Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Beetroot Extract
Betalain Content Determination
2.3. Microencapsulation of Beetroot Extract
- (a)
- Uniaxial structures: (1) HPMC, (2) HPMC-Bet, (3) G, and (4) G-Bet.
- (b)
- Coaxial core/shell structures: (1) HPMC/G, (2) HPMC-Bet/G, (3) G/HPMC, and (4) G-Bet/HPMC.
2.4. Characterization of the Electrosprayed Capsules
2.4.1. Morphological Analysis
2.4.2. Optical Properties
2.4.3. Structural Analysis
2.5. Encapsulation Efficiency (EE)
2.6. Thermal Stability Characterization
2.7. Statistical Analysis
3. Results
3.1. Chemical Characterization of Beetroot Extract
3.2. Morphological and Optical Characteristics
3.3. Structural Properties
3.4. Encapsulation Efficiency Results
3.5. Thermal Stability Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esatbeyoglu, T.; Wagner, A.E.; Schini-Kerth, V.B.; Rimbach, G. Betanin—A Food Colorant with Biological Activity. Mol. Nutr. Food Res. 2015, 59, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Stintzing, F.C.; Carle, R. Functional Properties of Anthocyanins and Betalains in Plants, Food, and in Human Nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Moreno, D.A.; García-Viguera, C.; Gil, J.I.; Gil-Izquierdo, A. Betalains in the Era of Global Agri-Food Science, Technology and Nutritional Health. Phytochem. Rev. 2008, 72, 261–280. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, Sources, Applications, and Stability—A Review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Parra, J.; Muñoz, R. Characterization of Betacyanin Oxidation Catalyzed by a Peroxidase from Beta vulgaris L. Roots. J. Agric. Food Chem. 2001, 49, 4064–4068. [Google Scholar] [CrossRef]
- Herbach, K.M.; Rohe, M.; Stintzing, F.C.; Carle, R. Structural and Chromatic Stability of Purple Pitaya (Hylocereus polyrhizus [Weber] Britton & Rose) Betacyanins as Affected by the Juice Matrix and Selected Additives. Food Res. Int. 2006, 39, 667–677. [Google Scholar] [CrossRef]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of Processing of Red Beet on Betalain Content and Antioxidant Activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Chranioti, C.; Nikoloudaki, A.; Tzia, C. Saffron and Beetroot Extracts Encapsulated in Maltodextrin, Gum Arabic, Modified Starch and Chitosan: Incorporation in a Chewing Gum System. Carbohydr. Polym. 2015, 127, 252–263. [Google Scholar] [CrossRef]
- Castro-Enríquez, D.D.; Montano-Leyva, B.; Del Toro-Sánchez, C.L.; Juárez-Onofre, J.E.; Carvajal-Millán, E.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Barreras-Urbina, C.G.; Rodríguez-Félix, F. Stabilization of Betalains by Encapsulation—A Review. J. Food Sci. Technol. 2020, 57, 1587–1600. [Google Scholar] [CrossRef]
- Chong, P.H.; Yusof, Y.A.; Aziz, M.G.; Nazli, N.M.; Chin, N.L.; Muhammad, S.K.S. Effects of Spray Drying Conditions of Microencapsulation of Amaranthus Gangeticus Extract on Drying Behaviour. Agric. Agric. Sci. Procedia 2014, 2, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Kaimainen, M.; Marze, S.; Järvenpää, E.; Anton, M.; Huopalahti, R. Encapsulation of Betalain into w/o/w Double Emulsion and Release during Invitro Intestinal Lipid Digestion. LWT-Food Sci. Technol. 2015, 60, 899–904. [Google Scholar] [CrossRef]
- Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Osorio, C.; Nazareno, M.A. Encapsulating Betalains from Opuntia Ficus-Indica Fruits by Ionic Gelation: Pigment Chemical Stability during Storage of Beads. Food Chem. 2016, 202, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Patiño Vidal, C.; López de Dicastillo, C.; Rodríguez-Mercado, F.; Guarda, A.; Galotto, M.J.; Muñoz-Shugulí, C. Electrospinning and Cyclodextrin Inclusion Complexes: An Emerging Technological Combination for Developing Novel Active Food Packaging Materials. Crit. Rev. Food Sci. Nutr. 2021, 62, 5495–5510. [Google Scholar] [CrossRef]
- Gupta, A.; Panigrahi, P.K. Alternating Current Coaxial Electrospray for Micro-Encapsulation. Exp. Fluids 2020, 61, 29. [Google Scholar] [CrossRef]
- Si, T.; Zhang, L.; Li, G.; Roberts, C.J.; Yin, X.; Xu, R. Experimental Design and Instability Analysis of Coaxial Electrospray Process for Microencapsulation of Drugs and Imaging Agents. J. Biomed. Opt. 2013, 18, 075003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patiño Vidal, C.; Velásquez, E.; Galotto, M.J.; López de Dicastillo, C. Development of an Antibacterial Coaxial Bionanocomposite based on Electrospun Core/Shell Fibers Loaded with Ethyl Lauroyl Arginate and Cellulose Nanocrystals for Active Food Packaging. Food Pack. Shelf Life 2022, 31, 100802. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Garrido, L.; Galotto, M.J.; López de Dicastillo, C. Design of Active Electrospun Mats with Single and Core-Shell Structures to Achieve Different Curcumin Release Kinetics. J. Food Eng. 2020, 273, 109900. [Google Scholar] [CrossRef]
- Saavedra-Leos, M.Z.; Román-Aguirre, M.; Toxqui-Terán, A.; Espinosa-Solís, V.; Franco-Vega, A.; Leyva-Porras, C. Blends of Carbohydrate Polymers for the Co-Microencapsulation of Bacillus Clausii and Quercetin as Active Ingredients of a Functional Food. Polymers 2022, 14, 236. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Piña, C.; Galotto, M.J.; López de Dicastillo, C. Designing Active Mats Based on Cellulose Acetate/Polycaprolactone Core/Shell Structures with Different Release Kinetics. Carbohydr. Polym. 2021, 261, 117849. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; López-Carballo, G.; Gavara, R.; Muriel Galet, V.; Guarda, A.; Galotto, M.J. Improving Polyphenolic Thermal Stability of Aristotelia Chilensis Fruit Extract by Encapsulation within Electrospun Cyclodextrin Capsules. J. Food Process. Preserv. 2019, 43, e14044. [Google Scholar] [CrossRef]
- Janiszewska, E. Microencapsulated Beetroot Juice as a Potential Source of Betalain. Powder Technol. 2014, 264, 190–196. [Google Scholar] [CrossRef]
- Ravichandran, K.; Palaniraj, R.; Saw, N.M.M.T.; Gabr, A.M.M.; Ahmed, A.R.; Knorr, D.; Smetanska, I. Effects of Different Encapsulation Agents and Drying Process on Stability of Betalains Extract. J. Food Sci. Technol. 2014, 51, 2216–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Zhang, M.; Li, G. Preparation and Characterization of Collagen/Hydroxypropyl Methylcellulose (HPMC) Blend Film. Carbohydr. Polym. 2015, 119, 194–201. [Google Scholar] [CrossRef]
- Burdock, G.A. Safety Assessment of Hydroxypropyl Methylcellulose as a Food Ingredient. Food Chem. Toxicol. 2007, 45, 2341–2351. [Google Scholar] [CrossRef]
- Smeets, A.; Koekoekx, R.; Ruelens, W.; Smet, M.; Clasen, C.; Van den Mooter, G. Gastro-resistant Encapsulation of Amorphous Solid Dispersions Containing Darunavir by Coaxial Electrospraying. Int. J. Pharm. 2020, 574, 118885. [Google Scholar] [CrossRef]
- Nazari, K.; Kontogiannidou, E.; Ahmad, R.H.; Gratsani, A.; Rasekh, M.; Arshad, M.S.; Sunar, B.S.; Armitage, D.; Bouropoulos, N.; Chang, M.W.; et al. Development and Characterisation of Cellulose Based Electrospun Mats for Buccal Delivery of Non-Steroidal Anti-Inflammatory Drug (NSAID). Eur. J. Pharm. Sci. 2017, 102, 147–155. [Google Scholar] [CrossRef]
- Balogh, A.; Farkas, B.; Verreck, G.; Mensch, J.; Borbás, E.; Nagy, B.; Marosi, G.; Nagy, Z.K. AC and DC Electrospinning of Hydroxypropylmethylcellulose with Polyethylene Oxides as Secondary Polymer for Improved Drug Dissolution. Int. J. Pharm. 2016, 505, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Robert, P.; Torres, V.; García, P.; Vergara, C.; Sáenz, C. The Encapsulation of Purple Cactus Pear (Opuntia Ficus-Indica) Pulp by Using Polysaccharide-Proteins as Encapsulating Agents. LWT-Food Sci. Technol. 2015, 60, 1039–1045. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. Use of Gelatin-Maltodextrin Composite as an Encapsulation Support for Clarified Juice from Purple Cactus Pear (Opuntia stricta). LWT-Food Sci. Technol. 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Lan, X.; Huang, D.; Luo, T.; Ji, J.; Mafang, Z.; Miao, X.; Wang, H.; Wang, W. Electrospun Gelatin Nanofibers Encapsulated with Peppermint and Chamomile Essential Oils as Potential Edible Packaging. J. Agric. Food Chem. 2019, 67, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tao, L.; Chen, J.; Zhang, T.; Xu, J.; Ding, M.; Wang, X.; Zhong, J. Fish Oil-Gelatin Core-Shell Electrospun Nanofibrous Membranes as Promising Edible Films for the Encapsulation of Hydrophobic and Hydrophilic Nutrients. LWT 2021, 146, 111500. [Google Scholar] [CrossRef]
- Zare, M.; Dziemidowicz, K.; Williams, G.R.; Ramakrishna, S.; Frey, M. Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials 2021, 11, 1968. [Google Scholar] [CrossRef]
- Li, T.; Sun, M.; Wu, S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. Nanomaterials 2022, 12, 784. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Wang, X.; Hu, X.; Li, S.; Zhang, Y. The Preparation and Characterization of Electrospun Gelatin Nanofibers Containing Chitosan/Eugenol-Sulfobutyl-β-Cyclodextrin Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129109. [Google Scholar] [CrossRef]
- Ramanathan, G.; Thangavelu, M.; Jeyakumar Grace Felciya, S.; Tiruchirapalli Sivagnanam, U. Dual Drug Loaded Polyhydroxy Butyric Acid/Gelatin Nanofibrous Scaffold for Possible Post-Surgery Cancer Treatment. Mater. Lett. 2022, 323, 132597. [Google Scholar] [CrossRef]
- Gulsun, T.; Inal, M.; Akdag, Y.; Izat, N.; Oner, L.; Sahin, S. The Development and Characterization of Electrospun Gelatin Nanofibers Containing Indomethacin and Curcumin for Accelerated Wound Healing. J. Drug Deliv. Sci. Technol. 2022, 67, 103000. [Google Scholar] [CrossRef]
- Sharifi, S.; Khosroshahi, A.Z.; Dizaj, S.M.; Rezaei, Y. Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite–Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial. Biomimetics 2022, 7, 4. [Google Scholar] [CrossRef]
- Ruiz-Gutiérrez, M.G.; Amaya-Guerra, C.A.; Quintero-Ramos, A.; de Jesús Ruiz-Anchondo, T.; Gutiérrez-Uribe, J.A.; Baez-González, J.G.; Lardizabal-Gutiérrez, D.; Campos-Venegas, K. Effect of Soluble Fiber on the Physicochemical Properties of Cactus Pear (Opuntia Ficus Indica) Encapsulated Using Spray Drying. Food Sci. Biotechnol. 2014, 23, 755–763. [Google Scholar] [CrossRef]
- Velásquez, E.J.; Garrido, L.; Guarda, A.; Galotto, M.J.; López de Dicastillo, C. Increasing the Incorporation of Recycled PET on Polymeric Blends through the Reinforcement with Commercial Nanoclays. Appl. Clay Sci. 2019, 180, 105185. [Google Scholar] [CrossRef]
- Idham, Z.; Muhamad, I.I.; Sarmidi, M.R. Degradation Kinetics and Color Stability of Spray-Dried Encapsulated Anthocyanins from Hibiscus abdariffa L. J. Food Process Eng. 2012, 35, 522–542. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Piña, C.; Garrido, L.; Arancibia, C.; Galotto, M.J. Enhancing Thermal Stability and Bioaccesibility of Açaí Fruit Polyphenols through Electrohydrodynamic Encapsulation into Zein Electrosprayed Particles. Antioxidants 2019, 8, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lopez de Dicastillo, C.; Navarro, R.; Guarda, A.; Galotto, M. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants 2015, 4, 533–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, M.; Guerrero-Beltrán, C.E.; Ortega-Lara, W. Design and Characterization of Gelatin/PVA Hydrogels Reinforced with Ceramics for 3D Printed Prosthesis. Mater. Today Proc. 2019, 13, 324–331. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Amjadi, S.; Mohammadi, M.; Lorenzo, J.M.; Hamishehkar, H. Active Gelatin/Cress Seed Gum-Based Films Reinforced with Chitosan Nanoparticles Encapsulating Pomegranate Peel Extract: Preparation and Characterization. Food Hydrocoll. 2022, 129, 107620. [Google Scholar] [CrossRef]
- Milovanovic, S.; Djuris, J.; Dapčević, A.; Medarevic, D.; Ibric, S.; Zizovic, I. Soluplus®, Eudragit®, HPMC-AS Foams and Solid Dispersions for Enhancement of Carvedilol Dissolution Rate Prepared by a Supercritical CO2 Process. Polym. Test. 2019, 76, 54–64. [Google Scholar] [CrossRef]
- Punitha, S.; Uvarani, R.; Panneerselvam, A.; Nithiyanantham, S. Physico-Chemical Studies on Some Saccharides in Aqueous Cellulose Solutions at Different Temperatures—Acoustical and FTIR Analysis. J. Saudi Chem. Soc. 2014, 18, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Yao, X.; Qin, Y.; Yong, H.; Liu, J. Development of Multifunctional Food Packaging by Incorporating Betalains from Vegetable Amaranth (Amaranthus tricolor L.) into Quaternary Ammonium Chitosan/Fish Gelatin Blend Films. Int. J. Biol. Macromol. 2020, 159, 675–684. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; Corte-Tarazón, J.A.; Rochín-Wong, S.; Fernández-Quiroz, J.D.; Garzón-García, A.M.; Santos-Sauceda, I.; Plascencia-Martínez, D.F.; Chan-Chan, L.H.; Vásquez-López, C.; Barreras-Urbina, C.G.; et al. Physicochemical, Structural, Mechanical and Antioxidant Properties of Zein Films Incorporated with No-Ultrafiltered and Ultrafiltered Betalains Extract from the Beetroot (Beta vulgaris) Bagasse with Potential Application as Active Food Packaging. J. Food Eng. 2022, 334, 111153. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Cejudo-Bastante, C.; Cran, M.J.; Heredia, F.J.; Bigger, S.W. Optical, Structural, Mechanical and Thermal Characterization of Antioxidant Ethylene Vinyl Alcohol Copolymer Films Containing Betalain-Rich Beetroot. Food Packag. Shelf Life 2020, 24, 100502. [Google Scholar] [CrossRef]
- Etxabide, A.; Maté, J.I.; Kilmartin, P.A. Effect of Curcumin, Betanin and Anthocyanin Containing Colourants Addition on Gelatin Films Properties for Intelligent Films Development. Food Hydrocoll. 2021, 115, 106593. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Z.; Peng, W.; Chen, M.; Yu, L.; Zhu, F. Chemical Mapping Analysis of Compatibility in Gelatin and Hydroxypropyl Methylcellulose Blend Films. Food Hydrocoll. 2020, 104, 105734. [Google Scholar] [CrossRef]
- Aguilar, T.S.; Mamani, N.W.; Espinoza, S.C.; Basilio, A.J.; Condezo, H.L. Microencapsulated Betacyanin from Colored Organic Quinoa (Chenopodium quinoa Wild): Optimization, Physicochemical Characterization and Accelerated Storage Stability. J. Sci. Food Agric. 2018, 98, 5873–5883. [Google Scholar] [CrossRef]
- Amjadi, S.; Abbasi, M.M.; Shokouhi, B.; Ghorbani, M.; Hamishehkar, H. Enhancement of Therapeutic Efficacy of Betanin for Diabetes Treatment by Liposomal Nanocarriers. J. Funct. Foods 2019, 59, 119–128. [Google Scholar] [CrossRef]
- Orozco, V.J.; Escobar, R.A.; Buendía, G.L.; García, M.C.; Hernandez, J.C.; Alvarez, R.J. Evaluation of the Protection and Release Rate of Bougainvillea (Bougainvillea spectabilis) Extracts Encapsulated in Alginate Beads. J. Dispers. Sci. Technol. 2019, 40, 1065–1074. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Mat, J.I. Color Stability and PH-Indicator Ability of Curcumin, Anthocyanin and Betanin Containing Colorants under Different Storage Conditions for Intelligent Packaging Development. Food Control 2021, 121, 107646. [Google Scholar] [CrossRef]
- do Carmo, E.L.; Teodoro, R.A.R.; Félix, P.H.C.; de Barros Fernandes, R.V.; de Oliveira, É.R.; Veiga, T.R.L.A.; Borges, S.V.; Botrel, D.A. Stability of Spray-Dried Beetroot Extract Using Oligosaccharides and Whey Proteins. Food Chem. 2018, 249, 51–59. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Karbowiak, T.; Brachais, C.; Debeaufort, F. Impact of Electron Beam Irradiation on Fish Gelatin Film Properties. Food Chem. 2016, 195, 11–18. [Google Scholar] [CrossRef]
- Yin, J.; Luo, K.; Chen, X.; Khutoryanskiy, V. V Miscibility Studies of the Blends of Chitosan with Some Cellulose Ethers. Carbohydr. Polym. 2006, 63, 238–244. [Google Scholar] [CrossRef]
Capsules | HPMC (%) | G (%) | Bet (%) |
---|---|---|---|
G | 0 | 100 | 0 |
HPMC | 100 | 0 | 0 |
G/HPMC | 71 | 29 | 0 |
HPMC/G | 21 | 79 | 0 |
G-Bet | 0 | 86 | 14 |
HPMC-Bet | 86 | 0 | 14 |
G-Bet/HPMC | 61 | 25 | 14 |
HPMC-Bet/G | 18 | 68 | 14 |
Capsules | L* | a* | b* | ΔE* |
---|---|---|---|---|
G | 92.10 ± 0.01 g | −0.21 ± 0.02 bc | −2.17 ± 0.01 b | - |
G-Bet | 70.43 ± 0.02 a | 15.54 ± 0.04 f | 22.02 ± 0.03 e | 36.09 ± 0.0 d |
G/HPMC | 88.56 ± 0.02 e | −0.33 ± 0.01 b | −2.64 ± 0.01 a | - |
G-Bet/HPMC | 83.79 ± 0.19 c | 7.02 ± 0.34 e | 13.94 ± 0.87 d | 18.76 ± 0.68 b |
HPMC | 92.55 ± 0.21 h | −0.10 ± 0.01 c | −1.92 ± 0.02 b | - |
HPMC-Bet | 85.48 ± 0.09 d | 3.85 ± 0.16 d | 9.14 ± 0.65 c | 13.72 ± 0.59 a |
HPMC/G | 90.56 ± 0.01 f | −0.52 ± 0.01 a | −2.75 ± 0.01 a | - |
HPMC-Bet/G | 73.53 ± 0.02 b | 17.14 ± 0.03 g | 13.99 ± 0.03 d | 29.70 ± 0.01 c |
Sample | Tonset (°C) | Td,1(Bet) (°C) | Td,2(Pol) (°C) |
---|---|---|---|
BRE | 127 | 144/204 | - |
G | 270 | - | 326 |
HPMC | 338 | - | 361 |
G/HPMC | 278 | - | 330 |
HPMC/G | 287 | - | 328 |
G-Bet | 214 | 237 | 325 |
HPMC-Bet | 211 | 224 | 358 |
G-Bet/HPMC | 216 | 229 | 369 |
HPMC-Bet/G | 227 | 240 | 356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López de Dicastillo, C.; Velásquez, E.; Rojas, A.; Garrido, L.; Moreno, M.C.; Guarda, A.; Galotto, M.J. Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers 2023, 15, 361. https://doi.org/10.3390/polym15020361
López de Dicastillo C, Velásquez E, Rojas A, Garrido L, Moreno MC, Guarda A, Galotto MJ. Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers. 2023; 15(2):361. https://doi.org/10.3390/polym15020361
Chicago/Turabian StyleLópez de Dicastillo, Carol, Eliezer Velásquez, Adrián Rojas, Luan Garrido, María Carolina Moreno, Abel Guarda, and María José Galotto. 2023. "Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation" Polymers 15, no. 2: 361. https://doi.org/10.3390/polym15020361
APA StyleLópez de Dicastillo, C., Velásquez, E., Rojas, A., Garrido, L., Moreno, M. C., Guarda, A., & Galotto, M. J. (2023). Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers, 15(2), 361. https://doi.org/10.3390/polym15020361