Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials
Abstract
:1. Introduction
2. Aspects on 3D and 4D Printing
- Geometry related (nozzle size and filament size)
- Process related (melting temperature, bed temperature, and printing speed)
- Structural related (layer thickness, infill geometry-density, raster angle-gap)
3D Printing Technique | Material | Resolution Speed | Description |
---|---|---|---|
Stereolithography (SLA) | Photocurable resin | 50–200 μm [11] 1000 mL/h [12] | Use of ultraviolet (UV) laser to polymerize a photocurable resin layer by layer |
Digital projection lithography (DLP) | Photocurable resin | 1 μm [13] ≈50 mm/h [14,15,16,17] | Use of UV light to selectively polymerize a liquid resin with a spatial light modulating element |
Continuous liquid interface production (CLIP) | Photocurable resin | 10–100 μm [18] 500 mm/h [19] | Use of a similar projection method to DLP, with the addition of an oxygen permeable window |
Two-photon polymerization (2PP) | Photocurable resin | 100 nm [11] 80 nm/s–2 cm/s [13] | Use near-infrared femtosecond laser pulses to polymerize a nanoscale voxel at the focal point of the laser |
Powder bed fusion (PBF) | Polymer Metal Ceramic | 20–100 μm [14,15,16,17,18,19,20] 1000 mL/h [15,16,17,18,19,20,21] | Uses a high-power photon or electron source to fuse the selectively powder layer by layer, while fresh powder is spread onto the previously bonded layer |
Binder jet | Polymer Metal Ceramic compatible liquid binder | 50–400 μm [22] 25 mm/h [23] | Jets tiny droplets of binder onto a polymer, metal, or ceramic powder using an inkjet printhead |
Fused deposition modeling (FDM) | Thermoplastic filament | 100 μm [12] 100 mL/h [12] | Uses rollers to push thermoplastic filament through a heated metal nozzle |
Direct ink writing (DIW) | Viscoelastic ink Shear thinning fluid | 1–250 μm [11] 100 mL/h [12] | Extrudes liquid ink through a nozzle or needle |
Sacrificial/embedded printing | Ink compatible with DIW process. Support: shear thinning fluid, or high viscosity reservoir and low viscosity filler combination | 1–250 μm [11] 1300 mL/h [24] | The nozzle of an ink dispensing system is inserted into a matrix of soft material. The supporting structure allows the ink to be 3D printed by tracing a 3D trajectory |
Electro-hydrodynamic printing (EHD) | Polymer-based solution | 100 nm–20 µm [25] 20–1500 mL/h [26] | Use a voltage between the nozzle and substrate to eject fluid from the nozzle |
Direct inkjet printing | Low-viscosity fluid | 240 nm–5 µm [12] 500 mL/h [27] | Deposition of droplets by means of a valve inside the printhead, formed by electrostatic, thermal, or piezoelectric plates |
Aerosol jet printing (AJP) | Metal inks biological inks adhesives polymers | 10 µm [28] 1200 mL/h [29] | Uses aerodynamic focusing to guide a narrow spray of atomized fluid onto a substrate |
- Smart materials that change their shape upon stimuli.
- 3D printing materials that can act as supporting structures for growth of organic cells.
- Self-assembly of micro-sized smart particles that, upon stimulus change their pattern.
3. Bioprinting
3.1. Techniques in Bioprinting
Printing Method | Advantages | Disadvantages | Applications | Refs. |
---|---|---|---|---|
Drop on demand | Low cost Fast print speed High resolution High cell viability (>85%) | Low cell density (<106 cells/mL) Poor quality of vertical structures Bioink with specific range of viscosity | Blood vessel Bone Cartilage Neuron | [57,58,59,60] |
Lithography based | Low cost High cell viability (>85%) High resolution Good vertical structure fidelity Fast printing speed | Limited to photopolymerization Medium on cell density (<108 cells/mL) | Blood vessel Cartilage Bone | [61,62,63,64,65,66,67,68,69,70] |
Laser assisted | High cell viability (>95%) High resolution Fair vertical structure fidelity | Expensive Medium printing speed Bioink with specific range of viscosity Medium cell density (<108 cells/mL) | Blood vessel Bone Skin Adipose | [71,72,73,74] |
Extrusion based | Moderate resolution Cell-laden bioink Good vertical structure fidelity Supports high viscosity bioink | Fairly expensive slow printing speed low cell viability (40–80%) | Blood vessel Bone Cartilage Neuron Muscle Tumor | [61,62,63,64,65,66,67,68,69] |
3.2. Criteria and Limitations
- Mechanical properties: tailored to meet specific end-user requirements.
- Biodegradability/biosorbability: ideally bioresorbability and tunable degradation upon formation of functional tissues.
- Porosity: porosity or hierarchical transport properties is vital for efficient nutrient and metabolic waste transport and optimal cell migration.
- Swelling: crucial function in materials diffusion and transport within and through the hydrogel (cell stability and molecule release for drug delivery).
- Biocompatibility: integrated into the biological system without harming or rejected (minimal or no immune reactions).
- Cell adhesion: display adhesion property for cell binding.
- Vascularization: capillary network responsible for nutrients transport to the cells.
- Bioactivity: trigger/facilitate a biological response within a living system (tissue interactivity and binding ability, excellent osteoconductivity and osteoinductivity, and cell differentiation, attachment, and ingrowth).
3.3. Bioprinting in Regenerative Medicine
3.3.1. Bone
3.3.2. Cartilage
3.3.3. Cardiac Tissue
3.3.4. Heart Valve
3.3.5. Neural Tissue
3.3.6. Blood Vessels
3.3.7. Trachea
3.3.8. Liver
3.3.9. Skin
3.4. Bioinks
3.5. 4D Printing as Biofabrication Method
- Shape memory (shape is changed in response to an external stimulus).
- Self-assembly (external stimulus obligates chains into assembly in specific shape).
- Self-actuating (Automated actuation upon exposure to an external stimulus).
- Self-sensing (detection of external stimulus and quantification).
- Self-healing (the damaged structure is auto-repaired)
4. Advances and Applications of Block Copolymers in 3D/4D Printing in the Area of Biomaterials
4.1. AB Block Copolymers
4.2. ABA Block Copolymers
4.3. Other Architectures of Block Copolymers and Systems with Other Materials
4.3.1. Other Architectures of Block Copolymers
4.3.2. Block Copolymers with Other Type of Materials
5. Challenges and Future Works
5.1. Challenges
- (I)
- Materials and Techniques
- (II)
- Scaffold architecture
- (III)
- Cell viability/vascularization
5.2. Future Works
- (I)
- Materials
- (II)
- Combination of natural and synthetic polymers
- (III)
- 3D printers
- (IV)
- Crosslinking
- (V)
- Testing and simulation of the 3D structures
- (VI)
- New techniques of processing incorporated in 3D
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2PP | two-photon polymerization |
AB | block copolymers |
ABA | triblock copolymers |
ABC | triblocl terpolymers |
AJP | aerosol jet printing |
CLIP | continuous liquid interface production |
CNC | cellulose nanocrystals |
CSMA | methacrylated chondroitin sulfate |
DIW | direct ink writing |
DLP | digital projection lithography |
EHD | electro-hydrodynamic printing |
FDM | fused deposition modeling |
FdMA | pluronic F127 dimethacrylate |
FFF | fused filament fabrication |
HAMA | methacrylated hyaluronic acid |
HAMA | hyaluronic acid |
HPMACys | N-2-Hydroxy-propyl)methacrylamide-Boc-S-acetamidomethyl-L-cysteine |
PAA | poly(acrylic acid) |
PAMPS | poly(2-(acrylamide)-2-methylpropanesulfonic acid) |
PASA | poly(aspartic acid) |
PBF | powder bed fusion |
PBnMA | poly(benzyl methacrylate) |
PBT | poly(butylene terephthalate) |
PCL | polycaprolactone |
PCLA | poly(ε-caprolactone/lactide) |
PCL-PPSu | poly(1,3-propylene succinate) |
PDLGA | poly(D, L-lactide-co-glycolide) |
PDMAEMA | poly(dimethylaminoethyl methacrylate) |
PDMS | polydimethylsiloxane |
PEDOT | poly(3,4-ethylenedioxythiophene) |
PEG | polyethylene glycol |
PEGDA | poly(ethylene glycol) diacrylate |
PEGT | poly(ethylene glycol) terephthalate |
PEI | polyethyleneimine |
pEtOx | poly(2-ethyl-2-oxazoline) |
PEU | poly(ether urethane) |
PGA | poly(glycolic acid) |
PHEMA | poly(2-hydroxyethyl methacrylate) |
PHIS | poly(histidine) |
piBuOx | poly(2-iso-butyl-2-oxazoline) |
PLA | poly(lactic acid) |
PLACL | poly(L-lactide-co-ε-caprolactone) |
PLGA | polylactic-co-glycolic Acid |
PLLA | poly(L-lactic acid) |
pMeOx | poly(2-methyl-2-oxazoline) |
PMMA | poly(methyl methacrylate) |
PnBA | poly(n-butyl acrylate) |
PNiPAM | poly(N-isopropylacrylamide) |
PPF | poly(propylene fumarate) |
PPG | poly(propylene glycol) |
PPM | poly(propylene maleate) |
PPO | poly(propylene oxide) |
pPrOzi | poly(2 N-propyl-2-oxazine) |
PPy | polypyrrole |
PSS | sulfonated-polystyrene |
PT | polythiophene |
PTMC | poly(trimethylene carbonate) |
Ptriol | polycaprolactone triol |
PU | polyurethane |
SIBS | poly(styrene-b-isobutylene-b-styrene) |
SLA | laser stereolithography |
TMSPMA | 3-(trimethoxysilyl)propyl methacrylate |
References
- Nadgorny, M.; Ameli, A. Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices. ACS Appl. Mater. Interfaces 2018, 10, 17489–17507. [Google Scholar] [CrossRef] [PubMed]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhardt, A. Rapid Prototyping; Hanser Verlag: Munich, Germany, 2003. [Google Scholar]
- Jacobs, P.F. Stereolithography and Other RP&M Technologies-from Rapid Prototyping to Rapid Tooling; SME Publications: Dearborn, MI, USA, 1996. [Google Scholar]
- Noorani, R. Rapid Prototyping. Principles and Applications; Wiley: Hoboken, NJ, USA, 2006; pp. 34–56. [Google Scholar]
- Wohlers, T.; Caffrey, T. Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry; Wohlers Associates: Fort Collins, CO, USA, 2013. [Google Scholar]
- Pham, D.T.; Gault, R.S. A Comparison of Rapid Prototyping Technologies. Int. J. Mach. Tool Manuf. 1998, 38, 1257–1287. [Google Scholar] [CrossRef]
- Sachs, E.M.; Haggerty, J.S.; Cima, M.J.; Williams, P.A. Three-Dimensional Printing Techniques. U.S. Patent Application No. US5204055A, 20 April 1993. [Google Scholar]
- Elder, B.; Neupane, R.; Tokita, E.; Ghosh, U.; Hales, S.; Kong, Y.L. Nanomaterial Patterning in 3D Printing. Adv. Mater. 2020, 32, 1907142. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, M.M.; Saravanan, A.K.; Lenin, A.H.; Mayandi, K.; Ramalingam, P.S. A short review on 3D printing methods, process parameters and materials. Mater. Today Proc. 2021, 45, 6108–6114. [Google Scholar] [CrossRef]
- Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature 2016, 540, 371–378. [Google Scholar] [CrossRef]
- Wallin, T.J.; Pikul, J.; Shepherd, R.F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100. [Google Scholar] [CrossRef]
- Hwang, H.H.; Zhu, W.; Victorine, G.; Lawrence, N.; Chen, S. 3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches. Small Methods 2018, 2, 1870021. [Google Scholar] [CrossRef] [Green Version]
- B9 Core Series Technical Specifications|B9Creations. Available online: https://www.b9c.com/products/tech-specs (accessed on 3 January 2023).
- PICO2-Products-Asiga. Available online: https://www.asiga.com/products/printers/pico2/ (accessed on 1 December 2019).
- Solidator 2-DLP 3D Printer-Fast Stereolithography 3D Printer with a Large Build Volume. Available online: https://www.solidator.com/3D-Printer.html#targetText=The%Solidator%is%an%ultra,13.22%22x8.26%22 (accessed on 3 January 2023).
- Pro Desktop 3D Printer Technical Specifications|SprintRay Inc. Available online: https://sprintray.com/pro-desktop-3dprinter/pro-desktop-3d-printer-technical-specifications/ (accessed on 3 January 2023).
- Janusziewicz, R.; Tumbleston, J.R.; Quintanilla, A.L.; Mecham, S.J.; DeSimone, J.M. Layerless fabrication with continuous liquid interface production. Proc. Natl. Acad. Sci. USA 2016, 113, 11703–11708. [Google Scholar] [CrossRef] [Green Version]
- Tumbleston, J.R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A.R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J.P.; Ermoshkin, A.; et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352. [Google Scholar] [CrossRef]
- Melchels, F.P.W.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010, 31, 6121–6130. [Google Scholar] [CrossRef] [Green Version]
- Shusteff, M.; Browar, A.E.M.; Kelly, B.E.; Henriksson, J.; Weisgraber, T.H.; Panas, R.M.; Fang, N.X.; Spadaccini, C.M. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 2017, 3, eaao5496. [Google Scholar] [CrossRef] [Green Version]
- Varotsis, A.B. Introduction to Binder Jetting 3D Printing. Available online: https://www.3dhubs.com/knowledge-base/introduction-binder-jetting-3d-printing#what (accessed on 3 January 2023).
- Afshar-Mohajer, N.; Wu, C.Y.; Ladun, T.; Rajon, D.A.; Huang, Y. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Build. Environ. 2015, 93, 293–301. [Google Scholar] [CrossRef]
- Hajash, K.; Sparrman, B.; Guberan, C.; Laucks, J.; Tibbits, S. Large-Scale Rapid Liquid Printing. 3d Print. Addit. Manuf. 2017, 4, 123–132. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, F.; Dong, R.; Guo, B.; Li, D. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes. Biofabrication 2017, 9, 15007. [Google Scholar] [CrossRef]
- Nagy, Z.K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B.T.; Horák, P.; Marosi, G.; et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm. 2015, 480, 137–142. [Google Scholar] [CrossRef]
- Singh, M.; Haverinen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet printing-process and its applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef]
- Paulsen, J.A.; Renn, M.; Christenson, K.; Plourde, R. 2012 Future of Instrumentation International Workshop (FIIW) Proceedings; Abbott, D., Ed.; IEEE: Piscataway, NJ, USA, 2012; pp. 47–50. [Google Scholar]
- Mahajan, A.; Frisbie, C.D.; Francis, L.F. Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines. ACS Appl. Mater. Interfaces 2013, 5, 4856–4864. [Google Scholar] [CrossRef]
- Tibbits, S.J.E.; Dikovsky, D.; Hirsch, S. Massachusetts Institute of Technology; Stratasys Ltd. Object of Additive Manufacture with Encoded Predicted Shape Change. U.S. Patent Application No. 2015084422A1, 11 June 2015. [Google Scholar]
- Tibbits, S. 4D Printing: Multi-Material Shape Change. Archit. Design 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Momeni, F.; Hassani, S.M.M.; Liu, X.; Ni, J. A Review of 4D Printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Joshi, S.; Rawat, K.; Karunakaran, C.; Rajamohan, V.; Mathew, A.T.; Koziol, K.; Thakur, V.K.; Balan, A.S.S. 4D printing of materials for the future: Opportunities and challenges. Appl. Mater. Today 2020, 18, 100490. [Google Scholar] [CrossRef]
- Akbari, S.; Zhang, Y.; Wang, D.; Ge, Q. 4D printing and its biomedical applications. In 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing; Wiley-VCH Verlag GmbH &Co. KGaA: Weinheim, Germany, 2019; Chapter 14; pp. 343–372. [Google Scholar]
- Yang, Y.; Chen, Y.; Wei, Y.; Li, Y. 3D printing of shape memory polymer for functional part fabrication. Int. J. Adv. Manuf. Technol. 2016, 84, 2079–2095. [Google Scholar] [CrossRef]
- Liu, F.; Urban, M.W. Recent Advances and Challenges in Designing Stimuli-Responsive Polymers. Prog. Polym. Sci. 2010, 35, 3–23. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid Commun. 2012, 33, 1898–1920. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ravi, P.; Tam, K.C. pH-Responsive Polymers: Synthesis, Properties and Applications. Soft Matter 2008, 4, 435–449. [Google Scholar] [CrossRef]
- Davis, D.A.; Hamilton, A.; Yang, J.; Cremar, L.D.; Van Gough, D.; Potisek, S.L.; Ong, M.T.; Braun, P.V.; Martínez, T.J.; White, S.R.; et al. Force-Induced Activation of Covalent Bonds in Mechanoresponsive Polymeric Materials. Nature 2009, 459, 68–72. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, J.H.; Zhou, J.; Xu, F.; Zrínyi, M.; Dussault, P.H.; Osada, Y.; Chen, Y.M. Self-Healing Gels Based on Constitutional Dynamic Chemistry and Their Potential Applications. Chem. Soc. Rev. 2014, 43, 8114–8131. [Google Scholar] [CrossRef]
- Ratheesh, G.; Venugopal, J.R.; Chinappan, A.; Ezhilarasu, H.; Sadiq, A.; Ramakrishna, S. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater. Sci. Eng. 2017, 3, 1175–1194. [Google Scholar] [CrossRef]
- Donderwinkel, I.; van Hest, J.C.M.; Cameron, N.R. Bio-inks for 3D bioprinting: Recent advances and future prospects. Polym. Chem. 2017, 8, 4451–4471. [Google Scholar] [CrossRef] [Green Version]
- Groll, J.; Boland, T.; Blunk, T.; Burdick, J.A.; Cho, D.W.; Dalton, P.D.; Derby, B.; Forgacs, G.; Li, Q.; Mironov, V.A.; et al. Biofabrication: Reappraising the definition of an evolving field. Biofabrication 2016, 8, 013001. [Google Scholar] [CrossRef]
- Zongjie, W.; Raafa, A.; Benjamin, P.; Roya, S.; Sanjoy, G.; Keekyoung, K. Light-activated nitrile imine mediated reaction pathways for the synthesis of bioinks. Biofabrication 2015, 7, 045009. [Google Scholar]
- Barry, J.J.A.; Evseev, A.V.; Markov, M.A.; Upton, C.E.; Scotch-ford, C.A.; Popov, V.K.; Howdle, S.M. In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction. Acta Biomater. 2008, 4, 1603–1610. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, X.; Gou, M.; Mei, D.; Zhang, K.; Chen, S. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 2016, 40, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.F.; Bártolo, P.J. 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci. 2015, 132, 42458. [Google Scholar] [CrossRef] [Green Version]
- Tuan, R.S.; Boland, G.; Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 2003, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Hopp, B.; Smausz, T.; Kresz, N.; Barna, N.; Bor, Z.; Kolozsvári, L.; Chrisey, D.B.; Szabó, A.; Nógrádi, A. Survival and Proliferative Ability of Various Living Cell Types after Laser-Induced Forward Transfer. Tissue Eng. 2005, 11, 1817. [Google Scholar] [CrossRef]
- Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016, 34, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Cui, X.; Li, J.; Hartanto, Y.; Durham, M.; Tang, J.; Zhang, H.; Hooper, G.; Lim, K.; Woodfield, T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv. Healthcare Mater. 2020, 9, 1901648. [Google Scholar] [CrossRef]
- Mironov, V.; Visconti, R.P.; Kasyanov, V.; Forgacs, G.; Drake, C.J.; Markwald, R.R. Organ printing: Tissue spheroids as building blocks. Biomaterials 2009, 30, 2164–2174. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Munguia-Lopez, J.G.; Flores-Torres, S.; Grant, J.; Vi-jayakumar, S.; Leon-Rodriguez, A.D.; Kinsella, J.M. Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Sci. Rep. 2017, 7, 4575. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Munguia-Lopez, J.G.; Flores-Torres, S.; Kort-Mascort, J.; Kinsella, J.M. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl. Phys. Rev. 2019, 6, 011310. [Google Scholar] [CrossRef]
- Zaszczyńska, A.; Moczulska-Heljak, M.; Gradys, A.; Sajkiewicz, P. Advances in 3D Printing for Tissue Engineering. Materials 2021, 14, 3149. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Song, S.J.; Lee, J.Y.; Jang, H.; Choi, J.; Sun, K.; Park, Y.J. Biosci. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 2013, 116, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Keriquel, V.; Guillemot, F.; Arnault, I.; Guillotin, B.; Miraux, S.; Amedee, J.; Fricain, J.C.; Catros, S. In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication 2010, 2, 014101. [Google Scholar] [CrossRef]
- Tao, X.; Kyle, W.B.; Mohammad, Z.A.; Dennis, D.; Weixin, Z.; James, J.Y.; Anthony, A. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2013, 5, 015001. [Google Scholar]
- Xu, F.; Sridharan, B.; Wang, S.; Gurkan, U.A.; Syverud, B.; Demirci, U. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 2011, 5, 022207. [Google Scholar] [CrossRef] [Green Version]
- Gauvin, R.; Chen, Y.C.; Lee, J.W.; Soman, P.; Zorlutuna, P.; Nichol, J.W.; Bae, H.; Chen, S.; Khademhosseini, A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012, 33, 3824–3834. [Google Scholar] [CrossRef] [Green Version]
- Grogan, S.P.; Chung, P.H.; Soman, P.; Chen, P.; Lotz, M.K.; Chen, S.; D’Lima, D.D. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater. 2013, 9, 7218–7226. [Google Scholar] [CrossRef] [Green Version]
- Dolati, F.; Yu, Y.; Zhang, Y.; De Jesus, A.M.; Sander, E.A.; Ozbolat, I.T. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014, 25, 145101. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Hockaday, L.A.; Kang, K.H.; Butcher, J.T. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 2013, 101, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Loozen, L.D.; Wegman, F.; Oner, F.C.; Dhert, W.J.A.; Alblas, J. Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering. J. Mater. Chem. B 2013, 1, 6619–6626. [Google Scholar] [CrossRef]
- Malda, J.; Visser, J.; Melchels, F.P.; Jungst, T.; Hennink, W.E.; Dhert, W.J.; Groll, J.; Hutmacher, D.W. 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Adv. Mater. 2013, 25, 5011–5028. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, R.; Ouyang, L.; Ding, H.; Zhang, T.; Zhang, K.; Cheng, S.; Sun, W. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 2014, 6, 035001. [Google Scholar] [CrossRef]
- Merceron, T.K.; Burt, M.; Seol, Y.J.; Kang, H.W.; Lee, S.J.; Yoo, J.J.; Atala, A. A 3D bioprinted complex structure for engineering the muscle—tendon unit. Biofabrication 2015, 7, 035003. [Google Scholar] [CrossRef]
- Owens, C.M.; Marga, F.; Forgacs, G.; Heesch, C.M. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013, 5, 045007. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Levato, R.; Costa, F.P.; Castilho, D.M.; Alcala-orozco, R.C.; Dorenmalen, M.A.K.; Meichels, P.W.F.; Gawlitta, D.; Hopper, G.J.; Malda, J.; et al. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 2018, 10, 034101. [Google Scholar] [CrossRef]
- Catros, S.; Guillotin, B.; Bačáková, M.; Fricain, J.-C.; Guillemot, F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl. Surf. Sci. 2011, 257, 5142–5147. [Google Scholar] [CrossRef]
- Catros, S.; Fricain, J.C.; Guillotin, B.; Pippenger, B.; Bareille, R.; Remy, M.; Lebraud, E.; Desbat, B.; Amedee, J.; Guillemot, F. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011, 3, 025001. [Google Scholar] [CrossRef]
- Michael, S.; Sorg, H.; Peck, C.-T.; Koch, L.; Deiwick, A.; Chichkov, B.; Vogt, P.M.; Reimers, K. Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. PLoS ONE 2013, 8, e57741. [Google Scholar] [CrossRef]
- Gruene, M.; Unger, C.; Koch, L.; Deiwick, A.; Chichkov, B. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed. Eng. Online 2011, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valot, L.; Martinez, J.; Mehdi, A.; Subra, G. Chemical insights into bioinks for 3D printing. Chem. Soc. Rev. 2019, 48, 4049–4086. [Google Scholar] [CrossRef] [PubMed]
- Advincula, R.C.; Dizon, J.R.C.; Caldona, E.B.; Viers, R.A.; Siacor, F.D.C.; Maalihan, R.D.; Espera Jr, A.H. On the progress of 3D-printed hydrogels for tissue engineering. MRS Commun. 2021, 11, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, X. Synthetic Polymers for Organ 3D Printing. Polymers 2020, 12, 1765. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.J.; Im, H.; Kim, S.H.; Park, J.W.; Jung, Y. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 586406. [Google Scholar] [CrossRef] [PubMed]
- Abbadessa, A.; Mouser, V.H.M.; Blokzijl, M.B.; Gawlitta, D.; Dhert, W.J.A.; Hennink, W.E.; Malda, J.; Vermonden, T. A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides. Biomacromolecules 2016, 17, 2137–2147. [Google Scholar] [CrossRef] [Green Version]
- Izadifar, Z.; Chang, T.; Kulyk, W.; Chen, X.; Eames, B.F. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Tissue Eng. Part C 2016, 22, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Tamay, D.G.; Dursun Usal, T.; Alagoz, A.S.; Yucel, D.; Hasirci, N.; Hasirci, V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front. Bioeng. Biotechnol. 2019, 7, 164. [Google Scholar] [CrossRef]
- Morouço, P.; Azimi, B.; Milazzo, M.; Mokhtari, F.; Fernandes, C.; Reis, D.; Danti, S. Four-Dimensional (Bio-)printing: A Review on Stimuli-Responsive Mechanisms and Their Biomedical Suitability. Appl. Sci. 2020, 10, 9143. [Google Scholar] [CrossRef]
- Jain, S.; Fuoco, T.; Yassin, M.A.; Mustafa, K.; Finne-Wistrand, A. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules 2020, 21, 388–396. [Google Scholar] [CrossRef]
- Afghah, F.; Ullah, M.; Zanjani, J.S.M.; Sut, P.A.; Sen, O.; Emanet, M.; Okan, B.S.; Culha, M.; Menceloglu, Y.; Yildiz, M.; et al. 3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering. Biomed. Mater. 2020, 15, 035015. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Z.; Ou-Yang, W.; Pan, X.; Wang, X.; Huang, P.; Zhang, C.; Kong, D.; Wang, W. 3D printing of implantable elastic PLCL copolymer scaffolds. Soft Matter 2020, 16, 2141–2148. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Kannan, S.; Cao, T.; Fuh, J.Y.H.; Sriram, G.; Lu, W.F. 3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Front. Bioeng. Biotechnol. 2019, 7, 266. [Google Scholar] [CrossRef]
- Paunović, N.; Bao, Y.; Coulter, F.B.; Masania, K.; Geks, A.K.; Klein, K.; Rafsanjani, A.; Cadalbert, J.; Kronen, P.W.; Kleger, N.; et al. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. Sci. Adv. 2021, 7, eabe9499. [Google Scholar] [CrossRef]
- Haider, M.S.; Ahmad, T.; Yang, M.; Hu, C.; Hahn, L.; Stahlhut, P.; Groll, J.; Luxenhofer, R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021, 7, 78. [Google Scholar] [CrossRef]
- Koutsamanis, I.; Paudel, A.; Alva Zúñiga, C.P.; Wiltschko, L.; Spoerk, M. Novel polyester-based thermoplastic elastomers for 3D-printed long-acting drug delivery applications. J. Control. Release 2021, 335, 290–305. [Google Scholar] [CrossRef]
- Dilla, R.A.; Motta, C.M.M.; Snyder, S.R.; Wilson, J.A.; Wesdemiotis, C.; Becker, M.L. Synthesis and 3D Printing of PEG–Poly(propylene fumarate) Diblock and Triblock Copolymer Hydrogels. ACS Macro Lett. 2018, 7, 1254–1260. [Google Scholar] [CrossRef]
- Le Fer, G.; Dilla, R.A.; Wang, Z.; King, J.; Chuang, S.S.C.; Becker, M.L. Clustering and Hierarchical Organization of 3D Printed Poly(propylene fumarate)-block-PEG-block-poly(propylene fumarate) ABA Triblock Copolymer Hydrogels. Macromolecules 2021, 54, 3458–3468. [Google Scholar] [CrossRef]
- Censi, R.; Schuurman, W.; Malda, J.; di Dato, G.; Burgisser, P.E.; Dhert, W.J.A.; van Nostrum, C.F.; di Martino, P.; Vermonden, T.; Hennink, W.E. A Printable Photopolymerizable Thermosensitive p(HPMAm-lactate)-PEG Hydrogel for Tissue Engineering. Adv. Funct. Mater. 2011, 21, 1833–1842. [Google Scholar] [CrossRef]
- Güney, A.; Gardiner, C.; McCormack, A.; Malda, J.; Grijpma, D.W. Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels. Bioengineering 2018, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Jin, R.; Zhou, Y.; Yu, M.; Ling, Y.; Wang, L.Q. Crystallization enhanced thermal-sensitive hydrogels of PCL-PEG-PCL triblock copolymer for 3D printing. Biomed. Mater. 2021, 16, 035006. [Google Scholar] [CrossRef]
- Zhang, M.; Vora, a.; Han, W.; Wojtecki, R.J.; Maune, H.; Le, A.B.A.; Thompson, L.E.; McClelland, G.M.; Ribet, F.; Engler, A.C.; et al. Dual-Responsive Hydrogels for Direct-Write 3D Printing. Macromolecules 2015, 48, 6482–6488. [Google Scholar] [CrossRef]
- Karis, D.G.; Ono, R.J.; Zhang, M.; Vora, A.; Storti, D.; Ganter, M.A.; Nelson, A. Cross-linkable multi-stimuli responsive hydrogel inks for direct-write 3D printing. Polym. Chem. 2017, 8, 4199–4206. [Google Scholar] [CrossRef]
- Xu, C.; Lee, W.; Dai, G.; Hong, Y. Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing. ACS Appl. Mater. Interfaces 2018, 10, 9969–9979. [Google Scholar] [CrossRef] [PubMed]
- Alsandi, Q.; Ikeda, M.; Nikaido, T.; Tsuchida, Y.; Sadr, A.; Yui, N.; Suzuki, T.; Tagami, J. Evaluation of mechanical properties of new elastomer material applicable for dental 3D printer. J. Mech. Behav. Biomed. Mater. 2019, 100, 103390. [Google Scholar] [CrossRef]
- Shen, N.; Liu, S.; Kasbe, P.; Khabaz, F.; Kennedy, J.P.; Xu, W. Macromolecular Engineering and Additive Manufacturing of Poly(styrene-b-isobutylene-b-styrene). ACS Appl. Polym. Mater. 2021, 3, 4554–4562. [Google Scholar] [CrossRef]
- Mulchandani, N.; Masutani, K.; Kumar, S.; Yamane, H.; Sakurai, S.; Kimura, Y.; Katiyar, V. Toughened PLA-b-PCL-b-PLA triblock copolymer based biomaterials: Effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polym. Chem. 2021, 12, 3806–3824. [Google Scholar] [CrossRef]
- Güney, A.; Malda, J.; Dhert, W.J.A.; Grijpma, D.W. Triblock Copolymers Based on ε-Caprolactone and Trimethylene Carbonate for the 3D Printing of Tissue Engineering Scaffolds. Int. J. Artif. Organs 2017, 40, 176–184. [Google Scholar] [CrossRef]
- Nian, S.; Zhu, J.; Zhang, H.; Gong, Z.; Freychet, G.; Zhernenkov, M.; Xu, B.; Cai, L.H. Three-Dimensional Printable, Extremely Soft, Stretchable, and Reversible Elastomers from Molecular Architecture-Directed Assembly. Chem. Mater. 2021, 33, 2436–2445. [Google Scholar] [CrossRef]
- Lübtow, M.M.; Mrlik, M.; Hahn, L.; Altmann, A.; Beudert, M.; Lühmann, T.; Luxenhofer, R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel. J. Funct. Biomater. 2019, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.D.; Kimmins, S.; Hibbitts, A.J.; Heise, A. 3D-extrusion printing of stable constructs composed of photoresponsive polypeptide hydrogels. Polym. Chem. 2019, 10, 4675–4682. [Google Scholar] [CrossRef]
- Li Volsi, A.; Tallia, F.; Iqbal, H.; Georgiou, T.K.; Jones, J.R. Enzyme degradable star polymethacrylate/silica hybrid inks for 3D printing of tissue scaffolds. Mater. Adv. 2020, 1, 3189–3199. [Google Scholar] [CrossRef]
- Dominguez-Alfaro, A.; Criado-Gonzalez, M.; Gabirondo, E.; Lasa-Fernández, H.; Olmedo-Martínez, J.L.; Casado, N.; Alegret, N.; Müller, A.J.; Sardon, H.; Vallejo-Illarramendi, A.; et al. Electroactive 3D printable poly(3, 4-ethylenedioxythiophene)-graft-poly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment. Polym. Chem. 2022, 13, 109–120. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Y.; Wang, L.Q. A Dual-sensitive Hydrogel Based on Poly(Lactide-co-Glycolide)-Polyethylene Glycol-Poly(Lactide-co-Glycolide) Block Copolymers for 3D Printing. Int. J. Bioprint. 2021, 7, 389. [Google Scholar] [CrossRef]
- Murphy, R.; Walsh, D.P.; Hamilton, C.A.; Cryan, S.A.; in het Panhuis, M.; Heise, A. Degradable 3D-Printed Hydrogels Based on Star-Shaped Copolypeptides. Biomacromolecules 2018, 19, 2691–2699. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Ohta, S.; Nakamurac, M.; Ito, T. 3D inkjet printing of star block copolymer hydrogels cross-linked using various metallic ions. RSC Adv. 2017, 7, 55571–55576. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Cohn, D. Temperature and pH responsive 3D printed scaffolds. J. Mater. Chem. B 2017, 5, 9514–9521. [Google Scholar] [CrossRef]
- Dutta, S.; Cohn, D. Dually responsive biodegradable drug releasing 3D printed structures. J. Appl. Polym. Sci. 2022, 139, e53137. [Google Scholar] [CrossRef]
- Cisneros, K.; Chowdhury, N.; Coleman, E.; Ferdous, T.; Su, H.; Jennings, J.A.; Bumgardner, J.D.; Fujiwara, T. Long-Term Controlled Release of Simvastatin from Photoprinted Triple-Networked Hydrogels Composed of Modified Chitosan and PLA-PEG Micelles. Macromol. Biosci. 2021, 21, e2100123. [Google Scholar] [CrossRef] [PubMed]
- Il Kim, R.; Lee, G.; Lee, J.-H.; Park, J.J.; Lee, A.S.; Hwang, S.S. Structure–Property Relationships of 3D-Printable Chain-Extended Block Copolymers with Tunable Elasticity and BiodegradabilityZ. ACS Appl. Polym. Mater. 2021, 3, 4708–4716. [Google Scholar] [CrossRef]
- Kutikov, A.B.; Reyer, K.A.; Song, J. Shape-Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer Poly(d, l-lactic acid-co-ethylene glycol-co-d, l-lactic acid) (PELA)/Hydroxyapatite Composites. Macromol. Chem. Phys. 2014, 215, 2482–2490. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Hahn, L.; Yang, M.; Altmann, A.; Stahlhut, P.; Groll, J.; Luxenhofer, R. Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition. J. Mater. Sci. 2021, 56, 691–705. [Google Scholar] [CrossRef]
- Cui, Y.; Jin, R.; Zhang, Y.; Yu, M.; Zhou, Y.; Wang, L.Q. Cellulose Nanocrystal-Enhanced Thermal-Sensitive Hydrogels of Block Copolymers for 3D Bioprinting. Int. J. Bioprint. 2021, 27, 397. [Google Scholar] [CrossRef]
- Müller, M.; Becher, J.; Schnabelrauch, M.; Zenobi-Wong, M. Nanostructured Pluronic hydrogels as bioinks for 3D Bioprinting. Biofabrication 2015, 7, 035006. [Google Scholar] [CrossRef]
- Abbadessa, A.; Blokzijl, M.M.; Mouser, V.H.M.; Marica, P.; Malda, J.; Hennink, W.E.; Vermonden, T. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr. Polym. 2016, 149, 163–174. [Google Scholar] [CrossRef]
- Boere, K.W.M.; Blokzijl, M.M.; Visser, J.; Elder, J.; Linssen, A.; Malda, J.; Hennink, W.E.; Vermonden, T. Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. J. Mater. Chem. B 2015, 3, 9067–9078. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politakos, N. Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials. Polymers 2023, 15, 322. https://doi.org/10.3390/polym15020322
Politakos N. Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials. Polymers. 2023; 15(2):322. https://doi.org/10.3390/polym15020322
Chicago/Turabian StylePolitakos, Nikolaos. 2023. "Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials" Polymers 15, no. 2: 322. https://doi.org/10.3390/polym15020322
APA StylePolitakos, N. (2023). Block Copolymers in 3D/4D Printing: Advances and Applications as Biomaterials. Polymers, 15(2), 322. https://doi.org/10.3390/polym15020322