Analysis of the Effect of Network Structure and Disulfide Concentration on Vitrimer Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthetic Procedures
3. Results and Discussion
3.1. Formulation of Aromatic Disulfide-Based Epoxy Vitrimers with Comparable Tg Values
3.2. Network Structure and Dynamic Properties
3.3. Tensile and Flexural Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, Y.; Lei, Z.; Taynton, P.; Huang, S.; Zhang, W. Malleable and recyclable thermosets: The next generation of plastics. Matter 2019, 1, 1456–1493. [Google Scholar] [CrossRef]
- Wojtecki, R.J.; Meador, M.A.; Rowan, S.J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10, 14–27. [Google Scholar] [CrossRef]
- Roy, N.; Bruchmann, B.; Lehn, J.-M. DYNAMERS: Dynamic polymers as self-healing materials. Chem. Soc. Rev. 2015, 44, 3786–3807. [Google Scholar] [CrossRef] [PubMed]
- Kloxin, C.J.; Scott, T.F.; Adzima, B.J.; Bowman, C.N. Covalent adaptable networks (CANs): A unique paradigm in cross-linked polymers. Macromolecules 2010, 43, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 2009, 34, 581–604. [Google Scholar] [CrossRef]
- Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Wang, H.; Huang, X.; Huang, G.; Wu, J. Weldable, Malleable and Programmable Epoxy Vitrimers with High Mechanical Properties and Water Insensitivity. Chem. Eng. J. 2019, 368, 61–70. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Jiang, Z.; Li, Y.; Jing, X. Boronic Ester Based Vitrimers with Enhanced Stability via Internal Boron–Nitrogen Coordination. J. Am. Chem. Soc. 2020, 142, 21852–21860. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-X.; Guan, Z. Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon–Carbon Double Bonds. J. Am. Chem. Soc. 2012, 134, 14226–14231. [Google Scholar] [CrossRef] [PubMed]
- Hamzehlou, S.; Ruipérez, F. Computational Study of the Transamination Reaction in Vinylogous Acyls: Paving the Way to Design Vitrimers with Controlled Exchange Kinetics. J. Polym. Sci. 2022, 60, 1988–1999. [Google Scholar] [CrossRef]
- Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodriguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3, 241–247. [Google Scholar] [CrossRef]
- Guggari, S.; Magliozzi, F.; Malburet, S.; Graillot, A.; Destarac, M.; Guerre, M. Vanillin-Based Epoxy Vitrimers: Looking at the Cystamine Hardener from a Different Perspective. ACS Sustain. Chem. Eng. 2023, 11, 6021–6031. [Google Scholar] [CrossRef]
- Tratnik, N.; Tanguy, N.R.; Yan, N. Recyclable, Self-Strengthening Starch-Based Epoxy Vitrimer Facilitated by Exchangeable Disulfide Bonds. Chem. Eng. J. 2023, 451, 138610. [Google Scholar] [CrossRef]
- Ruiz de Luzuriaga, A.; Solera, G.; Azcarate-Ascasua, I.; Boucher, V.; Grande, H.-J.; Rekondo, A. Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer 2022, 239, 124457. [Google Scholar] [CrossRef]
- Azcune, I.; Huegun, A.; Ruiz de Luzuriaga, A.; Saiz, E.; Rekondo, A. The effect of matrix on shape properties of aromatic disulfide-based epoxy vitrimers. Eur. Polym. J. 2021, 148, 110362. [Google Scholar] [CrossRef]
- Matxain, J.M.; Asua, J.M.; Ruipérez, F. Design of New Disulfide-Based Organic Compounds for the Improvement of Self-Healing Materials. Phys. Chem. Chem. Phys. 2016, 18, 1758–1770. [Google Scholar] [CrossRef]
- Hayashi, M.; Yano, R. Fair Investigation of Cross-Link Density Effects on the Bond-Exchange Properties for Trans-Esterification-Based Vitrimers with Identical Concentrations of Reactive Groups. Macromolecules 2020, 53, 182–189. [Google Scholar] [CrossRef]
- ISO 527-1:2012; Plastics—Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 178-2010; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerland, 2012.
- Kannurpatti, A.R.; Anseth, J.W.; Bowman, C.N. A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth)acrylates. Polymer 1998, 39, 2507–2513. [Google Scholar] [CrossRef]
- Denissen, W.; Winne, J.M.; Du Prez, F.E. Vitrimers: Permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Brutman, J.P.; Fortman, D.J.; De Hoe, G.X.; Dichtel, W.R.; Hillmyer, M.A. Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J. Phys. Chem. B 2019, 123, 1432–1441. [Google Scholar] [CrossRef]
- Zhao, S.; Abu-Omar, M.M. Catechol-Mediated Glycidylation toward Epoxy Vitrimers/Polymers with Tunable Properties. Macromolecules 2019, 52, 3646–3654. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Sui, G. Renewable Green Reactive Diluent for Bisphenol A Epoxy Resin System: Curing Kinetics and Properties. RSC Adv. 2022, 12, 31699–31710. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Islam Khan, N.; Das, S.; Zhang, J.; Halder, S. Effect of Reactive and Non-Reactive Diluents on Thermal and Mechanical Properties of Epoxy Resin. High Perform. Polym. 2018, 30, 1159–1168. [Google Scholar] [CrossRef]
Formulations | Weight Ratio | d25 °C (106 g·m−3) | ||||
---|---|---|---|---|---|---|
Reactive Diluent (g) | LY1564 (g) | Aradur (g) | 4-AFD (g) | |||
E | - | - | 100 | 34 | - | 1.137 |
V1AL | DY-E | 20 | 80 | - | 40.01 | 1.182 |
V1AR | DY-K | 30 | 70 | - | 39.58 | 1.202 |
V2S | DY-D | 60 | 40 | - | 49.87 | 1.225 |
V2L | DGEPPG | 40 | 60 | - | 38.43 | 1.224 |
VMBA | MBA | 10.69 | 100 | - | 32.82 | 1.181 |
Epoxy | Tan δ Max | HWTDP (°C) | E′ (MPa) at 140 °C | Strain (%) at 60 °C, 1 MPa | νC (mol·m−3) | MC (g·mol−1) | [Disulfide] (mol·m−3) |
---|---|---|---|---|---|---|---|
E | 0.98 | 14 | 20.3 | 0.18 | 1970 | 609 | - |
V1AL | 1.13 | 17 | 9.5 | 0.71 | 922 | 1282 | 1362 |
V1AR | 1.66 | 15 | 5.0 | 0.21 | 485 | 2478 | 1374 |
V2S | 1.07 | 13 | 19.5 | 0.20 | 1893 | 647 | 1655 |
V2L | 1.13 | 15 | 13.4 | 0.22 | 1300 | 941 | 1370 |
VMBA | 1.38 | 15 | 8.14 | 0.31 | 790 | 1494 | 639 |
Epoxy | Initial Viscosity (mPa.s) at: | Enthalpy (J/g) | Tpeak (°C) | TgDSC (°C) | TgDMA (°C) | Td95 wt% (°C) | Water (%) Absorption | ||
---|---|---|---|---|---|---|---|---|---|
25 (°C) | 40 (°C) | 60 (°C) | |||||||
E | 598 | 80 | 23 | 530 | 82 | 86 | 91 | 286 | 3.3 |
V1AL | 592 | 156 | 45 | 409 | 133 | 79 | 92 | 257 | 1.4 |
V1AR | 657 | 166 | 48 | 463 | 136 | 87 | 96 | 282 | 2.1 |
V2S | 238 | 88 | 32 | 523 | 132 | 89 | 98 | 266 | 4.3 |
V2L | 997 | 256 | 71 | 429 | 132 | 83 | 95 | 246 | 2.7 |
VMBA | 527 | 177 | 72 | 328 | 119 | 85 | 98 | 270 | - |
Epoxy | τ* (s) at: | Residual Stress (%) | Ea (KJ/mol) | Fitting Line (Arrhenius’) | Tv (°C) | TgDSC/DMA (°C) | |||
---|---|---|---|---|---|---|---|---|---|
140 °C | 160 °C | 180 °C | Equation | R2 | |||||
V1AL | 334 | 76 | 16 | 1.2 | 129 | y = −29.42 + 15.58 x | 0.99781 | 99 | 79/92 |
V1AR | 306 | 56 | 9 | 0.0 | 137 | y = −34.36 + 16.56 x | 0.99711 | 74 | 87/96 |
V2S | 342 | 81 | 19 | 1.2 | 111 | y = −26.66 + 13.42 x | 0.99893 | 75 | 89/98 |
V2L | 486 | 106 | 23 | 1.3 | 117 | y = −28.05 + 14.14 x | 0.99882 | 77 | 83/95 |
VMBA | 3666 | 510 | 125 | 8.5 | 136 | y = −31.43 + 16.38 x | 0.98605 | 98 | 85/98 |
Epoxy | Tensile | Flexural | ||||
---|---|---|---|---|---|---|
Strength (MPa) | Modulus (MPa) | Strain at Break (%) | Strength (MPa) | Modulus (MPa) | Strain at Break (%) | |
E | 70.3 σ 0.97 | 2610 σ 442 | 6.42 σ 0.60 | 114 σ 1.32 | 2850 σ 92 | 6.4 σ 0.18 |
V1AL | 46.7 σ 5.6 | 2670 σ 86 | 2.23 σ 0.37 | - | - | - |
V2S | 70.4 σ 2.6 | 2740 σ 192 | 6.25 σ 0.98 | 112 σ 3.80 | 2510 σ 138 | 6.9 σ 0.20 |
V2L | 68.6 σ 2.04 | 3090 σ 191 | 6.95 σ 0.53 | 121 σ 2.30 | 2120 σ 101 | 8.6 σ 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azcune, I.; Elorza, E.; Ruiz de Luzuriaga, A.; Huegun, A.; Rekondo, A.; Grande, H.-J. Analysis of the Effect of Network Structure and Disulfide Concentration on Vitrimer Properties. Polymers 2023, 15, 4123. https://doi.org/10.3390/polym15204123
Azcune I, Elorza E, Ruiz de Luzuriaga A, Huegun A, Rekondo A, Grande H-J. Analysis of the Effect of Network Structure and Disulfide Concentration on Vitrimer Properties. Polymers. 2023; 15(20):4123. https://doi.org/10.3390/polym15204123
Chicago/Turabian StyleAzcune, Itxaso, Edurne Elorza, Alaitz Ruiz de Luzuriaga, Arrate Huegun, Alaitz Rekondo, and Hans-Jürgen Grande. 2023. "Analysis of the Effect of Network Structure and Disulfide Concentration on Vitrimer Properties" Polymers 15, no. 20: 4123. https://doi.org/10.3390/polym15204123
APA StyleAzcune, I., Elorza, E., Ruiz de Luzuriaga, A., Huegun, A., Rekondo, A., & Grande, H. -J. (2023). Analysis of the Effect of Network Structure and Disulfide Concentration on Vitrimer Properties. Polymers, 15(20), 4123. https://doi.org/10.3390/polym15204123