Synthesis and Characterization of Functional Cellulose–Ether-Based PCL- and PLA-Grafts-Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syntheses
- 6-O-Trityl-cellulose (2)
- 6-O-trityl-2,3-di-O-alkyl-cellulose
- 6-O-trityl-2,3-di-O-allyl-cellulose (3)
- 6-O-trityl-2,3-di-O-benzyl-cellulose (4)
- 6-O-trityl-2,3-di-O-propyl-cellulose (5)
- 2,3-di-O-alkyl-cellulose
- 2,3-di-O-allyl-cellulose (6)
- 2,3-di-O-benzyl-cellulose (7)
- 2,3-di-O-propyl-cellulose (8)
- 6-O-PCL-2,3-di-O-alkyl-cellulose
- 6-O-PCL-2,3-di-O-benzyl-cellulose (9)
- 6-O-PCL-2,3-di-O-allyl-cellulose (10)
- 6-O-PCL-2,3-di-O-propyl-cellulose (11)
- 6-O-PLA-2,3-di-O-alkyl-cellulose
- 6-O-PLA-2,3-di-O-benzyl-cellulose (12)
- 6-O-PLA-2,3-di-O-allyl-cellulose (13)
- 6-O-PLA-2,3-di-O-propyl-cellulose (14)
2.2. Fourier Transform Infrared Spectroscopy
2.3. NMR Spectroscopy
2.4. Size Exclusion Chromatography
2.5. X-ray Diffraction
2.6. Differential Scanning Calorimetry
3. Results and Discussion
3.1. Syntheses
3.2. Physical Properties
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hickey, R.J.; Pelling, A.E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 2019, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlando, I.; Basnett, P.; Nigmatullin, R.; Wang, W.; Knowles, J.C.; Roy, I. Chemical modification of bacterial cellulose for the development of an antibacterial wound dressing. Front. Bioeng. Biotechnol. 2020, 8, 557885. [Google Scholar] [CrossRef]
- Rai, A.; Senapati, S.; Saraf, S.K.; Maiti, P. Biodegradable poly (ε-caprolactone) as a controlled drug delivery vehicle of vancomycin for the treatment of MRSA infection. J. Mater. Chem. B 2016, 4, 5151–5160. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Lin, J.; Chen, T.; Tian, X. Aggregation behavior of graft copolymer with rigid backbone. Langmuir 2010, 26, 2791–2797. [Google Scholar] [CrossRef] [PubMed]
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 2019, 7, 259. [Google Scholar] [CrossRef]
- O’sullivan, A.C. Cellulose: The structure slowly unravels. Cellulose 1997, 4, 173–207. [Google Scholar] [CrossRef]
- Kumar Panda, P.; Jebastine, J.; Ramarao, M.; Fairooz, S.; Reddy, C.K.; Nasif, O.; Alfarraj, S.; Manikandan, V.; Jenish, I. Exploration on mechanical behaviours of hyacinth fibre particles reinforced polymer matrix-based hybrid composites for electronic applications. Adv. Mater. Sci. Eng. 2021, 2021, 4933450. [Google Scholar] [CrossRef]
- Novotna, K.; Havelka, P.; Sopuch, T.; Kolarova, K.; Vosmanska, V.; Lisa, V.; Svorcik, V.; Bacakova, L. Cellulose-based materials as scaffolds for tissue engineering. Cellulose 2013, 20, 2263–2278. [Google Scholar] [CrossRef] [Green Version]
- Darcos, V.; Antoniacomi, S.; Paniagua, C.; Coudane, J. Cationic polyesters bearing pendent amino groups prepared by thiol–ene chemistry. Polym. Chem. 2012, 3, 362–368. [Google Scholar] [CrossRef]
- Parrish, B.; Quansah, J.K.; Emrick, T. Functional polyesters prepared by polymerization of α-allyl (valerolactone) and its copolymerization with ε-caprolactone and δ-valerolactone. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 1983–1990. [Google Scholar] [CrossRef]
- Pelegri-O’Day, E.M.; Paluck, S.J.; Maynard, H.D. Substituted polyesters by thiol–ene modification: Rapid diversification for therapeutic protein stabilization. J. Am. Chem. Soc. 2017, 139, 1145–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Cai, T.; Jin, Q.; Ji, J. Design and fabrication of functional polycaprolactone. e-Polymers 2015, 15, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T.; Koschella, A. Esterification of Polysaccharides; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Fox, S.C.; Li, B.; Xu, D.; Edgar, K.J. Regioselective esterification and etherification of cellulose: A review. Biomacromolecules 2011, 12, 1956–1972. [Google Scholar] [CrossRef] [PubMed]
- Koschella, A.; Fenn, D.; Heinze, T. Water soluble 3-mono-O-ethyl cellulose: Synthesis and characterization. Polym. Bull. 2006, 57, 33–41. [Google Scholar] [CrossRef]
- Karakawa, M.; Mikawa, Y.; Kamitakahara, H.; Nakatsubo, F. Preparations of regioselectively methylated cellulose acetates and their 1H and 13C NMR spectroscopic analyses. J. Polym. Sci. A Polym. Chem. 2002, 40, 4167–4179. [Google Scholar] [CrossRef]
- Heinze, T.; Pfeifer, A.; Sarbova, V.; Koschella, A. 3-O-Propyl cellulose: Cellulose ether with exceptionally low flocculation temperature. Polym. Bull. 2011, 66, 1219–1229. [Google Scholar] [CrossRef]
- Yu, Y.; Tyrikos-Ergas, T.; Zhu, Y.; Fittolani, G.; Bordoni, V.; Singhal, A.; Fair, R.J.; Grafmüller, A.; Seeberger, P.H.; Delbianco, M. Systematic hydrogen-bond manipulations to establish polysaccharide structure–property correlations. Angew. Chem. 2019, 131, 13261–13266. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Jiang, N.; He, B.; Kang, D. Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2, 3-di-O-PCL-cellulose) by a new route. Express Polym. Lett. 2017, 11, 991–1002. [Google Scholar] [CrossRef]
- Sakakibara, K.; Ishida, H.; Kinose, Y.; Tsujii, Y. Regioselective synthesis of cellulosic janus bottlebrushes with polystyrene and poly (ε-caprolactone) side chains and their solid-state microphase separation. Cellulose 2021, 28, 6857–6868. [Google Scholar] [CrossRef]
- Yue, Z.; Cowie, J.M. Preparation and chiroptical properties of a regioselectively substituted cellulose ether with PEO side chains. Macromolecules 2002, 35, 6572–6577. [Google Scholar] [CrossRef]
- Kinose, Y.; Sakakibara, K.; Tsujii, Y. Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: Cross-sectional structure and main-chain stiffness. Polym. J. 2022, 54, 503–513. [Google Scholar] [CrossRef]
- Xu, W.Z.; Zhang, X.; Kadla, J.F. Design of functionalized cellulosic honeycomb films: Site-specific biomolecule modification via “click chemistry”. Biomacromolecules 2012, 13, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Kadla, J.F.; Asfour, F.H.; Bar-Nir, B. Micropatterned thin film honeycomb materials from regiospecifically modified cellulose. Biomacromolecules 2007, 8, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Fu, S.; Chen, J.; Meng, Q.; Lucia, L.A. Graft polymerization of ε-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology. Nord. Pulp Pap. Res. J. 2014, 29, 58–68. [Google Scholar] [CrossRef]
- Wohlhauser, S.; Delepierre, G.; Labet, M.; Morandi, G.l.; Thielemans, W.; Weder, C.; Zoppe, J.O. Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications. Macromolecules 2018, 51, 6157–6189. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, Q.; Chen, H.; Wang, X.; Shen, Z.; Shu, X.; Sun, R. Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose 2013, 20, 873–884. [Google Scholar] [CrossRef]
- Yuan, W.; Yuan, J.; Zhang, F.; Xie, X. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly (ε-caprolactone)-block-poly (l-lactide) copolymers by sequential ring-opening polymerization. Biomacromolecules 2007, 8, 1101–1108. [Google Scholar] [CrossRef]
- Jian, C.-m.; Liu, B.-w.; Chen, X.; Zhou, S.-t.; Fang, T.; Yuan, J.-y. Construction of photoresponsive supramolecular micelles based on ethyl cellulose graft copolymer. Chin. J. Polym. Sci. 2014, 32, 690–702. [Google Scholar] [CrossRef]
- Benahmed, A.; Azzaoui, K.; El Idrissi, A.; Belkheir, H.; Said Hassane, S.O.; Touzani, R.; Rhazi, L. Cellulose Acetate-g-Polycaprolactone Copolymerization Using Diisocyanate Intermediates and the Effect of Polymer Chain Length on Surface, Thermal, and Antibacterial Properties. Molecules 2022, 27, 1408. [Google Scholar] [CrossRef]
- Tabaght, F.E.; El Idrissi, A.; Bellaouchi, R.; Asehraou, A.; Aqil, M.; El Barkany, S.; Benarbia, A.; Achalhi, N.; Tahani, A. Cellulose grafted aliphatic polyesters: Synthesis, characterization and biodegradation under controlled conditions in a laboratory test system. J. Mol. Struct. 2020, 1205, 127582. [Google Scholar] [CrossRef]
- Abdolmaleki, A.; Mohamadi, Z. Acidic ionic liquids catalyst in homo and graft polymerization of ε-caprolactone. Colloid Polym. Sci. 2013, 291, 1999–2005. [Google Scholar] [CrossRef]
- Mathew, A.P.; Dufresne, A. Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties. Biomacromolecules 2002, 3, 1101–1108. [Google Scholar] [CrossRef]
- Yu, H.; Wang, W.; Chen, X.; Deng, C.; Jing, X. Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers. Biopolymers 2006, 83, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, B.S.; Kim, S.H.; Choi, S.W.; Jeong, S.I.; Kwon, I.K.; Kang, S.W.; Nikolovski, J.; Mooney, D.J.; Han, Y.K. Elastic biodegradable poly (glycolide-co-caprolactone) scaffold for tissue engineering. J. Biomed. Mater. Res. 2003, 66, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Erler, U.; Klemm, D.; Nehls, I. Homogeneous synthesis of diphenylmethyl ethers of cellulose in N, N-dimethylacetamide/LiCl solvent system. Macromol. Rapid Commun. 1992, 13, 195–201. [Google Scholar] [CrossRef]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN—A new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym. J. 1970, 1, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Dorset, D.L. Crystal structure of poly (iε-caprolactone). Macromolecules 1990, 23, 4604–4607. [Google Scholar] [CrossRef]
- Stokes, A.; Wilson, A. The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc. 1944, 56, 174. [Google Scholar] [CrossRef]
- Ruland, W. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 1961, 14, 1180–1185. [Google Scholar] [CrossRef]
- Vonk, C.G. Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers. J. Appl. Crystallogr. 1973, 6, 148–152. [Google Scholar] [CrossRef]
- Iwata, T.; Azuma, J.-I.; Okamura, K.; Muramoto, M.; Chun, B. Preparation and NMR assignments of cellulose mixed esters regioselectively substituted by acetyl and propanoyl groups. Carbohydr. Res. 1992, 224, 277–283. [Google Scholar] [CrossRef]
- Wang, Y. Synthesis and Characterisation of Regioselective Cellulose Derivatives. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2013. [Google Scholar]
- Xu, D.; Voiges, K.; Elder, T.; Mischnick, P.; Edgar, K.J. Regioselective synthesis of cellulose ester homopolymers. Biomacromolecules 2012, 13, 2195–2201. [Google Scholar] [CrossRef]
- D’Auria, I.; Tedesco, C.; Mazzeo, M.; Pellecchia, C. New homoleptic bis (pyrrolylpyridiylimino) Mg (II) and Zn (II) complexes as catalysts for the ring opening polymerization of cyclic esters via an “activated monomer” mechanism. Dalton Trans. 2017, 46, 12217–12225. [Google Scholar] [CrossRef]
- Singla, P.; Mehta, R.; Berek, D.; Upadhyay, S. Microwave assisted synthesis of poly (lactic acid) and its characterization using size exclusion chromatography. J. Macromol. Sci. A 2012, 49, 963–970. [Google Scholar] [CrossRef]
- Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972, 8, 449–463. [Google Scholar] [CrossRef]
- Kalb, B.; Pennings, A. General crystallization behaviour of poly (L-lactic acid). Polymer 1980, 21, 607–612. [Google Scholar] [CrossRef]
- Pyda, M.; Czerniecka-Kubicka, A. Thermal Properties and Thermodynamics of Poly (L-lactic Acid); Springer International Publishing: Cham, Switzerland, 2017; pp. 153–193. [Google Scholar]
- Pyda, M.; Bopp, R.; Wunderlich, B. Heat capacity of poly (lactic acid). J. Chem. Thermodyn. 2004, 36, 731–742. [Google Scholar] [CrossRef]
- Goldberg, R.N.; Schliesser, J.; Mittal, A.; Decker, S.R.; Santos, A.F.L.; Freitas, V.L.; Urbas, A.; Lang, B.E.; Heiss, C.; da Silva, M.D.R. A thermodynamic investigation of the cellulose allomorphs: Cellulose (am), cellulose Iβ (cr), cellulose II (cr), and cellulose III (cr). J. Chem. Thermodyn. 2015, 81, 184–226. [Google Scholar] [CrossRef]
- Draeger, J. The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation. J. Chem. Thermodyn. 1985, 17, 263–275. [Google Scholar] [CrossRef]
- Bier, K.; Ernst, G.; Kunze, J.; Maurer, G. Thermodynamic properties of propylene from calorimetric measurements. J. Chem. Thermodyn. 1974, 6, 1039–1052. [Google Scholar] [CrossRef]
- Chao, J.; Wilhoit, R.C.; Zwolinski, B.J. Ideal gas thermodynamic properties of ethane and propane. J. Phys. Chem. Ref. Data 1973, 2, 427–438. [Google Scholar] [CrossRef]
- Pyda, M.; Wunderlich, B. Reversing and nonreversing heat capacity of poly (lactic acid) in the glass transition region by TMDSC. Macromolecules 2005, 38, 10472–10479. [Google Scholar] [CrossRef]
- Gaur, U.; Lau, S.f.; Wunderlich, B.B.; Wunderlich, B. Heat capacity and other thermodynamic properties of linear macromolecules. VIII. Polyesters and polyamides. J. Phys. Chem. Ref. Data 1983, 12, 65–89. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, B.; Yevstropov, A. Thermodynamic properties of polylactones. Macromol. Chem. Phys. 1984, 185, 1235–1253. [Google Scholar] [CrossRef]
- Benedict, C.V.; Cook, W.J.; Jarrett, P.; Cameron, J.; Huang, S.J.; Bell, J.P. Fungal degradation of polycaprolactones. J. Appl. Polym. Sci. 1983, 28, 327–334. [Google Scholar] [CrossRef]
- Marchessault, R.H.; Kawada, J. PHB lamellar single crystals: Origin of the splintered texture. Macromolecules 2004, 37, 7418–7420. [Google Scholar] [CrossRef]
- Phillips, P.J.; Rensch, G.J.; Taylor, K.D. Crystallization studies of poly (ε-caprolactone). I. Morphology and kinetics. J. Polym. Sci. B Polym. Phys. 1987, 25, 1725–1740. [Google Scholar] [CrossRef]
- Phillips, P.; Rensch, G. Crystallization studies of poly (ε-caprolactone). II. Lamellar thickening and melting. J. Polym. Sci. B Polym. Phys. 1989, 27, 155–173. [Google Scholar] [CrossRef]
- Birley, C.; Briddon, J.; Sykes, K.; Barker, P.; Organ, S.; Barham, P. Morphology of single crystals of poly (hydroxybutyrate) and copolymers of hydroxybuty rate and hydroxyvalerate. J. Mater. Sci. 1995, 30, 633–638. [Google Scholar] [CrossRef]
- Illy, N.; Robitzer, M.; Auvergne, R.; Caillol, S.; David, G.; Boutevin, B. Synthesis of water-soluble allyl-functionalized oligochitosan and its modification by thiol–ene addition in water. J. Polym. Sci. A Polym. Chem. 2014, 52, 39–48. [Google Scholar] [CrossRef]
Identifier | /nm | /(mm/m) | [W100; W010; W001]/1 | |
---|---|---|---|---|
9 | 0.44 | 70; /; 9.9 | 9.1 | 0.40; 0.60; 0.00 |
10 | 0.47 | 41; /; 10.2 | 6.7 | 0.55; 0.45; 0.00 |
11 | 0.45 | 39; /; 11.3 | 8.7 | 0.59; 0.41; 0.00 |
Identifier | Tg/K | [cp,g; cp,r](Tn)/(J (g K)−1) | [Tm,1; Tc,c; Tm,2]/K | /1 |
---|---|---|---|---|
9 | / | /; 1.93 | 326; 291; 320 | 0.34; 0.35; 0.34 |
10 | / | /; 1.75 | 325; 278; 318 | 0.47; 0.33; 0.35 |
11 | / | /; 1.77 | 324; 278; 317 | 0.42; 0.29; 0.33 |
12 | 319 | 1.36; 1.75 | /; /; / | /; /; / |
13 | 310 | 1.41; 1.86 | /; /; / | /; /; / |
14 | 318 | 1.31; 1.81 | /; /; / | /; /; / |
Copolymer | fbb/(g g−1) |
---|---|
9 | 0.19 |
10 | 0.13 |
11 | 0.14 |
12 | 0.30 |
13 | 0.24 |
14 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, K.; Van Opdenbosch, D.; Zollfrank, C. Synthesis and Characterization of Functional Cellulose–Ether-Based PCL- and PLA-Grafts-Copolymers. Polymers 2023, 15, 455. https://doi.org/10.3390/polym15020455
Sommer K, Van Opdenbosch D, Zollfrank C. Synthesis and Characterization of Functional Cellulose–Ether-Based PCL- and PLA-Grafts-Copolymers. Polymers. 2023; 15(2):455. https://doi.org/10.3390/polym15020455
Chicago/Turabian StyleSommer, Korbinian, Daniel Van Opdenbosch, and Cordt Zollfrank. 2023. "Synthesis and Characterization of Functional Cellulose–Ether-Based PCL- and PLA-Grafts-Copolymers" Polymers 15, no. 2: 455. https://doi.org/10.3390/polym15020455
APA StyleSommer, K., Van Opdenbosch, D., & Zollfrank, C. (2023). Synthesis and Characterization of Functional Cellulose–Ether-Based PCL- and PLA-Grafts-Copolymers. Polymers, 15(2), 455. https://doi.org/10.3390/polym15020455