Encapsulation of D-Limonene into O/W Nanoemulsions for Enhanced Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Viscosity Measurements
2.3. Interfacial Tension Measurements
2.4. Emulsions Preparation
2.5. Emulsion Stability Testing
2.5.1. Effect of pH
2.5.2. Effect of Ionic Strength
2.5.3. Long-Term Storage
2.6. Droplet Size Analysis
2.7. Gas Chromatography (GC) Analysis of LM Retention in the Emulsions over Time
2.8. Statistical Analysis
3. Results and discussion
3.1. Effect of Disperse Phase on LM-Loaded Emulsions Stability
3.2. Effect of SB Concentration on Disperse Phase and Emulsions Viscosity
3.3. Effect of Tween 80 and Disperse Phase Modification on Interfacial Tension
3.4. Effect of Environmental Stresses on LM-Loaded Emulsions Stability
3.4.1. Effect of pH
3.4.2. Effect of Ionic Strength
3.4.3. Effect of Storage Time and Temperature
3.5. Chemical Stability of LM-Loaded Emulsions over Time under Different Temperatures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, R.K.; Parija, T.; Das, B.R. D-Limonene Chemoprevention of Hepatocarcinogenesis in AKR Mice: Inhibition of c-Jun and c-Myc. Oncol. Rep. 1999, 6, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.G.; Zhan, L.B.; Feng, B.A.; Qu, M.Y.; Yu, L.H.; Xie, J.H. Inhibition of Growth and Metastasis of Human Gastric Cancer Implanted in Nude Mice by D-Limonene. World J. Gastroenterol. 2004, 10, 2140–2144. [Google Scholar] [CrossRef] [PubMed]
- Rabi, T.; Bishayee, A. Terpenoids and Breast Cancer Chemoprevention. Breast Cancer Res. Treat. 2009, 115, 223–239. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Viljoen, A.M. Antimicrobial Activity of Limonene Enantiomers and 1,8-Cineole Alone and in Combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Hirota, R.; Roger, N.N.; Nakamura, H.; Song, H.S.; Sawamura, M.; Suganuma, N. Anti-Inflammatory Effects of Limonene from Yuzu (Citrus Junos Tanaka) Essential Oil on Eosinophils. J. Food Sci. 2010, 75, H87–H92. [Google Scholar] [CrossRef] [PubMed]
- Ganje, M.; Jafari, S.M.; Tamadon, A.M.; Niakosari, M.; Maghsoudlou, Y. Mathematical and Fuzzy Modeling of Limonene Release from Amylose Nanostructures and Evaluation of Its Release Kinetics. Food Hydrocoll. 2019, 95, 186–194. [Google Scholar] [CrossRef]
- Akhavan-Mahdavi, S.; Sadeghi, R.; Faridi Esfanjani, A.; Hedayati, S.; Shaddel, R.; Dima, C.; Malekjani, N.; Boostani, S.; Jafari, S.M. Nanodelivery Systems for D-Limonene; Techniques and Applications. Food Chem. 2022, 384, 132479. [Google Scholar] [CrossRef]
- Soottitantawat, A.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, P. Microencapsulation by Spray Drying: Influence of Emulsion Size on the Retention of Volatile Compounds. J. Food Sci. 2003, 68, 2256–2262. [Google Scholar] [CrossRef]
- Li, P.H.; Chiang, B.H. Process Optimization and Stability of D-Limonene-in-Water Nanoemulsions Prepared by Ultrasonic Emulsification Using Response Surface Methodology. Ultrason. Sonochem. 2012, 19, 192–197. [Google Scholar] [CrossRef]
- Yakoubi, S.; Kobayashi, I.; Uemura, K.; Nakajima, M.; Isoda, H.; Ksouri, R.; Saidani-Tounsi, M.; Neves, M.A. Essential-Oil-Loaded Nanoemulsion Lipidic-Phase Optimization and Modeling by Response Surface Methodology (Rsm): Enhancement of Their Antimicrobial Potential and Bioavailability in Nanoscale Food Delivery System. Foods 2021, 10, 3149. [Google Scholar] [CrossRef]
- Falleh, H.; Jemaa, M.B.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Formulation, Physicochemical Characterization, and Anti- E. coli Activity of Food-Grade Nanoemulsions Incorporating Clove, Cinnamon, and Lavender Essential Oils. Food Chem. 2021, 359, 129963. [Google Scholar] [CrossRef]
- Weiss, J.; Gaysinsky, S.; Davidson, M.; McClements, J. Nanostructured Encapsulation Systems: Food Antimicrobials. Glob. Issues Food Sci. Technol. 2009, 425–479. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of Essential Oils to Enhance Their Antimicrobial Activity in Foods. LWT Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Nanoemulsion Delivery Systems: Influence of Carrier Oil on β-Carotene Bioaccessibility. Food Chem. 2012, 135, 1440–1447. [Google Scholar] [CrossRef]
- Sonneville-Aubrun, O.; Yukuyama, M.N.; Pizzino, A. Application of Nanoemulsions in Cosmetics. In Nanoemulsions: Formulation, Applications, and Characterization; Academic Press: Cambridge, MA, USA, 2018; pp. 435–475. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- De Oliveira Felipe, L.; Bicas, J.L.; Moreira, R.C.; Alexandrino, T.D.; Changwatchai, T.; Nakajima, M.; Neves, M.A. Elaboration and Properties of an Oil-in-Water Nanoemulsion Loaded with a Terpene-Enriched Oil Mixture Obtained Biotechnologically. ACS Agric. Sci. Technol. 2021, 1, 631–639. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yuan, Q.; Liang, H.; Vriesekoop, F. Process Optimization and Stability of D-Limonene Nanoemulsions Prepared by Catastrophic Phase Inversion Method. J. Food Eng. 2013, 119, 419–424. [Google Scholar] [CrossRef]
- Li, Y.; Le Maux, S.; Xiao, H.; McClements, D.J. Emulsion-Based Delivery Systems for Tributyrin, a Potential Colon Cancer Preventative Agent. J. Agric. Food Chem. 2009, 57, 9243–9249. [Google Scholar] [CrossRef] [PubMed]
- Piorkowski, D.T.; McClements, D.J. Beverage Emulsions: Recent Developments in Formulation, Production, and Applications. Food Hydrocoll. 2014, 42, 5–41. [Google Scholar] [CrossRef]
- Yamashita, Y.; Miyahara, R.; Sakamoto, K. Emulsion and Emulsification Technology. In Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 489–506. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, C.R.; Choi, S.J. Prevention of Ostwald Ripening in Orange Oil Emulsions: Impact of Surfactant Type and Ostwald Ripening Inhibitor Type. LWT 2020, 134, 110180. [Google Scholar] [CrossRef]
- Lewis, M.J. Diffusion and Mass Transfer. In Physical Properties of Foods and Food Processing Systems; Woodhead Publishing: Cambridge, UK, 1996; pp. 413–445. [Google Scholar] [CrossRef]
- Jokic, S.; Sudar, R.; Svilovic, S.; Vidovic, S.; Bilic, M.; Velic, D.; Jurkovic, V. Fatty Acid Composition of Oil Obtained from Soybeans by Extraction with Supercritical Carbon Dioxide. Czech J. Food Sci. 2013, 31, 116–125. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–676. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Re-Coalescence of Emulsion Droplets during High-Energy Emulsification. Food Hydrocoll. 2008, 22, 1191–1202. [Google Scholar] [CrossRef]
- Taarji, N.; da Silva, C.A.R.; Khalid, N.; Gadhi, C.; Hafidi, A.; Kobayashi, I.; Neves, M.A.; Isoda, H.; Nakajima, M. Formulation and Stabilization of Oil-in-Water Nanoemulsions Using a Saponins-Rich Extract from Argan Oil Press-Cake. Food Chem. 2018, 246, 457–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melanie, H.; Taarji, N.; Zhao, Y.; Khalid, N.; Neves, M.A.; Kobayashi, I.; Tuwo, A.; Nakajima, M. Formulation and Characterisation of O/W Emulsions Stabilised with Modified Seaweed Polysaccharides. Int. J. Food Sci. Technol. 2020, 55, 211–221. [Google Scholar] [CrossRef]
- Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and Stability of Emulsions Using a Natural Small Molecule Surfactant: Quillaja Saponin (Q-Naturale®). Food Hydrocoll. 2013, 30, 589–596. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, G.; Taarji, N.; Barrow, C.J.; Nakajima, M.; Khalid, N.; Neves, M.A. Gypenosides as Natural Emulsifiers for Oil-in-Water Nanoemulsions Loaded with Astaxanthin: Insights of Formulation, Stability and Release Properties. Food Chem. 2018, 261, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Klang, V.; Valenta, C. Lecithin-Based Nanoemulsions. J. Drug Deliv. Sci. Technol. 2011, 21, 55–76. [Google Scholar] [CrossRef]
- Adhikary, T.; Basak, P. Extraction and Separation of Oils: The Journey from Distillation to Pervaporation. In Advances in Oil-Water Separation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 511–535. [Google Scholar] [CrossRef]
- Cossetin, L.F.; Garlet, Q.I.; Velho, M.C.; Gündel, S.; Ourique, A.F.; Heinzmann, B.M.; Monteiro, S.G. Development of Nanoemulsions Containing Lavandula Dentata or Myristica Fragrans Essential Oils: Influence of Temperature and Storage Period on Physical-Chemical Properties and Chemical Stability. Ind. Crop. Prod. 2021, 160, 113115. [Google Scholar] [CrossRef]
- Hassanzadeh, H.; Alizadeh, M.; Hassanzadeh, R.; Ghanbarzadeh, B. Garlic Essential Oil-Based Nanoemulsion Carrier: Release and Stability Kinetics of Volatile Components. Food Sci. Nutr. 2022, 10, 1613–1625. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Moraes-Lovison, M.; Marostegan, L.F.P.; Peres, M.S.; Menezes, I.F.; Ghiraldi, M.; Rodrigues, R.A.F.; Fernandes, A.M.; Pinho, S.C. Nanoemulsions Encapsulating Oregano Essential Oil: Production, Stability, Antibacterial Activity and Incorporation in Chicken Pâté. LWT 2017, 77, 233–240. [Google Scholar] [CrossRef]
LM-SB Weight Ratio in Disperse Phase | Sample Code | Initial (g/L) | After Emulsification | |
---|---|---|---|---|
Day 0, L0 (g/L) | Remaining (%) | |||
2.5:7.5 | A | 21.25 ± 0.2 | 14.82 ± 1.2 | 69.74 ± 0.7 |
5:5 | B | 42.50 ± 0.1 | 34.07 ± 1.1 | 80.16 ± 0.1 |
7.5:2.5 | C | 63.75 ± 0.1 | 50.68 ± 2.7 | 79.50 ± 0.8 |
9:1 | D | 76.50 ± 0.2 | 64.21 ± 3.7 | 83.93 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohan, M.S.R.; Elshamy, S.; Lara-Valderrama, G.; Changwatchai, T.; Khadizatul, K.; Kobayashi, I.; Nakajima, M.; Neves, M.A. Encapsulation of D-Limonene into O/W Nanoemulsions for Enhanced Stability. Polymers 2023, 15, 471. https://doi.org/10.3390/polym15020471
Sohan MSR, Elshamy S, Lara-Valderrama G, Changwatchai T, Khadizatul K, Kobayashi I, Nakajima M, Neves MA. Encapsulation of D-Limonene into O/W Nanoemulsions for Enhanced Stability. Polymers. 2023; 15(2):471. https://doi.org/10.3390/polym15020471
Chicago/Turabian StyleSohan, Md Sohanur Rahman, Samar Elshamy, Grace Lara-Valderrama, Teetach Changwatchai, Kubra Khadizatul, Isao Kobayashi, Mitsutoshi Nakajima, and Marcos A. Neves. 2023. "Encapsulation of D-Limonene into O/W Nanoemulsions for Enhanced Stability" Polymers 15, no. 2: 471. https://doi.org/10.3390/polym15020471
APA StyleSohan, M. S. R., Elshamy, S., Lara-Valderrama, G., Changwatchai, T., Khadizatul, K., Kobayashi, I., Nakajima, M., & Neves, M. A. (2023). Encapsulation of D-Limonene into O/W Nanoemulsions for Enhanced Stability. Polymers, 15(2), 471. https://doi.org/10.3390/polym15020471