Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Characterization of Raw Materials
2.2. Samples Preparation and Characterization of the Products
3. Results
3.1. Mechanical Strength
3.2. Kinetics of Reaction
3.3. X-ray Powder Diffraction (XRPD)
3.4. Infrared Spectroscopy (FTIR)
3.5. Scanning Electron Microscopy (SEM-EDS)
4. Discussion
5. Conclusions
- -
- The highest compressive strength (45 MPa) was obtained for MA57S_4M (blend of clay and slag). The positive interaction between the carbonate-rich illitic clay and the slag after alkaline activation led to the formation of a more compact matrix than that observed in each individually activated component. As the main reaction product, a gel type (N,C)-A-S-H was formed.
- -
- Sample MA57F_8M (clay and fly ash) cured at 25 °C showed a somewhat low compressive strength (below 15 MPa), while the sample with fly ash alone (MA57F_8M) could not harden at the same temperature; the latter gave a hardened paste with strength higher than MA57F_8M when cured at 85 °C. This is chiefly related to the lower reaction kinetics observed for MA57F_8M associated with the poor reaction potential of fly ash regarding alkali activation at room temperature. The reaction of the clay/fly ash blend may be improved by modifying the curing parameters, although the binder obtained here can be considered suitable for use in some mortars or precast formulations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikulčić, H.; Klemeš, J.J.; Vujanović, M.; Urbaniec, K.; Duić, N. Reducing Greenhouse Gasses Emissions by Fostering the Deployment of Alternative Raw Materials and Energy Sources in the Cleaner Cement Manufacturing Process. J. Clean. Prod. 2016, 136, 119–132. [Google Scholar] [CrossRef]
- Shi, C.; Qu, B.; Provis, J.L. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227–250. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Shehata, N.; Sayed, E.T.; Abdelkareem, M.A. Recent Progress in Environmentally Friendly Geopolymers: A Review. Sci. Total Environ. 2021, 762, 143166. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential Applications of Geopolymer Concrete in Construction: A Review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. A Review on Alkaline Activation: New Analytical Perspectives. Mater. Constr. 2014, 64, e022. [Google Scholar] [CrossRef] [Green Version]
- Van Deventer, J.S.J.; Provis, J.L.; Duxson, P. Technical and Commercial Progress in the Adoption of Geopolymer Cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Hamdan, S.; Van Deventer, J.S.J. Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash. Cem. Concr. Compos. 2014, 45, 125–135. [Google Scholar] [CrossRef]
- Humad, A.M.; Kothari, A.; Provis, J.L.; Cwirzen, A. The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes. Front. Mater. 2019, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A Model for the CASH Gel Formed in Alkali-Activated Slag Cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; MacPhee, D.E. Compatibility Studies between N-A-S-H and C-A-S-H Gels. Study in the Ternary Diagram Na2O-CaO-Al2O3-SiO 2-H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Capasso, I.; Liguori, B.; Ferone, C.; Caputo, D.; Cioffi, R. Strategies for the Valorization of Soil Waste by Geopolymer Production: An Overview. J. Clean. Prod. 2021, 288, 125646. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Kirchheim, A.P.; Provis, J.L. Management and Valorisation of Wastes through Use in Producing Alkali-Activated Cement Materials. J. Chem. Technol. Biotechnol. 2016, 91, 2365–2388. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A.; Yildirim, G.; Aldemir, A.; Sahmaran, M. Properties of Geopolymers Sourced from Construction and Demolition Waste: A Review. J. Build. Eng. 2022, 50, 104104. [Google Scholar] [CrossRef]
- Clausi, M.; Fernández-Jiménez, A.M.; Palomo, A.; Tarantino, S.C.; Zema, M. Reuse of Waste Sandstone Sludge via Alkali Activation in Matrices of Fly Ash and Metakaolin. Constr. Build. Mater. 2018, 172, 212–223. [Google Scholar] [CrossRef]
- Cristelo, N.; Segadães, L.; Coelho, J.; Chaves, B.; Sousa, N.R.; de Lurdes Lopes, M. Recycling Municipal Solid Waste Incineration Slag and Fly Ash as Precursors in Low-Range Alkaline Cements. Waste Manag. 2020, 104, 60–73. [Google Scholar] [CrossRef] [PubMed]
- John, S.K.; Nadir, Y.; Girija, K. Effect of Source Materials, Additives on the Mechanical Properties and Durability of Fly Ash and Fly Ash-Slag Geopolymer Mortar: A Review. Constr. Build. Mater. 2021, 280, 122443. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Zou, J.; Reid, A.; Wang, H. Toward an Indexing Approach to Evaluate Fly Ashes for Geopolymer Manufacture. Cem. Concr. Res. 2016, 85, 163–173. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Reactivity and Reaction Products of Alkali-Activated, Fly Ash/Slag Paste. Constr. Build. Mater. 2015, 81, 303–312. [Google Scholar] [CrossRef]
- Clausi, M.; Tarantino, S.C.; Magnani, L.L.; Riccardi, M.P.; Tedeschi, C.; Zema, M. Metakaolin as a Precursor of Materials for Applications in Cultural Heritage: Geopolymer-Based Mortars with Ornamental Stone Aggregates. Appl. Clay Sci. 2016, 132–133, 589–599. [Google Scholar] [CrossRef]
- Jindal, B.B.; Alomayri, T.; Hasan, A.; Kaze, C.R. Geopolymer Concrete with Metakaolin for Sustainability: A Comprehensive Review on Raw Material’s Properties, Synthesis, Performance, and Potential Application. Environ. Sci. Pollut. Res. 2022, 132–133, 589–599. [Google Scholar] [CrossRef]
- Rakhimova, N.R. A Review of Calcined Clays and Ceramic Wastes as Sources for Alkali-Activated Materials. Geosystem Eng. 2020, 23, 287–298. [Google Scholar] [CrossRef]
- Valentini, L.; Contessi, S.; Dalconi, M.C.; Zorzi, F.; Garbin, E. Alkali-Activated Calcined Smectite Clay Blended with Waste Calcium Carbonate as a Low-Carbon Binder. J. Clean. Prod. 2018, 184, 41–49. [Google Scholar] [CrossRef]
- Dupuy, C.; Gharzouni, A.; Texier-Mandoki, N.; Bourbon, X.; Rossignol, S. Thermal Resistance of Argillite-Based Alkali-Activated Materials. Part 1: Effect of Calcination Processes and Alkali Cation. Mater. Chem. Phys. 2018, 217, 323–333. [Google Scholar] [CrossRef]
- Dietel, J.; Warr, L.N.; Bertmer, M.; Steudel, A.; Grathoff, G.H.; Emmerich, K. The Importance of Specific Surface Area in the Geopolymerization of Heated Illitic Clay. Appl. Clay Sci. 2017, 139, 99–107. [Google Scholar] [CrossRef]
- Kaze, C.R.; Tchakoute, H.K.; Mbakop, T.T.; Mache, J.R.; Kamseu, E.; Melo, U.C.; Leonelli, C.; Rahier, H. Synthesis and Properties of Inorganic Polymers (Geopolymers) Derived from Cameroon-Meta-Halloysite. Ceram. Int. 2018, 44, 18499–18508. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Cherfa, N.; Zibouche, F.; Fernández-Jimenez, A.; Palomo, A. The Role of Aluminium in Alkali-Activated Bentonites. Mater. Struct. 2015, 48, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Essaidi, N.; Samet, B.; Baklouti, S.; Rossignol, S. Feasibility of Producing Geopolymers from Two Different Tunisian Clays before and after Calcination at Various Temperatures. Appl. Clay Sci. 2014, 88–89, 221–227. [Google Scholar] [CrossRef]
- Khalifa, A.Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T.M. Advances in Alkali-Activation of Clay Minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- D’Elia, A.; Pinto, D.; Eramo, G.; Laviano, R.; Palomo, A.; Fernández-Jiménez, A. Effect of Alkali Concentration on the Activation of Carbonate-High Illite Clay. Appl. Sci. 2020, 10, 2203. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, A.; Pinto, D.; Eramo, G.; Giannossa, L.C.; Ventruti, G.; Laviano, R. Effects of Processing on the Mineralogy and Solubility of Carbonate-Rich Clays for Alkaline Activation Purpose: Mechanical, Thermal Activation in Red/Ox Atmosphere and Their Combination. Appl. Clay Sci. 2018, 152, 9–21. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z.; Bikmukhametov, A.R.; Morozov, V.P.; Eskin, A.A.; Lygina, T.Z.; Gubaidullina, A.M. Role of Clay Minerals Content and Calcite in Alkali Activation of Low-Grade Multimineral Clays. J. Mater. Civ. Eng. 2020, 32, 4020198. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A.; Williams, R. Influence of Calcium Compounds on the Mechanical Properties of Fly Ash Geopolymer Pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S.J. Effect of Calcium Silicate Sources on Geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. The Coexistence of Geopolymeric Gel and Calcium Silicate Hydrate at the Early Stage of Alkaline Activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Mascarin, L.; Ez-zaki, H.; Garbin, E.; Bediako, M.; Valentini, L. Mitigating the Ecological Footprint of Alkali-Activated Calcined Clays by Waste Marble Addition. Cem. Concr. Compos. 2022, 127, 104382. [Google Scholar] [CrossRef]
- Rakhimova, N. Calcium and/or Magnesium Carbonate and Carbonate-Bearing Rocks in the Development of Alkali-Activated Cements–A Review. Constr. Build. Mater. 2022, 325, 126742. [Google Scholar] [CrossRef]
- Alventosa, K.M.L.; White, C.E. The Effects of Calcium Hydroxide and Activator Chemistry on Alkali-Activated Metakaolin Pastes. Cem. Concr. Res. 2021, 145, 106453. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Donatello, S.; Fernández-Jiménez, A.; Palomo, Á. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model. Materials 2016, 9, 605. [Google Scholar] [CrossRef]
- Huseien, G.F.; Shah, K.W. Performance Evaluation of Alkali-Activated Mortars Containing Industrial Wastes as Surface Repair Materials. J. Build. Eng. 2020, 30, 101234. [Google Scholar] [CrossRef]
- Revathi, T.; Vanitha, N.; Jeyalakshmi, R.; Sundararaj, B.; Jegan, M.; Rajkumar, P.R.K. Adoption of Alkali-Activated Cement-Based Binders (Geopolymers) from Industrial by-Products for Sustainable Construction of Utility Buildings-A Field Demonstration. J. Build. Eng. 2022, 52, 104450. [Google Scholar] [CrossRef]
- Sukmak, P.; Horpibulsuk, S.; Shen, S.L. Strength Development in Clay–Fly Ash Geopolymer. Constr. Build. Mater. 2013, 40, 566–574. [Google Scholar] [CrossRef]
- Lecomte, I.; Liégeois, M.; Rulmont, A.; Cloots, R.; Maseri, F. Synthesis and Characterization of New Inorganic Polymeric Composites Based on Kaolin or White Clay and on Ground-Granulated Blast Furnace Slag. J. Mater. Res. 2003, 18, 2571–2579. [Google Scholar] [CrossRef]
- Phetchuay, C.; Horpibulsuk, S.; Suksiripattanapong, C.; Chinkulkijniwat, A.; Arulrajah, A.; Disfani, M.M. Calcium Carbide Residue: Alkaline Activator for Clay–Fly Ash Geopolymer. Constr. Build. Mater. 2014, 69, 285–294. [Google Scholar] [CrossRef]
- Ferone, C.; Liguori, B.; Capasso, I.; Colangelo, F.; Cioffi, R.; Cappelletto, E.; Di Maggio, R. Thermally Treated Clay Sediments as Geopolymer Source Material. Appl. Clay Sci. 2015, 107, 195–204. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali Activation of Fly Ash. Part III: Effect of Curing Conditions on Reaction and Its Graphical Description. Fuel 2010, 89, 3185–3192. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; Puertas, F. Setting of Alkali-Activated Slag Cement. Influence of Activator Nature. Adv. Cem. Res. 2001, 13, 115–121. [Google Scholar] [CrossRef]
- Pal, S.C.; Mukherjee, A.; Pathak, S.R. Investigation of Hydraulic Activity of Ground Granulated Blast Furnace Slag in Concrete. Cem. Concr. Res. 2003, 33, 1481–1486. [Google Scholar] [CrossRef]
- Frearson, J.P.H. Sulfate Resistance of Combinations of Portland Cement and Ground Granulated Blast Furnace Slag. Spec. Publ. 1986, 91, 1495–1524. [Google Scholar]
- Myers, R.J.; Bernal, S.A.; Provis, J.L. Phase Diagrams for Alkali-Activated Slag Binders. Cem. Concr. Res. 2017, 95, 30–38. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali Activation of Fly Ash: Effect of the SiO2/Na2O Ratio: Part I: FTIR Study. Microporous Mesoporous Mater. 2007, 106, 180–191. [Google Scholar] [CrossRef]
- Vaculíková, L.; Plevová, E. Identification of clay minerals and micas in sedimentary rocks. Acta Geodyn. Geomater. 2006, 2, 167–175. [Google Scholar]
- Tyagi, B.; Chudasama, C.D.; Jasra, R.V. Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 273–278. [Google Scholar] [CrossRef]
- Madejová, J. FTIR Techniques in Clay Mineral Studies. Vib. Spectrosc. 2003, 31, 273–278. [Google Scholar] [CrossRef]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society of Great Britain and Ireland: London, UK, 1974; ISBN 9780903056052. [Google Scholar]
- Navarro, C.; Díaz, M.; Villa-García, M.A. Physico-Chemical Characterization of Steel Slag. Study of Its Behavior under Simulated Environmental Conditions. Environ. Sci. Technol. 2010, 44, 5383–5388. [Google Scholar] [CrossRef] [PubMed]
- Galván-Ruiz, M.; Hernández, J.; Baños, L.; Noriega-Montes, J.; Rodríguez-García, M.E. Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their Use in Construction. J. Mater. Civ. Eng. 2009, 21, 694–698. [Google Scholar] [CrossRef]
- Müller, C.M.; Pejcic, B.; Esteban, L.; Delle Piane, C.; Raven, M.; Mizaikoff, B. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems. Sci. Rep. 2014, 4, 694–698. [Google Scholar] [CrossRef] [Green Version]
- Mihailova, I.; Dimitrova, S.; Mehandjiev, D. Effect of the Thermal Treatment on the Pb (II) Adsorption Ability of Blast Furnace Slag. J. Chem. Technol. Metall. 2013, 48, 72–79. [Google Scholar]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Characterization of Alkali Activated Slag–Fly Ash Blends Containing Nano-Silica. Constr. Build. Mater. 2015, 98, 397–406. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207–214. [Google Scholar] [CrossRef]
- Lee, W.K.W.; van Deventer, J.S.J. Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir 2003, 19, 8726–8734. [Google Scholar] [CrossRef]
- Criado, M.; Aperador, W.; Sobrados, I. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials. Materials 2016, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puertas, F.; Palacios, M.; Vázquez, T. Carbonation Process of Alkali-Activated Slag Mortars. J. Mater. Sci. 2006, 41, 3071–3082. [Google Scholar] [CrossRef]
- Roy, A.; Schilling, P.J.; Eaton, H.C.; Malone, P.G.; Brabston, W.N.; Wakeley, L.D. Activation of Ground Blast-furnace Slag by Alkali-metal and Alkaline-Earth Hydroxides. J. Am. Ceram. Soc. 1992, 75, 3233–3240. [Google Scholar] [CrossRef]
- Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. Alkali-Activated Fly Ash/Slag Cements: Strength Behaviour and Hydration Products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Arioz, E.; Arioz, Ö.; Koçkar, Ö.M. The Effect of Curing Conditions on the Properties of Geopolymer Samples. Int. J. Chem. Eng. Appl. 2013, 4, 423. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.; Palomo, A.; Fernández-Jiménez, A. Alkali Activation of Fly Ashes. Part 1: Effect of Curing Conditions on the Carbonation of the Reaction Products. Fuel 2005, 84, 2048–2054. [Google Scholar] [CrossRef]
Element | Raw Materials | MA57-Based Blends | |||
---|---|---|---|---|---|
MA57 | BFSS | FAB | MA57S | MA57F | |
SiO2 | 42.06 | 40.01 | 46.83 | 41.03 | 44.71 |
Al2O3 | 12.93 | 7.17 | 28.24 | 10.05 | 20.59 |
CaO | 27.01 | 39.12 | 9.76 | 33.06 | 18.39 |
Fe2O3 | 8.95 | 0.27 | 4.66 | 4.61 | 6.81 |
K2O | 2.20 | 0.52 | 0.88 | 1.36 | 1.54 |
Na2O | 0.36 | 0.31 | 0.74 | 0.33 | 0.55 |
MgO | 2.18 | 10.00 | 2.42 | 6.10 | 2.30 |
SO3 | 0.00 | 1.50 | 1.27 | 0.75 | 0.63 |
TiO2 | 0.70 | 0.00 | 1.98 | 0.35 | 1.34 |
P2O5 | 0.09 | 0.00 | 1.60 | 0.04 | 0.84 |
MnO | 0.20 | 0.00 | 0.00 | 0.10 | 0.10 |
L.o.I. a | 3.31 | 1.10 | 1.62 | 2.20 | 2.46 |
SiO2 + Al2O3 | 54.99 | 47.18 | 75.07 | 51.08 | 65.30 |
SiO2/Al2O3 | 3.25 | 5.58 | 1.66 | 4.08 | 2.17 |
Sample | Precursors | NaOH Solution | 1 S/P | Curing Conditions | ||
---|---|---|---|---|---|---|
MA57 | BFSS | FAB | ||||
MA57_4M | 100 | 0 | 0 | 4 M | 0.56 | T = 25 °C; 2 R.H. > 90% |
BFSS_4M | 0 | 100 | 0 | 4 M | 0.36 | T = 25 °C; R.H. > 90% |
MA57S_4M | 50 | 50 | 0 | 4 M | 0.45 | T = 25 °C; R.H. > 90% |
MA57_8M | 100 | 8 M | 0.56 | T = 25 °C; R.H. > 90% | ||
FAB_8M | 0 | 0 | 100 | 8 M | 0.40 | T = 85 °C for 20 h and 3 T = 25 °C; R.H. > 90% |
MA57F_8M | 50 | 50 | 8 M | 0.45 | T = 25 °C; R.H. > 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Elia, A.; Clausi, M.; Fernández-Jiménez, A.; Palomo, A.; Eramo, G.; Laviano, R.; Pinto, D. Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay. Polymers 2023, 15, 362. https://doi.org/10.3390/polym15020362
D’Elia A, Clausi M, Fernández-Jiménez A, Palomo A, Eramo G, Laviano R, Pinto D. Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay. Polymers. 2023; 15(2):362. https://doi.org/10.3390/polym15020362
Chicago/Turabian StyleD’Elia, Angela, Marina Clausi, Ana Fernández-Jiménez, Angel Palomo, Giacomo Eramo, Rocco Laviano, and Daniela Pinto. 2023. "Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay" Polymers 15, no. 2: 362. https://doi.org/10.3390/polym15020362
APA StyleD’Elia, A., Clausi, M., Fernández-Jiménez, A., Palomo, A., Eramo, G., Laviano, R., & Pinto, D. (2023). Alkali-Activated Binary Binders with Carbonate-Rich Illitic Clay. Polymers, 15(2), 362. https://doi.org/10.3390/polym15020362