Extraction of Keratin from Pig Nails and Electrospinning of Keratin/Nylon6 Nanofibers for Copper (II) Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Electrospinning of Nylon6/Pig Nail Keratin Nanofibers
2.3. Scanning Electron Microscopy
2.4. Transmission Electron Microscopy
2.5. Thermogravimetric Analysis
2.6. Fourier Transform Infrared Spectroscopy
2.7. X-ray Diffraction Analysis
2.8. Tensile Properties
2.9. The Experiment of Adsorption Performance
3. Results
3.1. Morphological Characterization of Pig Nail Powders and Pig Nail Keratin
3.2. Morphological Characterization of Electrospun Nylon6/Pig Nail Keratin Nanofibers
3.3. X-ray Diffraction (XRD) Analysis of Electrospun Nylon6/Pig Nail Keratin Nanofibers
3.4. Thermal Properties of Nanofibers
3.5. Structural Analysis
3.6. Mechanical Characterization
3.7. Adsorption Performance of Nylon6/Pig Nail Keratin Nanofiber Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Hu, Q.; Zhang, Y.; Jin, W.; Chu, L. Extraction of garlic essential oil with electrospun nanofibers and its antioxidant activity. Mater. Express 2022, 12, 698–704. [Google Scholar] [CrossRef]
- Chu, L.; Wang, Y.; Zhou, Y.; Kang, X. A novel biosensor based on Blu-ray disc coating film for determination of total amino acid content in tea leaves. Rsc. Adv. 2021, 11, 39666–39671. [Google Scholar] [CrossRef]
- Chang, S.K.; Gang, E.H.; Um, I.C.; Park, Y.H. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J. Membr. Sci. 2007, 302, 20–26. [Google Scholar]
- Li, J.; Yi, L.; Lin, L.; Mark, A.; Ko, F.; Ling, Q. Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polym. Degrad. Stabil. 2009, 94, 1800–1807. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, L.; Wang, X.; Liang, Z.; Mo, N. Lack of association between XPC Lys939Gln polymorphism and prostate cancer risk: An updated meta-analysis based on 3039 cases and 3253 controls. Int. J. Clin. Exp. Med. 2014, 8, 17959–17967. [Google Scholar]
- Maame, B.; Nava, R.; Udhab, A.; Narayan, B. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications. Materials 2015, 8, 4080. [Google Scholar]
- Yu, D.G.; Williams, G.R.; Wang, X.; Liu, X.K.; Li, H.L.; Bligh, S.A. Dual drug release nanocomposites prepared using a combination of electrospraying and electrospinning. RSC Adv. 2013, 3, 4652–4658. [Google Scholar] [CrossRef]
- Li, Y.; He, J. Fabrication and characterization of ZrO2 nanofibers by critical bubble electrospinning for high-temperature-resistant adsorption and separation. Adsorpt. Sci. Technol. 2019, 37, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.F.; Zhen, G.C.; Xiao-Peng, L.I.; Wei, Q.I. Mix Ratio Design of Membrane Bag Concrete. J. Hebei Eng. Tech. College 2007, 127, 2648–2653. [Google Scholar]
- Wu, Y.; Han, C.; Yang, J.; Jia, S.; Wang, S. Polypropylene films modified by air plasma and feather keratin graft. Surf. Coat. Tech. 2011, 206, 506–510. [Google Scholar] [CrossRef]
- Reichl, S. Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 2009, 30, 6854–6866. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Zhang, B.N.; He, M.; Yin, G.Q.; Cui, Y.D.; Savina, I.N. Keratin/Polyvinyl Alcohol Blend Films Cross-Linked by Dialdehyde Starch and Their Potential Application for Drug Release. Polymers 2015, 7, 580–591. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.K.; Dong-Xia, L.; Xu-Hong, Y. Preparation and properties of keratin/cmc blend membranes. Adv. Mater. Res. 2013, 647, 190–194. [Google Scholar]
- Bertini, F.; Canetti, M.; Patrucco, A.; Zoccola, M. Wool keratin-polypropylene composites: Properties and thermal degradation. Polym. Degrad. Stab. 2013, 98, 980–987. [Google Scholar] [CrossRef]
- Ming, H.; Zhang, B.; Yao, D.; Yin, G.; Cui, Y.; Chen, X. Fabrication and characterization of electrospun feather keratin/poly (vinyl alcohol) composite nanofibers. RSC Adv. 2017, 7, 9854–9861. [Google Scholar]
- Ding, J.; Man, C.; Chen, W.; Ming, H.; Yin, G. Vapor-assisted crosslinking of a FK/PVA/PEO nanofiber membrane. Polymers 2018, 10, 747. [Google Scholar] [CrossRef]
- Bortolato, S.A.; Arancibia, J.A.; Escandar, G.M. A novel application of nylon membranes to the luminescent determination of benzo[a]pyrene at ultra trace levels in water samples. Anal. Chim. Acta 2008, 613, 218–227. [Google Scholar] [CrossRef]
- Shu, Z.; Shim, W.S.; Kim, J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Mater. Design 2009, 30, 3659–3666. [Google Scholar]
- Ojha, S.S.; Afshari, M.; Kotek, R.; Gorga, R.E. Morphology of electrospun nylon-6 nanofibers as a function of molecular weight and processing parameters. J. Appl. Polym. Sci. 2010, 108, 308–319. [Google Scholar] [CrossRef]
- Bazbouz, M.B.; Stylios, G.K. Alignment and optimization of nylon 6 nanofibers by electrospinning. J. Appl. Polym. Sci. 2010, 107, 3023–3032. [Google Scholar] [CrossRef]
- Mori, S. Identification and determination of phthalate esters in river water by high-performance liquid chromatography. J. Chromatogr. A 1976, 129, 53–60. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Cai, Y.; Shi, Y.L.; Liu, J.M.; Mou, S.F.; Lu, Y.Q. A liquid-liquid extraction technique for phthalate esters with water-soluble organic solvents by adding inorganic salts. Microchim. Acta 2007, 157, 73–79. [Google Scholar] [CrossRef]
- Medici, V. Effects of Dietary glucose and fructose on copper, iron, and zinc metabolism parameters in humans. Nutrients 2020, 12, 2581. [Google Scholar]
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflug. Arch. Eur. J. Phy. 2020, 472, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, L.; He, J. Nanofibers membrane for detecting heavy metal ions. Therm. Sci. 2020, 24, 2463–2468. [Google Scholar] [CrossRef]
- Collins, J.F. Copper nutrition and biochemistry and human (patho)physiology. Adv. Food Nutr. Res. 2021, 387, 311–364. [Google Scholar]
- Shang, G.Y.; Zheng, R.; Ge, Q.; Feng, X.; Wang, R.; Zhou, Y.; Luo, S.; Duan, L.; Lin, J.; Chen, H. Interfacial engineering of CuFeS2 quantum dots via platinum decoration with enhanced Cr (VI) reduction dynamics under UV-Vis-NIR radiation. J. Hazard. Mater. 2022, 421, 126701. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wei, W.; Zou, W.; Li, J.; Zheng, R.; Wei, W.; Ni, B.; Chen, H. Integrating electrodeposition with electrolysis for closed-loop resource utilization of battery industrial wastewater. Green Chem. 2022, 24, 3208–3217. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y.; Dai, W. Robust hollow tubular ZnIn2S4 modified with embedded metal-organic-framework-layers: Extraordinarily high photocatalytic hydrogen evolution activity under simulated and real sunlight irradiation. Appl. Catal. B Environ. 2021, 298, 120632. [Google Scholar] [CrossRef]
- Yu, B.; Luo, J.; Xie, H.; Yang, H.; Chen, S.; Liu, J.; Zhang, R.; Li, Y. Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. Sci. Total Environ. 2021, 786, 147437. [Google Scholar] [CrossRef]
- He, M.; Zhang, B.; Dou, Y.; Yin, G.; Cui, Y. Blend modification of feather keratin-based films using sodium alginate. J. Appl. Polym. Sci. 2016, 134, 44680. [Google Scholar] [CrossRef]
- Saeed, K.; Haider, S.; Oh, T.J.; Park, S.Y. Preparation of amidoxime-modified polyacrylonitrile (pan-oxime) nanofibers and their applications to metal ions adsorption. J. Membrane Sci. 2008, 322, 400–405. [Google Scholar] [CrossRef]
- Tian, D.; Li, X.; He, J. Geometrical potential and nanofiber membrane’s highly selective adsorption property. Adsorpt. Sci. Technol. 2019, 37, 367–388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, J.; Yu, N.; Liu, J. Electrospun PLGA/multi-walled carbon nanotubes/wool keratin composite membranes: Morphological, mechanical, and thermal properties, and their bioactivities in vitro. J. Polym. Res. 2014, 21, 329. [Google Scholar] [CrossRef]
- Ayutthaya, S.I.N.; Tanpichai, S.; Wootthikanokkhan, J. Keratin extracted from chicken feather waste: Extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J. Polym. Environ. 2015, 23, 506–516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Wang, D.; Liao, Z.; Gong, Z.; Zhao, W.; Gu, J.; Li, Y.; Li, J. Extraction of Keratin from Pig Nails and Electrospinning of Keratin/Nylon6 Nanofibers for Copper (II) Adsorption. Polymers 2023, 15, 467. https://doi.org/10.3390/polym15020467
Wei L, Wang D, Liao Z, Gong Z, Zhao W, Gu J, Li Y, Li J. Extraction of Keratin from Pig Nails and Electrospinning of Keratin/Nylon6 Nanofibers for Copper (II) Adsorption. Polymers. 2023; 15(2):467. https://doi.org/10.3390/polym15020467
Chicago/Turabian StyleWei, Lanlan, Di Wang, Zhiheng Liao, Zexuan Gong, Wenwen Zhao, Jinyan Gu, Yan Li, and Jingjun Li. 2023. "Extraction of Keratin from Pig Nails and Electrospinning of Keratin/Nylon6 Nanofibers for Copper (II) Adsorption" Polymers 15, no. 2: 467. https://doi.org/10.3390/polym15020467
APA StyleWei, L., Wang, D., Liao, Z., Gong, Z., Zhao, W., Gu, J., Li, Y., & Li, J. (2023). Extraction of Keratin from Pig Nails and Electrospinning of Keratin/Nylon6 Nanofibers for Copper (II) Adsorption. Polymers, 15(2), 467. https://doi.org/10.3390/polym15020467