du, J.F.; Fan, D.C.; Dong, Z.; Yang, X.; Zhao, L. Fabrication of quaternized sisal fiber by electron beam radiation and its adsorption of indigo carmine from aqueous solution. Cellulose 2022, 29, 5137–5149. [Google Scholar] [CrossRef]
- Alzate, A.; Lopez, E.; Serna, C.; Gonzalez, O. Au recovery from printed circuit boards by selective breaking of internal metallic bonds using activated persulfate solutions. J. Clean. Prod. 2017, 166, 1102–1112. [Google Scholar] [CrossRef]
- Kubota, F.; Kono, R.; Yoshida, W.; Sharaf, M.; Kolev, S.D.; Goto, M. Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep. Purif. Technol. 2019, 214, 156–161. [Google Scholar] [CrossRef]
- Gui, W.; Shi, Y.; Wei, J.; Zhang, Z.; Li, P.; Xu, X.; Cui, Y.; Yang, Y. Synthesis of N-(3-aminopropyl)imidazole-based poly(ionic liquid) as an adsorbent for the selective recovery of Au(III) ions from aqueous solutions. New J. Chem. 2020, 44, 20387–20395. [Google Scholar] [CrossRef]
Adsorbents | Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|---|
k1 (h−1) | Qe (mg/g) | R2 | k2 (g/(mg·h)) | Qe (mg/g) | R2 | h0 | |
ArgR | 1.4596 | 89.1507 | 0.9098 | 0.0182 | 95.0570 | 0.9995 | 164.45 |
HisR | 1.5424 | 88.8839 | 0.9427 | 0.0268 | 93.8086 | 0.9997 | 235.84 |
MetR | 1.4036 | 87.6844 | 0.9533 | 0.0327 | 90.2527 | 0.9995 | 266.36 |
CysR | 2.5200 | 91.7400 | 0.9809 | 0.1080 | 92.5926 | 0.9998 | 925.96 |
Adsorbents | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg/g) | KL(L/mg) | R2 | KF (mg/g) | n | R2 | |
ArgR | 396.8 | 0.4903 | 0.9999 | 92.1751 | 3.2527 | 0.6644 |
HisR | 636.9 | 0.3668 | 0.9999 | 114.5304 | 2.6953 | 0.7217 |
MetR | 549.5 | 0.5741 | 0.9999 | 112.2277 | 2.9200 | 0.7470 |
CysR | 769.2 | 0.7927 | 0.9993 | 262.4000 | 3.3653 | 0.7364 |
Adsorbents | pH | T (°C) | Qm (mg/g) | Ref. |
---|---|---|---|---|
2-AMPR | 2.4 ± 0.2 | - | 537.613 | [24] |
DACS-TA | 2.0 | 35 | 298.5 | [40] |
Zr-MOF | 2.0 | - | 374.866 | [41] |
Ni0.6Fe2.4O4 nanoparticels | 4.0 | 25 | 383.9 | [42] |
APS-LCP | 4.0 | 30 | 261.36 | [25] |
ArgR | 2.0 | 30 | 396.8 | This work |
HisR | 2.0 | 30 | 636.9 | This work |
MetR | 2.0 | 30 | 549.5 | This work |
CysR | 2.0 | 30 | 769.2 | This work |
Adsorbents | ΔH (KJ/mol) | ΔS (J/mol/K) | ΔG (KJ/mol) | R2 | |||
---|---|---|---|---|---|---|---|
298 K | 303 K | 308 K | 318 K | ||||
ArgR | 8.5453 | 52.2784 | −7.0337 | −7.2981 | −7.5564 | −8.0792 | 0.9460 |
HisR | 10.1997 | 60.8359 | −7.9293 | −8.2336 | −8.5378 | −9.1461 | 0.9695 |
MetR | 18.8498 | 88.7484 | −7.6270 | −8.0410 | −8.4847 | −9.3722 | 0.9827 |
CysR | 15.9659 | 82.5559 | −8.6358 | −9.0485 | −9.4613 | −10.2869 | 0.9619 |
Element | Raffinate (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PCB | Au Slag | |||||||||
Feed (mg/L) | ArgR | HisR | MetR | CysR | Feed (mg/L) | ArgR | HisR | MetR | CysR | |
Au | 0.449 | 0.149 | 0.112 | 0.135 | 0.074 | 0.386 | 0.123 | 0.096 | 0.069 | 0.1 |
Al | 108.6 | 108.4 | 108.5 | 108.5 | 107.6 | 351.9 | 345.4 | 347.2 | 345.6 | 336.9 |
Ca | 252.8 | 245.2 | 246.5 | 246.1 | 245.4 | 261.9 | 264.2 | 262.9 | 264.0 | 261.5 |
Co | 0.229 | 0.223 | 0.225 | 0.226 | 0.229 | --- | --- | --- | --- | --- |
Cu | 3669 | 3506 | 3559 | 3603 | 3555 | --- | --- | --- | --- | --- |
Fe | 0.37 | 0.36 | 0.36 | 0.38 | 0.38 | 114.7 | 111.1 | 113.1 | 109.5 | 109.7 |
Mg | 7.530 | 7.403 | 7.379 | 7.385 | 7.376 | 158.6 | 158.6 | 160.6 | 160.2 | 158.1 |
Mn | 0.530 | 0.509 | 0.512 | 0.505 | 0.506 | 13.89 | 13.83 | 13.76 | 13.73 | 13.64 |
Ni | 25.38 | 24.68 | 24.68 | 24.51 | 25.36 | --- | --- | --- | --- | --- |
Pb | 35.86 | 34.27 | 34.24 | 34.33 | 34.34 | --- | --- | --- | --- | --- |
Zn | 367.8 | 364.3 | 367.1 | 368.8 | 364.5 | 1.232 | 1.352 | 1.081 | 1.299 | 1.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, F.; Du, J.; Peng, L.; Zhang, M.; Dong, Z.; Shen, Y.; Zhao, L. Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres. Polymers 2023, 15, 321. https://doi.org/10.3390/polym15020321
Hao F, Du J, Peng L, Zhang M, Dong Z, Shen Y, Zhao L. Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres. Polymers. 2023; 15(2):321. https://doi.org/10.3390/polym15020321
Chicago/Turabian StyleHao, Fulai, Jifu Du, Lifang Peng, Manman Zhang, Zhen Dong, Yanbai Shen, and Long Zhao. 2023. "Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres" Polymers 15, no. 2: 321. https://doi.org/10.3390/polym15020321
APA StyleHao, F., Du, J., Peng, L., Zhang, M., Dong, Z., Shen, Y., & Zhao, L. (2023). Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres. Polymers, 15(2), 321. https://doi.org/10.3390/polym15020321