Effective Properties for the Design of Basalt Particulate–Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Elastic Modulus
3.2. Shear Modulus
3.3. Coefficient of Thermal Expansion
3.4. Thermal Conductivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emissions, Vehicle Greenhouse Gas. 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards. 2012. Available online: https://www.federalregister.gov/documents/2012/10/15/2012-21972/2017-and-later-model-year-light-duty-vehicle-greenhouse-gas-emissions-and-corporate-average-fuel (accessed on 10 August 2023).
- Lyu, M.-Y.; Choi, T.G. Research trends in polymer materials for use in lightweight vehicles. Int. J. Precis. Eng. Manuf. 2015, 16, 213–220. [Google Scholar] [CrossRef]
- Lewis, G.M.; Buchanan, C.A.; Jhaveri, K.D.; Sullivan, J.L.; Kelly, J.C.; Das, S.; Taub, A.I.; Keoleian, G.A. Green Principles for Vehicle Lightweighting. Environ. Sci. Technol. 2019, 53, 4063–4077. [Google Scholar] [CrossRef]
- Ishikawa, T.; Amaoka, K.; Masubuchi, Y.; Yamamoto, T.; Yamanaka, A.; Arai, M.; Takahashi, J. Overview of au-tomotive structural composites technology developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. [Google Scholar] [CrossRef]
- Yun, J.-H.; Jeon, Y.-J.; Kang, M.-S. Prediction of the Elastic Properties of Ultra High Molecular-Weight Polyethylene Particle-Reinforced Polypropylene Composite Materials through Homogenization. Appl. Sci. 2022, 12, 7699. [Google Scholar] [CrossRef]
- Yun, J.H.; Jeon, Y.J.; Kang, M.S. Prediction of Elastic Properties Using Micromechanics of Polypropylene Compo-sites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers. Molecules 2022, 27, 5752. [Google Scholar] [CrossRef]
- Yun, J.H.; Jeon, Y.J.; Kang, M.S. Analysis of Elastic Properties of Polypropylene Composite Materials with Ultra-High Molecular Weight Polyethylene Spherical Reinforcement. Materials 2022, 15, 5602. [Google Scholar] [CrossRef]
- Eken, A.E.; Tozzi, E.J.; Klingenberg, D.J.; Bauhofer, W. A simulation study on the effects of shear flow on the microstructure and electrical properties of carbon nanotube/polymer composites. Polymer 2011, 52, 5178–5185. [Google Scholar] [CrossRef]
- Yui, H.; Wu, G.; Sano, H.; Sumita, M.; Kino, K. Morphology and electrical conductivity of injection-molded poly-propylene/carbon black composites with addition of high-density polyethylene. Polymer 2006, 47, 3599–3608. [Google Scholar] [CrossRef]
- Pietroluongo, M.; Padovano, E.; Frache, A.; Badini, C. Mechanical recycling of an end-of-life automotive composite component. Sustain. Mater. Technol. 2019, 23, e00143. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Khan, R.A.; Sharmin, N.; Sarker, B.; Khan, M.A.; Saha, S.; Debnath, K.K.; Dey, K.; Rahman, M.; Das, A.K.; Kabir, F.; et al. Mechanical, Degradation and Interfacial Properties of Chitosan Fiber-Reinforced Polypropylene Composites. Polym. Technol. Eng. 2011, 50, 141–146. [Google Scholar] [CrossRef]
- Yaşar, N.; Günay, M.; Kılık, E.; Ünal, H. Multiresponse optimization of drillability factors and mechanical proper-ties of chitosan-reinforced polypropylene composite. J. Thermoplast. Compos. Mater. 2022, 35, 1660–1682. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Wu, Z.; Keller, T.; Vassilopoulos, A.P. Temperature effect on fatigue behavior of basalt fiber-reinforced polymer composites. Polym. Compos. 2019, 40, 2273–2283. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P.; Van Langenhove, L. Basalt fibres as reinforcement for composites. In Proceedings of the 10th International Conference on Composites/Nano Engineering, New Orleans, LA, USA, 20–26 July 2003; University of New Orleans: New Orleans, LA, USA, 2003; Volume 2026. [Google Scholar]
- Li, J.; Zhu, Z.; Li, T.; Peng, X.; Jiang, S.; Turng, L.S. Quantification of the Young’s modulus for polypropylene: In-fluence of initial crystallinity and service temperature. J. Appl. Polym. Sci. 2020, 137, 48581. [Google Scholar] [CrossRef]
- Mun, S.Y.; Ha, J.; Lee, S.; Ju, Y.; Lim, H.M.; Lee, D. Prediction of enhanced interfacial bonding strength for basalt fiber/epoxy composites by micromechanical and thermomechanical analyses. Compos. Part A Appl. Sci. Manuf. 2020, 142, 106208. [Google Scholar] [CrossRef]
- Pak, S.; Park, S.; Song, Y.S.; Lee, D. Micromechanical and dynamic mechanical analyses for characterizing im-proved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites. Compos. Struct. 2018, 193, 73–79. [Google Scholar] [CrossRef]
- Yıldırım, F.; Demirel, B.; Bulucu, E.D. Investigation of the mechanical properties of calcite reinforced polypropylene by using digimat-mean field homogenization and ansys FEM. Mater. Today Commun. 2022, 33, 105023. [Google Scholar] [CrossRef]
- Ma, D.; González-Jiménez, Á.; Giglio, M.; Cougo, C.M.d.S..; Amico, S.C.; Manes, A. Multiscale modelling approach for simulating low velocity impact tests of aramid-epoxy composite with nanofillers. Eur. J. Mech. A/Solids 2021, 90, 104286. [Google Scholar] [CrossRef]
- Rayhan, S.B.; Rahman, M.M. Modeling elastic properties of unidirectional composite materials using Ansys Material Designer. Procedia Struct. Integr. 2020, 28, 1892–1900. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, S.; Song, M.; Chen, Y.; Zhao, X.; Liang, J.; Feng, J. A Multiscale Study of CFRP Based on Asymptotic Homogenization with Application to Mechanical Analysis of Composite Pressure Vessels. Polymers 2022, 14, 2817. [Google Scholar] [CrossRef]
- Xu, K.; Xu, X. Meso-mechanical analysis of 3d braided composites based on a finite element model. J. Eng. Appl. Sci. 2007, 2, 1553–1562. [Google Scholar]
- Zhou, G.; Li, A.; Li, J.; Duan, M.; Xia, Z.; Zhu, L.; Spencer, B.F.; Wang, B. Test and numerical investigations on the spatial me-chanics characteristics of extra-wide concrete self-anchored suspension bridge during construction. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719891561. [Google Scholar] [CrossRef]
- Supreeth, A.R.; Rekha, B.; Prema Kumar, W.P.; Shijina, K. Experimental and Numerical Studies on Free Vibration Characteristics of a Three-Storied Building Frame. Int. J. Eng. Res. Technol. 2015, 4, 241–245. [Google Scholar] [CrossRef]
- Çuvalci, H.; Erbay, K.; İpek, H. Investigation of the Effect of Glass Fiber Content on the Mechanical Properties of Cast Polyamide. Arab. J. Sci. Eng. 2014, 39, 9049–9056. [Google Scholar] [CrossRef]
- Ismardi, A.; Sugandi, G.; A Lizarna, M. Design and simulation of double planar spring based on polyimide for electrodynamic vibration energy harvesting. J. Phys. Conf. Ser. 2019, 1170, 012061. [Google Scholar] [CrossRef]
- Gaitonde, V.; Karnik, S.; Mata, F.; Davim, J.P. Modeling and Analysis of Machinability Characteristics in PA6 and PA66 GF30 Polyamides through Artificial Neural Network. J. Thermoplast. Compos. Mater. 2009, 23, 313–336. [Google Scholar] [CrossRef]
- Ma, W.; Chen, K.; Li, Y.; Hao, N.; Wang, X.; Ouyang, P. Advances in cadaverine bacterial production and its applications. Engineering 2017, 3, 308–317. [Google Scholar] [CrossRef]
- Liu, Q.; Shaw, M.T.; Parnas, R.S.; McDonnell, A.-M. Investigation of basalt fiber composite mechanical properties for applications in transportation. Polym. Compos. 2005, 27, 41–48. [Google Scholar] [CrossRef]
- Mengal, A.N.; Karuppanan, S.; Wahab, A.A. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade. MATEC Web Conf. 2014, 13, 04019. [Google Scholar] [CrossRef]
- Kundalwal, S.I. Review on micromechanics of nano-and micro-fiber reinforced composites. Polym. Compos. 2018, 39, 4243–4274. [Google Scholar] [CrossRef]
- Huang, Z.-M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model. Compos. Part A Appl. Sci. Manuf. 2001, 32, 143–172. [Google Scholar] [CrossRef]
- Askeland, D.R.; Phulé, P.P.; Wright, W.J.; Bhattacharya, D.K. The Science and Engineering of Materials; Springer: Dordrecht, Germany, 2003. [Google Scholar]
- Bruck, H.A.; Rabin, B.H. Evaluation of Rule-of-Mixtures Predictions of Thermal Expansion in Powder-Processed Ni-Al2O3 Composites. J. Am. Ceram. Soc. 2004, 82, 2927–2930. [Google Scholar] [CrossRef]
- Wong, C.P.; Bollampally, R.S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 1999, 74, 3396–3403. [Google Scholar] [CrossRef]
- Mital, S.K.; Murthy, P.L.; Goldberg, R.K. Micromechanics for particulate-reinforced composites. Mech. Compos. Mater. Struct. Int. J. 1997, 4, 251–266. [Google Scholar] [CrossRef]
- Mital, S.K.; Goldberg, R.K.; Bonacuse, P.J. Two-dimensional non-linear finite element analysis of CMC micro-structures. Compos. Part B Eng. 2014, 57, 144–154. [Google Scholar] [CrossRef]
- Abhilash, R.M.; Venkatesh, G.S.; Chauhan, S.S. Micromechanical modeling of bamboo short fiber reinforced pol-ypropylene composites. Multiscale Multidiscip. Model. Exp. Des. 2021, 4, 25–40. [Google Scholar] [CrossRef]
- Guth, E. Theory of filler reinforcement. Rubber Chem. Technol. 1945, 18, 596–604. [Google Scholar] [CrossRef]
- Osoka, E.C.; Onukwuli, O.D. A modified Halpin-Tsai model for estimating the modulus of natural fiber reinforced composites. Int. J. Eng. Sci. Invent. 2018, 7, 63–70. [Google Scholar]
- Luo, Z.; Li, X.; Shang, J.; Zhu, H.; Fang, D. Modified rule of mixtures and Halpin–Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrica-tion. Adv. Mech. Eng. 2018, 10, 1687814018785286. [Google Scholar] [CrossRef]
- Fuchs, C.; Bhattacharyya, D.; Friedrich, K.; Fakirov, S. Application of Halpin–Tsai equation to microfibril reinforced poly-propylene/poly (ethylene terephthalate) composites. Compos. Interfaces 2006, 13, 331–344. [Google Scholar] [CrossRef]
- Yung, K.C.; Wang, J.; Yue, T.M. Modeling Young’s modulus of polymer-layered silicate nanocomposites using a modified Halpin—Tsai micromechanical model. J. Reinf. Plast. Compos. 2006, 25, 847–861. [Google Scholar] [CrossRef]
- Yun, D.-H.; Yun, J.-H.; Jeon, Y.-J.; Kang, M.-S. Analysis of Elastic Properties According to the Aspect Ratio of UHMWPE Fibers Added to PP/UHMWPE Composites. Appl. Sci. 2022, 12, 11429. [Google Scholar] [CrossRef]
- Bharadwaj, S.A. Effective Thermal Properties of Composites. Doctoral Dissertation, BITS PILANI, Pilani, India, 2015. [Google Scholar]
- Dittanet, P.; Pearson, R.A.; Kongkachuichay, P. Thermo-mechanical behaviors and moisture absorption of silica nanoparticle reinforcement in epoxy resins. Int. J. Adhes. Adhes. 2017, 78, 74–82. [Google Scholar] [CrossRef]
- Shin, D.K.; Lee, J.J. Effective material properties and thermal stress analysis of epoxy molding compound in elec-tronic packaging. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 1998, 21, 413–421. [Google Scholar] [CrossRef]
- Vignoli, L.L.; Savi, M.A.; Pacheco, P.M.; Kalamkarov, A.L. Comparative analysis of micromechanical models for the elastic composite laminae. Compos. Part B Eng. 2019, 174, 106961. [Google Scholar] [CrossRef]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos. Sci. Technol. 2007, 67, 2454–2466. [Google Scholar] [CrossRef]
- Fajardo, J.I.; Costa, J.; Cruz, L.J.; Paltán, C.A.; Santos, J.D. Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites. Polymers 2022, 14, 2627. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, J.S.; Boyce, M.C. Mechanical Behavior of Particle Filled Elastomers. Rubber Chem. Technol. 1999, 72, 633–656. [Google Scholar] [CrossRef]
Properties | Units | PP | PA | PA6 | PA66 | Basalt |
---|---|---|---|---|---|---|
Density | g/cm3 | 0.90 | 1.10 | 1.13 | 1.140 | 2.75 |
Thermal expansion coefficient | 1/K | 104 × 10−6 | 8 × 10−6 | 1.01 × 10−4 | 85 × 10−6 | 8 × 10−6 |
Elastic modulus | MPa | 1660 | 4000 | 2400 | 2690 | 89,000 |
Poisson’s ratio | 0.35 | 0.34 | 0.34 | 0.30 | 0.20 | |
Shear modulus | MPa | 614.81 | 1492.54 | 895.52 | 1034.62 | 37,083.33 |
Thermal conductivity | W/mK | 0.17 | 0.39 | 0.26 | 0.26 | 0.035 |
(Volume Fraction) Composite | Elastic Modulus (MPa) | Shear Modulus (MPa) | CTE (μm/K−1) | Thermal Conductivity (W/mk) |
---|---|---|---|---|
PP(35)Basalt | 3600.0 | 1379.5 | 62.91 × 10−6 | 0.115 |
PA6(35)Basalt | 5081.8 | 1960.3 | 60.86 × 10−6 | 0.164 |
PA66(35)Basalt | 5557.4 | 2201.7 | 50.02 × 10−6 | 0.166 |
PA(35)Basalt | 8168.1 | 3149.0 | 8.00 × 10−6 | 0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.-H.; Jeon, Y.-J.; Kang, M.-S. Effective Properties for the Design of Basalt Particulate–Polymer Composites. Polymers 2023, 15, 4125. https://doi.org/10.3390/polym15204125
Yun J-H, Jeon Y-J, Kang M-S. Effective Properties for the Design of Basalt Particulate–Polymer Composites. Polymers. 2023; 15(20):4125. https://doi.org/10.3390/polym15204125
Chicago/Turabian StyleYun, Jong-Hwan, Yu-Jae Jeon, and Min-Soo Kang. 2023. "Effective Properties for the Design of Basalt Particulate–Polymer Composites" Polymers 15, no. 20: 4125. https://doi.org/10.3390/polym15204125
APA StyleYun, J. -H., Jeon, Y. -J., & Kang, M. -S. (2023). Effective Properties for the Design of Basalt Particulate–Polymer Composites. Polymers, 15(20), 4125. https://doi.org/10.3390/polym15204125