Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles
Abstract
:1. Introduction
2. Vesicles
2.1. Supramolecular Systems
2.2. Vesicles Fabrication Methods
2.3. Advantages and Limitations of Active Agents’ Delivery Systems
3. Electrohydrodynamic Techniques
3.1. Fundamentals and Versatility
3.2. Nanofibers and Nanoparticles as Delivery Systems of Bioactive Agents
3.3. Limitations and Current Challenges
4. Immobilization of Supramolecular Structures within/onto Electrospun/Electrosprayed Materials
4.1. Nano-in-Nano Systems
- Protection: when the bioagent can be degraded/modified by the carrier chemical nature or the carrier matrix is not capable of providing an adequate barrier with the environment. Given that their structural functional groups are susceptible to chemical changes, natural bioactive compounds, such as polyphenols, vitamins, alkaloids, flavonoids, terpenoids, fatty acids, proteins, peptides, probiotics, etc. from different sources, require certain protection in order to maintain or improve the physicochemical functions and bioavailability [69]. Sometimes, a pre-confinement stage in smaller structures allows multicomponent extracts and phytocomplexes to preserve a synergistic effect with functional benefits.
- Location: if there is a requirement for the bioactive agent to be located in precise sites of the carrier structure (surface, core); then, a smaller nano-object can contribute to the manufacture of a specific architectural design. Nano-structures can be adsorbed, absorbed, or embedded in nanofibrous meshes due to the intrinsically interconnected porosity of electrospun membranes. However, more efficient attachments require stronger intermolecular or covalent bonding; thus, more complex synthetic strategies can be involved in the design.
- Delivery trigger: The design foresees a specific sequence for supplying the bioactive agent, as consecutive diffusion barriers, “smart” matrices sensitive to externals stimulus, etc. The use of polymers sensitive to temperature, pH, magnetic/electric fields, humidity, etc., for the manufacture of electrospun/electrosprayed host materials, allows triggering the delivery in an “autonomous” way. Some matrix materials can undergo phase transitions or selective dissolution patterns induced by temperature (e.g., PNIPAM) or specific environmental acidity changes (e.g., Eudragit® series).
4.2. Nanofibrous Matrices and Submicrometric Capsules Containing Vesicles
5. Electrohydrodynamic Techniques as Non-Conventional Vesicle Fabrication Method
5.1. Confinement within Solid Submicrometric Precursors: Key Parameters and Versatility
5.2. Recent Drug Delivery Systems
6. Perspectives and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dan, N. Chapter 1—Vesicle-Based Drug Carriers: Liposomes, Polymersomes, and Niosomes. In Design and Development of New Nanocarriers; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 1–55. [Google Scholar]
- Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems—The Current State. Adv. Colloid Interface Sci. 2022, 309, 102757. [Google Scholar] [CrossRef] [PubMed]
- Grubenmann, A.; Moller, H. 3 Microemulsions, Vesicles, and Liposomes. In Formulation Technology: Emulsions, Suspensions, Solid Forms; WILEY-VCH Verlag GmbH: Mörlenbach, Germany, 2001; pp. 105–122. [Google Scholar]
- Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and Polymersomes: A Comparative Review towards Cell Mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610. [Google Scholar] [CrossRef] [PubMed]
- Laidmäe, I.; Meos, A.; Kjærvik, I.A.; Ingebrigtsen, S.G.; Škalko-Basnet, N.; Kirsimäe, K.; Romann, T.; Joost, U.; Kisand, V.; Kogermann, K. Electrospun Amphiphilic Nanofibers as Templates for in Situ Preparation of Chloramphenicol-Loaded Liposomes. Pharmaceutics 2021, 13, 1742. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.M.; Nguyen, D.X.; Patel, P.; Cote, B.; Al-Fatease, A.; Pham, Y.; Huynh, M.G.; Woo, Y.; Alani, A.W. Liposomes Produced by Microfluidics and Extrusion: A Comparison for Scale-up Purposes. Nanomed. Nanotechnol. Biol. Med. 2019, 18, 146–156. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Witika, B.A.; Bassey, K.E.; Demana, P.H.; Siwe-Noundou, X.; Poka, M.S. Current Advances in Specialised Niosomal Drug Delivery: Manufacture, Characterization and Drug Delivery Applications. Int. J. Mol. Sci. 2022, 23, 9668. [Google Scholar] [CrossRef] [PubMed]
- Lefley, J.; Waldron, C.; Becer, C.R. Macromolecular Design and Preparation of Polymersomes. Polym. Chem. 2020, 11, 7124–7136. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A Review on Niosomal Research in the Last Decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Cheng, R.; Liu, L.; Xiang, Y.; Lu, Y.; Deng, L.; Zhang, H.; Santos, H.A.; Cui, W. Advanced Liposome-Loaded Scaffolds for Therapeutic and Tissue Engineering Applications. Biomaterials 2020, 232, 119706. [Google Scholar] [CrossRef] [Green Version]
- Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Daraba, O.M.; Gherghel, D.; Vochita, G.; Popa, M. Aptamer-Functionalized Liposomes as a Potential Treatment for Basal Cell Carcinoma. Polymers 2019, 11, 119706. [Google Scholar] [CrossRef]
- Rață, D.M.; Cadinoiu, A.N.; Atanase, L.I.; Bacaita, S.E.; Mihalache, C.; Daraba, O.-M.; Gherghel, D.; Popa, M. “In Vitro” Behaviour of Aptamer-Functionalized Polymeric Nanocapsules Loaded with 5-Fluorouracil for Targeted Therapy. Mater. Sci. Eng. C 2019, 103, 109828. [Google Scholar] [CrossRef]
- Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Mihai, C.T.; Bacaita, S.E.; Popa, M. Formulations Based on Drug Loaded Aptamer-Conjugated Liposomes as a Viable Strategy for the Topical Treatment of Basal Cell Carcinoma—In Vitro Tests. Pharmaceutics 2021, 13, 866. [Google Scholar] [CrossRef] [PubMed]
- Camilo, C.J.; Leite, D.O.D.; e Silva, A.R.A.; Menezes, I.R.A.; Coutinho, H.D.M.; da Costa, J.G.M. Lipid Vesicles: Applications, Principal Components and Methods Used in Their Formulations: A Review. Acta Biol. Colomb. 2020, 25, 339–352. [Google Scholar] [CrossRef]
- Monteiro, N.; Martins, A.; Pires, R.; Faria, S.; Fonseca, N.A.; Moreira, J.N.; Reis, R.L.; Neves, N.M. Immobilization of Bioactive Factor-Loaded Liposomes on the Surface of Electrospun Nanofibers Targeting Tissue Engineering. Biomater. Sci. 2014, 2, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.S.; de Oliveira Silva, J.; Fernandes, R.S.; Miranda, S.E.M.; Leite, E.A.; de Farias, M.A.; Portugal, R.V.; Cassali, G.D.; Townsend, D.M.; Oliveira, M.C.; et al. PEGylated versus Non-PEGylated PH-Sensitive Liposomes: New Insights from a Comparative Antitumor Activity Study. Pharmaceutics 2022, 14, 272. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Lila, A.S.A.; Shimizu, T.; Alaaeldin, E.; Hussein, A.; Sarhan, H.A.; Szebeni, J.; Ishida, T. PEGylated Liposomes: Immunological Responses. Sci. Technol. Adv. Mater. 2019, 20, 710–724. [Google Scholar] [CrossRef]
- Siepmann, J.; Faham, A.; Clas, S.D.; Boyd, B.J.; Jannin, V.; Bernkop-Schnürch, A.; Zhao, H.; Lecommandoux, S.; Evans, J.C.; Allen, C.; et al. Lipids and Polymers in Pharmaceutical Technology: Lifelong Companions. Int. J. Pharm. 2019, 558, 128–142. [Google Scholar] [CrossRef]
- Kuperkar, K.; Patel, D.; Atanase, L.I.; Bahadur, P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers 2022, 14, 4702. [Google Scholar] [CrossRef]
- Limongi, T.; Susa, F.; Marini, M.; Allione, M.; Torre, B.; Pisano, R.; Di Fabrizio, E. Lipid-Based Nanovesicular Drug Delivery Systems. Nanomaterials 2021, 11, 3391. [Google Scholar] [CrossRef]
- Nirwan, V.P.; Kowalczyk, T.; Bar, J.; Buzgo, M.; Filová, E.; Fahmi, A. Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. Nanomaterials 2022, 12, 1829. [Google Scholar] [CrossRef]
- Al-Dhahebi, A.M.; Ling, J.; Krishnan, S.G.; Yousefzadeh, M.; Elumalai, N.K.; Saheed, M.S.M.; Ramakrishna, S.; Jose, R. Electrospinning Research and Products: The Road and the Way Forward. Appl. Phys. Rev. 2022, 9, 011319. [Google Scholar] [CrossRef]
- Kishan, A.P.; Cosgriff-Hernandez, E.M. Recent Advancements in Electrospinning Design for Tissue Engineering Applications: A Review. J. Biomed. Mater. Res. A 2017, 105, 2892–2905. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Ghosal, K.; Agatemor, C.; Špitálsky, Z.; Thomas, S.; Kny, E. Electrospinning Tissue Engineering and Wound Dressing Scaffolds from Polymer-Titanium Dioxide Nanocomposites. Chem. Eng. J. 2019, 358, 1262–1278. [Google Scholar] [CrossRef]
- Mele, E. Biomimetic Electrospun Composites: From Fundamental Insights to Commercialization. In Electrospinning: From Basic Research to Commercialization; Kny, E., Ghosal, K., Thomas, S., Eds.; The Royal Society of Chemistry: Cambrige, UK, 2018; pp. 55–78. [Google Scholar]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun Nanofibers: New Generation Materials for Advanced Applications. Mater. Sci. Eng. B 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Kim, I.G.; Lee, J.-H.; Unnithan, A.R.; Park, C.-H.; Kim, C.S. A Comprehensive Electric Field Analysis of Cylinder-Type Multi-Nozzle Electrospinning System for Mass Production of Nanofibers. J. Ind. Eng. Chem. 2015, 31, 251–256. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef]
- Kong, B.; Liu, R.; Guo, J.; Lu, L.; Zhou, Q.; Zhao, Y. Tailoring Micro/Nano-Fibers for Biomedical Applications. Bioact. Mater. 2023, 19, 328–347. [Google Scholar] [CrossRef]
- Stoddard, R.J.; Steger, A.L.; Blakney, A.K.; Woodrow, K.A. In Pursuit of Functional Electrospun Materials for Clinical Applications in Humans. Ther. Deliv. 2016, 7, 387–409. [Google Scholar] [CrossRef]
- Ahadian, S.; Obregón, R.; Ramón-Azcón, J.; Salazar, G.; Ramalingam, M. Clinical/Preclinical Aspects of Nanofiber Composites. In Nanofiber Composites for Biomedical Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 507–528. [Google Scholar]
- Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Amutha Barathi, V.; Lim, K.H.C.; Ramakrishna, S. Electrosprayed Nanoparticles and Electrospun Nanofibers Based on Natural Materials: Applications in Tissue Regeneration, Drug Delivery and Pharmaceuticals. Chem. Soc. Rev. 2015, 44, 790–814. [Google Scholar] [CrossRef] [PubMed]
- Kenry; Lim, C.T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. [Google Scholar] [CrossRef]
- Murugupandian, R.; Suresh, A.S.; Vijaylal, L.; John, A.E.; Uthirapathy, V. A Review on Nanofibrous Scaffolding Technique for Potential Tissue Engineering Applications. Trends Biomater. Artif. Organs 2022, 36, 27. [Google Scholar]
- Aldana, A.A.; Abraham, G.A. Current Advances in Electrospun Gelatin-Based Scaffolds for Tissue Engineering Applications. Int. J. Pharm. 2017, 523, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Tobías, H.; Morales, G.; Grande, D. Comprehensive Review on Electrospinning Techniques as Versatile Approaches toward Antimicrobial Biopolymeric Composite Fibers. Mater. Sci. Eng. C 2019, 101, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Popov Pereira da Cunha, M.D.; Caracciolo, P.C.; Abraham, G.A. Latest Advances in Electrospun Plant-Derived Protein Scaffolds for Biomedical Applications. Curr. Opin. Biomed. Eng. 2021, 18, 100243. [Google Scholar] [CrossRef]
- Popov Pereira da Cunha, M.D.; Aldana, A.A.; Abraham, G.A. Photo-Crosslinked Soy Protein-Based Electrospun Scaffolds. Mater. Lett. X 2021, 12, 100115. [Google Scholar] [CrossRef]
- Montini-Ballarin, F.; Calvo, D.; Caracciolo, P.C.; Rojo, F.; Frontini, P.M.; Abraham, G.A.; Guinea, G.V. Mechanical Behavior of Bilayered Small-Diameter Nanofibrous Structures as Biomimetic Vascular Grafts. J. Mech. Behav. Biomed. Mater. 2016, 60, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, S.; Misra, M. Electrospun Polymeric Nanofibers: New Horizons in Drug Delivery. Eur. J. Pharm. Sci. 2017, 107, 148–167. [Google Scholar] [CrossRef]
- Furtos, G.; Rivero, G.; Rapuntean, S.; Abraham, G.A. Amoxicillin-Loaded Electrospun Nanocomposite Membranes for Dental Applications. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2017, 105, 966–976. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Polymer Nanofibrous Structures: Fabrication, Biofunctionalization, and Cell Interactions. Prog. Polym. Sci. 2010, 35, 868–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Hu, H.; Zeng, Y.; Pan, H.; Wang, S.; Zhang, Y.; Shi, L.; Tan, G.; Pan, W.; Liu, H. Recent Advances in Electrospun Nanofibers for Wound Dressing. Eur. Polym. J. 2022, 178, 111490. [Google Scholar] [CrossRef]
- Majumder, S.; Sagor, M.M.H.; Arafat, M.T. Functional Electrospun Polymeric Materials for Bioelectronic Devices: A Review. Mater. Adv. 2022, 3, 6753–6772. [Google Scholar] [CrossRef]
- Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef]
- Silva, J.A.; De Gregorio, P.R.; Rivero, G.; Abraham, G.A.; Nader-Macías, M.E.F. Immobilization of Vaginal Lactobacillus in Polymeric Nanofibers for Its Incorporation in Vaginal Probiotic Products. Eur. J. Pharm. Sci. 2021, 156, 105563. [Google Scholar] [CrossRef]
- Liu, Z.; Ramakrishna, S.; Liu, X. Electrospinning and Emerging Healthcare and Medicine Possibilities. APL Bioeng. 2020, 4, 30901. [Google Scholar] [CrossRef]
- Greiner, A.; Wendorff, J.H. Functional Self-Assembled Nanofibers by Electrospinning. In Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 219, pp. 107–171. [Google Scholar]
- Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol. Mater. Eng. 2013, 298, 504–520. [Google Scholar] [CrossRef]
- Bock, N.; Dargaville, T.R.; Woodruff, M.A. Electrospraying of Polymers with Therapeutic Molecules: State of the Art. Prog. Polym. Sci. 2012, 37, 1510–1551. [Google Scholar] [CrossRef]
- Avossa, J.; Herwig, G.; Toncelli, C.; Itel, F.; Rossi, R.M. Electrospinning Based on Benign Solvents: Current Definitions, Implications and Strategies. Green Chem. 2022, 24, 2347–2375. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The Effect of Temperature and Humidity on Electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [Google Scholar] [CrossRef]
- Mailley, D.; Hébraud, A.; Schlatter, G. A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional Materials by Electrospinning of Polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Williams, G.R.; Raimi-Abraham, B.T.; Luo, C.J. 3 Monoaxial Electrospinning. In Nanofibres in Drug Delivery; UCL Press: London, UK, 2018; pp. 60–105. [Google Scholar]
- He, C.; Nie, W.; Feng, W. Engineering of Biomimetic Nanofibrous Matrices for Drug Delivery and Tissue Engineering. J. Mater. Chem. B 2014, 2, 7828–7848. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Xu, H.; Chang, J. Electrospun Membranes: Control of the Structure and Structure Related Applications in Tissue Regeneration and Drug Delivery. J. Mater. Chem. B 2014, 2, 5492–5510. [Google Scholar] [CrossRef]
- Sperling, L.E.; Reis, K.P.; Pranke, P.; Wendorff, J.H. Advantages and Challenges Offered by Biofunctional Core–Shell Fiber Systems for Tissue Engineering and Drug Delivery. Drug Discov. Today 2016, 21, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Pant, B.; Park, M.; Park, S.-J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef]
- Giannetti, R.; Abraham, G.A.; Rivero, G. The Role of Emulsion Parameters in Tramadol Sustained-Release from Electrospun Mats. Mater. Sci. Eng. C 2019, 99, 1493–1501. [Google Scholar] [CrossRef]
- Chou, S.-F.; Carson, D.; Woodrow, K.A. Current Strategies for Sustaining Drug Release from Electrospun Nanofibers. J. Control. Release 2015, 220, 584–591. [Google Scholar] [CrossRef]
- Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-Functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [Google Scholar] [CrossRef]
- Rivero, G.; Aldana, A.A.; Frontini Lopez, Y.R.; Liverani, L.; Boccacini, A.R.; Bustos, D.M.; Abraham, G.A. 14-3-3ε Protein-Immobilized PCL-HA Electrospun Scaffolds with Enhanced Osteogenicity. J. Mater. Sci. Mater. Med. 2019, 30, 99. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni Abel, S.; Montini-Ballarin, F.M.; Abraham, G.A. Combination of Electrospinning with Other Techniques for the Fabrication of 3D Polymeric and Composite Nanofibrous Scaffolds with Improved Cellular Interactions. Nanotechnology 2020, 31, 172002. [Google Scholar] [CrossRef] [PubMed]
- Hermosilla, J.; Pastene-Navarrete, E.; Acevedo, F. Electrospun Fibers Loaded with Natural Bioactive Compounds as a Biomedical System for Skin Burn Treatment. A Review. Pharmaceutics 2021, 13, 2054. [Google Scholar] [CrossRef] [PubMed]
- Sonzogni, A.; Rivero, G.; Minari, R.; Gonzalez, V.; Abraham, G.A.; Calderón, M. Nano-in-Nano Enteric Delivery System. In Proceedings of the 4th Spanish Conference on Biomedical Applications of Nanomaterials, Online, 2–4 June 2021. [Google Scholar]
- Saiding, Q.; Cui, W. Functional Nanoparticles in Electrospun Fibers for Biomedical Applications. Nano Sel. 2022, 3, 999–1011. [Google Scholar] [CrossRef]
- Contreras-Cáceres, R.; Cabeza, L.; Perazzoli, G.; Díaz, A.; López-Romero, J.M.; Melguizo, C.; Prados, J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials 2019, 9, 656. [Google Scholar] [CrossRef]
- Kang, M.; Lee, C.-S.; Lee, M. Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration. Bioengineering 2021, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Luo, T.; Yang, Y.; Tan, X.; Liu, L. Formation of Controllable Hydrophilic/Hydrophobic Drug Delivery Systems by Electrospinning of Vesicles. Langmuir 2015, 31, 5141–5146. [Google Scholar] [CrossRef]
- de Freitas Zômpero, R.H.; López-Rubio, A.; de Pinho, S.C.; Lagaron, J.M.; de la Torre, L.G. Hybrid Encapsulation Structures Based on β-Carotene-Loaded Nanoliposomes within Electrospun Fibers. Colloids Surf. B Biointerfaces 2015, 134, 475–482. [Google Scholar] [CrossRef]
- Lin, L.; Dai, Y.; Cui, H. Antibacterial Poly(Ethylene Oxide) Electrospun Nanofibers Containing Cinnamon Essential Oil/Beta-Cyclodextrin Proteoliposomes. Carbohydr. Polym. 2017, 178, 131–140. [Google Scholar] [CrossRef]
- Chandrawati, R.; Olesen, M.T.J.; Marini, T.C.C.; Bisra, G.; Guex, A.G.; de Oliveira, M.G.; Zelikin, A.N.; Stevens, M.M. Enzyme Prodrug Therapy Engineered into Electrospun Fibers with Embedded Liposomes for Controlled, Localized Synthesis of Therapeutics. Adv. Healthc. Mater. 2017, 6, 1700385. [Google Scholar] [CrossRef]
- Cui, H.; Yuan, L.; Li, W.; Lin, L. Antioxidant Property of SiO2-Eugenol Liposome Loaded Nanofibrous Membranes on Beef. Food Packag. Shelf Life 2017, 11, 49–57. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Casagrande Sipoli, C.; de La Torre, L.G.; López-Rubio, A. Microencapsulation Structures Based on Protein-Coated Liposomes Obtained through Electrospraying for the Stabilization and Improved Bioaccessibility of Curcumin. Food Chem. 2017, 233, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, A.; Markatos, D.; Antimisiaris, S.; Dimosthenis, M. A Novel Design of a PVA Electrospun Nanofibrous Scaffold Incorporating Liposomes as Drug Delivery Carriers for Tissue Engineering. Ann. Biomed. Technol. Eng. 2018, 1, 1003. [Google Scholar]
- Cui, H.; Bai, M.; Li, C.; Liu, R.; Lin, L. Fabrication of Chitosan Nanofibers Containing Tea Tree Oil Liposomes against Salmonella spp. in Chicken. LWT 2018, 96, 671–678. [Google Scholar] [CrossRef]
- Ge, Y.; Tang, J.; Fu, H.; Fu, Y.; Wu, Y. Characteristics, Controlled-Release and Antimicrobial Properties of Tea Tree Oil Liposomes-Incorporated Chitosan-Based Electrospun Nanofiber Mats. Fibers Polym. 2019, 20, 698–708. [Google Scholar] [CrossRef]
- Alehosseini, A.; Gómez-Mascaraque, L.G.; Martínez-Sanz, M.; López-Rubio, A. Electrospun Curcumin-Loaded Protein Nanofiber Mats as Active/Bioactive Coatings for Food Packaging Applications. Food Hydrocoll. 2019, 87, 758–771. [Google Scholar] [CrossRef]
- Nair, B.P.; Vaikkath, D.; Mohan, D.S.; Nair, P.D. Fabrication of a Microvesicles-Incorporated Fibrous Membrane for Controlled Delivery Applications in Tissue Engineering. Biofabrication 2014, 6, 045008. [Google Scholar] [CrossRef]
- Li, Z.; Kang, H.; Li, Q.; Che, N.; Liu, Z.; Li, P.; Zhang, C.; Liu, R.; Huang, Y. Ultrathin Core–Sheath Fibers for Liposome Stabilization. Colloids Surf. B Biointerfaces 2014, 122, 630–637. [Google Scholar] [CrossRef]
- Li, Z.; Kang, H.; Che, N.; Liu, Z.; Li, P.; Li, W.; Zhang, C.; Cao, C.; Liu, R.; Huang, Y. Controlled Release of Liposome-Encapsulated Naproxen from Core-Sheath Electrospun Nanofibers. Carbohydr. Polym. 2014, 111, 18–24. [Google Scholar] [CrossRef]
- Mickova, A.; Buzgo, M.; Benada, O.; Rampichova, M.; Fisar, Z.; Filova, E.; Tesarova, M.; Lukas, D.; Amler, E. Core/Shell Nanofibers with Embedded Liposomes as a Drug Delivery System. Biomacromolecules 2012, 13, 952–962. [Google Scholar] [CrossRef]
- Pires, F.; Santos, J.F.; Bitoque, D.; Silva, G.A.; Marletta, A.; Nunes, V.A.; Ribeiro, P.A.; Silva, J.C.; Raposo, M. Polycaprolactone/Gelatin Nanofiber Membranes Containing EGCG-Loaded Liposomes and Their Potential Use for Skin Regeneration. ACS Appl. Bio Mater. 2019, 2, 4790–4800. [Google Scholar] [CrossRef]
- Jin, J.; Saiding, Q.; Wang, X.; Qin, M.; Xiang, Y.; Cheng, R.; Cui, W.; Chen, X. Rapid Extracellular Matrix Remodeling via Gene-Electrospun Fibers as a “Patch” for Tissue Regeneration. Adv. Funct. Mater. 2021, 31, 2009879. [Google Scholar] [CrossRef]
- Reddy, A.S.; Lakshmi, B.A.; Kim, S.; Kim, J. Synthesis and Characterization of Acetyl Curcumin-Loaded Core/Shell Liposome Nanoparticles via an Electrospray Process for Drug Delivery, and Theranostic Applications. Eur. J. Pharm. Biopharm. 2019, 142, 518–530. [Google Scholar] [CrossRef]
- Al-Attar, T.; Madihally, S.V. Targeted Cancer Treatment Using a Combination of SiRNA-Liposomes and Resveratrol-Electrospun Fibers in Co-Cultures. Int. J. Pharm. 2019, 569, 118599. [Google Scholar] [CrossRef]
- Batory, M.; Adamus-Grabicka, A.; Sobczyk-Guzenda, A.; Bartoszek, N.; Komorowski, P.; Vyslouzilova, L.; Rozek, Z.; Budzisz, E. The Use of Liposomes in the Modification of Polycaprolactone Fibers. J. Appl. Polym. Sci. 2016, 133, 43299. [Google Scholar] [CrossRef]
- Mohammadi, M.; Alibolandi, M.; Abnous, K.; Salmasi, Z.; Jaafari, M.R.; Ramezani, M. Fabrication of Hybrid Scaffold Based on Hydroxyapatite-Biodegradable Nanofibers Incorporated with Liposomal Formulation of BMP-2 Peptide for Bone Tissue Engineering. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1987–1997. [Google Scholar] [CrossRef]
- Xi, K.; Gu, Y.; Tang, J.; Chen, H.; Xu, Y.; Wu, L.; Cai, F.; Deng, L.; Yang, H.; Shi, Q.; et al. Microenvironment-Responsive Immunoregulatory Electrospun Fibers for Promoting Nerve Function Recovery. Nat. Commun. 2020, 11, 4504. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zheng, D.; Chen, Y.; Ruan, H.; Zhang, Y.; Chen, X.; Shen, H.; Deng, L.; Cui, W.; Chen, H. Electrospun Fibers Improving Cellular Respiration via Mitochondrial Protection. Small 2021, 17, 2104012. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.-G.; Yang, J.-H.; Wang, X.; Tian, F. Liposomes Self-Assembled from Electrosprayed Composite Microparticles. Nanotechnology 2012, 23, 105606. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.-G.; Branford-White, C.; Williams, G.R.; Bligh, S.W.A.; White, K.; Zhu, L.-M.; Chatterton, N.P. Self-Assembled Liposomes from Amphiphilic Electrospun Nanofibers. Soft Matter 2011, 7, 8239–8247. [Google Scholar] [CrossRef]
- Matsuura, T.; Maruyama, T. Hollow Phosphorylcholine Polymer Vesicles Prepared by a Coaxial Electrospray Technique. Colloid Polym. Sci. 2017, 295, 1251–1256. [Google Scholar] [CrossRef]
- Jin, C.; Li, H.; Williams, G.R.; Wei, R.; Nie, H.; Quan, J.; Zhu, L. Self-Assembled Liposomes from Electrosprayed Polymer-Based Microparticles. Colloid Polym. Sci. 2014, 292, 2325–2334. [Google Scholar] [CrossRef]
- Liu, K.; Li, H.; Williams, G.R.; Wu, J.; Zhu, L.-M. PH-Responsive Liposomes Self-Assembled from Electrosprayed Microparticles, and Their Drug Release Properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 20–27. [Google Scholar] [CrossRef]
- Song, H.; Gong, X.; Williams, G.R.; Quan, J.; Nie, H.; Zhu, L.; Nan, E.; Shao, M. Self-Assembled Magnetic Liposomes from Electrospun Fibers. Mater. Res. Bull. 2014, 53, 280–289. [Google Scholar] [CrossRef]
- Chen, J.; Pan, H.; Yang, Y.; Xiong, S.; Duan, H.; Yang, X.; Pan, W. Self-Assembled Liposome from Multi-Layered Fibrous Mucoadhesive Membrane for Buccal Delivery of Drugs Having High First-Pass Metabolism. Int. J. Pharm. 2018, 547, 303–314. [Google Scholar] [CrossRef]
- Chen, J.; Pan, H.; Duan, H.; Deng, W.; Zhang, F.; Yang, X.; Pan, W. Self-Assembled Liposome from Core-Sheath Chitosan-Based Fibres for Buccal Delivery of Carvedilol: Formulation, Characterization and in Vitro and Ex Vivo Buccal Absorption. J. Pharm. Pharmacol. 2020, 72, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Collier, M.A.; Bachelder, E.M.; Ainslie, K.M. Electrosprayed Myocet-like Liposomes: An Alternative to Traditional Liposome Production. Pharm. Res. 2017, 34, 419–426. [Google Scholar] [CrossRef]
- Duong, A.D.; Collier, M.A.; Bachelder, E.M.; Wyslouzil, B.E.; Ainslie, K.M. One Step Encapsulation of Small Molecule Drugs in Liposomes via Electrospray-Remote Loading. Mol. Pharm. 2016, 13, 92–99. [Google Scholar] [CrossRef]
- Viet Nguyen, K.; Laidmäe, I.; Kogermann, K.; Lust, A.; Meos, A.; Viet Ho, D.; Raal, A.; Heinämäki, J.; Thi Nguyen, H. Preformulation Study of Electrospun Haemanthamine-Loaded Amphiphilic Nanofibers Intended for a Solid Template for Self-Assembled Liposomes. Pharmaceutics 2019, 11, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Cerviño, M.C.; Correa, N.M.; Moyano, F.; Luna, A.; Girardi, V.; Falcone, D.; Rivero, G. Obtención de Vesículas Por Disolución de Membranas Electrohiladas Anfifílicas. In Proceedings of the Nanociencia y Nanotecnología; UniRío: Rio Cuarto, Argentina, 2022; p. 370. [Google Scholar]
Methods | Liposomes [6] | Niosomes [9,11] | Polymerosomes [4,10] |
---|---|---|---|
Thin-film (thin-layer) hydration | x | x | x |
Reverse-phase evaporation | x | x | |
Solvent injection | x | x | x |
Detergent removal | x | ||
Dehydratation-rehydration (sonication) | x | x | |
Supercritical fluidic | x | ||
Microfluidics | x | x | x |
Heating-based | x | x | |
Freeze and thaw | x | x | |
pH jumping | x | ||
Bubble-based | x | ||
Polymerization-induced self-assembly | x | ||
Solvent-switch | x | ||
Emulsion phase transfer | x | ||
Transmembrane pH gradient drug uptake | x | ||
Electroformation | x |
Design | Loaded Active Agent | Polymer Matrix | Application | Goal | Reference |
---|---|---|---|---|---|
Loaded vesicles or liposomes mixed with solution prior electrospinning | 5-Fluorouracil and paeonolum (anticancer model drugs) | PEO | Drug delivery | Dual hydrophilic/hydrophobic drug-delivery system | [74] |
β-carotene | PVA, PEO | Food | Protection of antioxidant activity (photostability); solubilization | [75] | |
Cinnamon essential oil/β-cyclodextrin loaded proteins | PEO | Antibacterial food packaging | Stimulated release by proteolysis | [76] | |
β-glucuronidase enzyme | PVA | Enzyme prodrug therapy | Stabilization for sustained biocatalysis | [77] | |
Eugenol (+ SO2 nanoparticles) | PEO | Antioxidant food packaging | Improved stability | [78] | |
Curcumin | Whey protein | Food applications | Stability, bioaccessability | [79] | |
Calcein | PVA | Tissue engineering/drug delivery | Increased stability | [80] | |
Tea tree oil | Chitosan | Food packaging | Improved antibacterial property | [81] | |
Chitosan/PEO | Antimicrobial material | Sustained release | [82] | ||
Curcumin/green tea extract | Gelatin/zein | Food packaging | Improved solubility, slowed-down release | [83] | |
Rhodamine-B (dye) | PCL | Tissue engineering | Controlled delivery | [84] | |
Loaded liposomes mixed with the core polymer solution prior coaxial electrospinning | Rhodamine B | PVP and hyaluronate | Wound healing | Stability | [85] |
Naproxen (NAP) | Cellulose acetate; hyaluronate | Wound dressing | Extended drug release | [86] | |
Horseradish peroxidase (model protein); growth factors | PVA, PCL | Tissue engineering | Stability of biologically active compounds | [87] | |
Loaded liposomes mixed with polymer solution prior co-electrospinning (simultaneous) | Epigallocatechin-3-gallate | Gelatin/PCL | Skin regeneration | Antioxidant activity | [88] |
Loaded nanoliposomes encapsulated into the core layer of core-shell nanofibers by microsol-electrospinning | Lysyl oxidase-like 1 plasmids | Polylactide-co-PCL/hyaluronicacid | Tissue regeneration | Local accumulation and biological availability | [89] |
Phospholipid precursors and polymer nanoparticles mixed prior electrospraying to give core/shell particles | Acetyl curcumin | PLGA | Drug delivery | Sustained release | [90] |
Mixture of loaded conjugated PEG-liposomes and loaded electrospun fibers, in cells co-cultures | Resveratrol (in fibers) + siRNA (in liposomes) | PCL/gelatin | Cancer treatment | Dual delivery devices approach with two drugs (different cellular pathways) | [91] |
Application of liposomal formulations over electrospun nanofibers | Nano-copper, silver and gold | PCL | Targeted delivery systems (cosmetics, medicines) | Anti-bacterial and antifungal property | [92] |
Covalent immobilization of loaded liposomes at the surface of electrospun fibers | BMP-2 peptide | Poly L-lactic acid | Bone tissue engineering | Sustained release | [93] |
Dexamethasone | PCL | Bone tissue engineering | Local release | [17] | |
Plasmid-loaded cationic liposomes grafted in the surface of microsol core-shell electrospun fibers | Interleukin-4; nerve growth factor | Amino polylactic acid /hyaluronic acid | Nerve function recovery | pH-responsive delivery + sustained release | [94] |
Grafting of loaded polyethylene glycol acrylate liposomes to the electrospun fibers< | Deferoxamine | Gelatin-methacrylic anhydride | Tissue regeneration (bone) | Local delivery | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Cerviño, M.C.; Fuioaga, C.P.; Atanase, L.I.; Abraham, G.A.; Rivero, G. Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers 2023, 15, 795. https://doi.org/10.3390/polym15040795
Sánchez-Cerviño MC, Fuioaga CP, Atanase LI, Abraham GA, Rivero G. Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers. 2023; 15(4):795. https://doi.org/10.3390/polym15040795
Chicago/Turabian StyleSánchez-Cerviño, María Celina, Codrin Paul Fuioaga, Leonard Ionut Atanase, Gustavo A. Abraham, and Guadalupe Rivero. 2023. "Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles" Polymers 15, no. 4: 795. https://doi.org/10.3390/polym15040795
APA StyleSánchez-Cerviño, M. C., Fuioaga, C. P., Atanase, L. I., Abraham, G. A., & Rivero, G. (2023). Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers, 15(4), 795. https://doi.org/10.3390/polym15040795