Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis of Organic Linkers
2.2.1. Synthesis of 1,3-(1-azomethine-2-hydroxyphenyl)benzene (DAB-A-OH)
2.2.2. Synthesis of 1,3-(1-azo-4-hydroxyphenyl)benzene (DAB-Z-OH)
2.3. General Synthesis of Per-Fluorinated Polymers
2.3.1. Poly(4,4-(diazomethine phenyl)-o-diphenoxy-tetrafluorbenzene) (DAB-A-1h)
2.3.2. Poly(4,4-(diazomethine phenyl)-o-diphenoxy-octafluorobiphenyl) (DAB-A-1O)
2.3.3. Poly(4,4-(diazophenyl)-p-diphenoxy-tetrafluorbenzene) (DAB-Z-1h)
2.3.4. Poly(4,4-(diazophenyl)-p-diphenoxy-octafluorobiphenyl) (DAB-Z-1O)
3. Results and Discussion
3.1. Synthesis of Organic Linkers
3.2. Synthesis of Perfluorinated Polymers
3.3. Nucleophilic Aromatic Substitution (NAS) and the Cross-Linking Process
3.3.1. Azomethine-Based Fluorinated Polymers
3.3.2. Diazo-Based Fluorinated Polymers
3.4. Thermal Stability of the Polymers
3.5. Porosity Measurements
3.6. Environmental Applications
3.6.1. Methane and Carbon Dioxide Adsorption
Polymer | Surface Area (BET) (m2 g−1) | Total Pore Volume (cm3/g) | CH4 Uptake (mg/g) | CO2 Uptake (mg/g) | Selectivity CO2/CH4 |
---|---|---|---|---|---|
DAB-A-1h | 403 | 0.2103 | 2.86 | 6.0 | 4.19 |
DAB-A-1O | 285 | 0.0872 | 3.46 | 2.6 | 1.2 |
DAB-Z-1h | 494 | 0.3524 | 2.19 | 17.2 | 14.9 |
DAB-Z-1O | 770 | 0.2587 | 6.14 | 7.98 | 1.64 |
3.6.2. Separation of Benzene–Water and Phenol–Water Mixtures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Tao, Y.; Chen, X.; Chen, X.; Fang, L.; Wang, Y.; Sun, J.; Fang, Q. Perfluorocyclobutyl-based polymers for functional materials. Mater. Chem. Front. 2019, 3, 1280–1301. [Google Scholar] [CrossRef]
- Francesco, B.; Gianluca, M.F.; Francesco, N.; Roberta, R. Fluorinated organic materials for electronic and optoelectronic applications: The role of the fluorine atom. Chem. Commun. 2007, 1003–1022. [Google Scholar] [CrossRef]
- Kenji, M.; Kenichi, O.; Eishun, T.; Allan, S.H. Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers. Macromolecules 2001, 34, 2065–2071. [Google Scholar]
- Tkachenko, I.M.; Kurioz, Y.I.; Kovalchuk, A.I.; Kobzar, Y.L.; Shekera, O.V.; Tereshchenko, O.G.; Nazarenko, V.G.; Shevchenko, V.V. Optical properties of azo-based poly(azomethine)s with aromatic fluorinated fragments, ether linkages and aliphatic units in the backbone. Mol. Cryst. Liq. 2020, 697, 85–96. [Google Scholar] [CrossRef]
- Ling, Y.; Rongming, X.; Hang, Y.; Chenghan, J.; Lu, L.; Weiming, Z. Three-dimensional fluorinated pyrazinium-based cationic organic polymers with high charge density for enhanced ReO4− removal. J. Chem. Eng. 2023, 475, 146085. [Google Scholar]
- Gouverneur, V.; Seppelt, K. Introduction: Fluorine Chemistry. Chem. Rev. 2015, 115, 563–565. [Google Scholar] [CrossRef]
- Errifai, I.; Jama, C.; Le Bras, M.; Delobel, R.; Mazzah, A.; Roger, J. Fire retardant coating using cold plasma polymerization of a fluorinated acrylate. Surf. Coat. Technol. 2004, 180, 297–301. [Google Scholar] [CrossRef]
- Rowe, M.; Teo, G.H.; Horne, J.; Al-Khayat, O.; Neto, C.; Thickett, S.C. High Glass Transition Temperature Fluoropolymers for Hydrophobic Surface Coatings via RAFT Copolymerization. Aust. J. Chem. 2016, 69, 725–734. [Google Scholar] [CrossRef]
- Tundidor-Camba, A.; González-Henríquez, C.M.; Sarabia-Vallejos, M.A.; Tagle, L.H.; Hauyón, R.A.; Sobarzo, P.A.; González, A.; Ortiz, P.A.; Maya, E.M.; Terraza, C.A. Silylated oligomeric poly(ether-azomethine)s from monomers containing biphenyl moieties: Synthesis and characterization. RSC Adv. 2018, 8, 1296–1312. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Wang, M.; Hou, W.; Qin, G.; Kityk, I.V.; Fedorchuk, A.A.; Albassam, A.A.; El-Naggar, A.M.; Andrushchak, A. Novel poly(aryl ether ketone) with electro-optic chromophore side chains for light modulators. J. Mater. Sci. Mater. Electron. 2017, 28, 18568–18577. [Google Scholar] [CrossRef]
- Sijing, C.; Dengxun, R.; Bo, L.; Kui, L.; Lin, C.; Mingzhen, X.; Xiaobo, L. Benzoxazine Containing Fluorinated Aromatic Ether Nitrile Linkage: Preparation, Curing Kinetics and Dielectric Properties. Polymers 2019, 11, 1036–1055. [Google Scholar]
- Yao, W.; He, L.; Han, D.; Zhong, A. Sodium Triethylborohydride-Catalyzed Controlled Reduction of Unactivated Amides to Secondary or Tertiary Amines. J. Org. Chem. 2019, 84, 14627–14635. [Google Scholar] [CrossRef]
- Liu, Q.; Shentu, B.; Zhu, J.; Weng, Z. A novel synthetic method for preparing poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene alloy in reactor containing aqueous medium. Eur. Polym. J. 2007, 43, 890–894. [Google Scholar] [CrossRef]
- Jennifer, A.I.; Charles, J.N.; Kevin, M.K.; Patrick, E.C.; Anne, K.S. Polyethers derived from bisphenols and highly fluorinated aromatics. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 1675–1679. [Google Scholar]
- Krishnan, R.; Parthiban, A. Regioselective preparation of functional aryl ethers and esters by stepwise nucleophilic aromatic substitution reaction. J. Fluor. Chem. 2014, 162, 17–25. [Google Scholar] [CrossRef]
- Wall, L.A.; Pummer, W.J.; Fearn, J.E.; Antonucci, J.M. Reactions of Polyfluorobenzenes with Nucleophilic Reagents. J. Res. Natl. Bur. Stand A Phys. Chem. 1963, 67A, 481–497. [Google Scholar] [CrossRef]
- Wang, Z.; Shang, Y.; Han, X.; Yan, Q.; Liu, J.; Jiang, Z.; Zhang, H. Cross-Linked Fluorinated Poly(Aryl Ether) (C-FPAE) Films: Preparation Strategy, Performance Study, and Low Dielectric Applications. Macromol. Mater. Eng. 2020, 305, 1900866. [Google Scholar] [CrossRef]
- Ando, S.; Matsuura, T.; Sasaki, S. Synthesis and properties of perfluorinated polyimides. In Topics in Applied Chemistry; Springer: Berlin/Heidelberg, Germany, 2006; pp. 277–303. [Google Scholar]
- Chen, Y.C.; Su, Y.Y.; Hsiao, F.Z. The synthesis and characterization of fluorinated polyimides derived from 2′-methyl-1,4-bis-(4-amino-2-trifluoromethylphenoxy)benzene and various aromatic dianhydrides. J. Macromol. Sci. A 2020, 57, 579–588. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Long, Q.; Hay, A.S. Synthesis and characterization of highly fluorinated poly(phthalazinone ether)s based on AB-type monomers. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1761–1770. [Google Scholar] [CrossRef]
- Shundrina, I.K.; Vaganova, T.A.; Kusov, S.Z.; Rodionov, V.I.; Karpova, E.V.; Malykhin, E.V. Synthesis and properties of organosoluble polyimides based on novel perfluorinated monomer hexafluoro-2,4-toluenediamine. J. Fluor. Chem. 2011, 132, 207–215. [Google Scholar] [CrossRef]
- Ihor, T.; Olha, P.; Valery, B.; Oleg, S.; Valery, S. Synthesis and properties of novel fluorinated poly(arylene ether)s. Polym. Int. 2015, 64, 1104–1110. [Google Scholar]
- Zhao, T.; Beyer, V.P.; Becer, C.R. Fluorinated Polymers via Para-Fluoro-Thiol and Thiol-Bromo Click Step Growth Polymerization. Macromol. Rapid Commun. 2020, 22, 2000409–2000417. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 Catalyst for Selective Deaminative Hydroboration of Aromatic Carboxamides for Construction of Luminophores. Org. Lett. 2020, 22, 8086–8090. [Google Scholar] [CrossRef]
- Narayanan, G.; Faradizaji, B.; Mukeba, K.M.; Shelar, K.E.; De Silva, M.; Patrick, A.; Donnadieu, B.; Smith, D.W. Perfluorocyclohexenyl (PFCH) aromatic ether polymers from perfluorocyclohexene and polycyclic aromatic bisphenols. Poly. Chem. 2020, 11, 5051–5056. [Google Scholar] [CrossRef]
- Smirnova, O.; Glazkov, A.; Yarosh, A.; Sakharov, A. Fluorinated Polyurethanes, Synthesis and Properties. Molecules 2016, 21, 904. [Google Scholar] [CrossRef]
- Ong, W.J.; Swager, T.M. Dynamic self-correcting nucleophilic aromatic substitution. Nat. Chem. 2018, 10, 1023–1030. [Google Scholar] [CrossRef]
- Zhang, T.; Yao, N.; Zhou, C.; Li, Y.; Zhao, Y.; Pang, A.; Wu, S. Combustion characteristics of cross-linked fluorinated polymer supported aluminum/oxidizer microsphere in HTPB propellant. FirePhysChem 2022, 2, 20–27. [Google Scholar] [CrossRef]
- Mohammadi, A.; Jabbari, J. Simple naked-eye colorimetric chemosensors based on Schiff-base for selective sensing of cyanide and fluoride ions. Can. J. Chem. 2016, 94, 631–636. [Google Scholar] [CrossRef]
- Mohammadi, A.; Yazdanbakhsh, M.R.; Farahnak, L. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes. Spectrochim. Acta-A Mol. Biomol. Spectrosc. 2012, 89, 238–242. [Google Scholar] [CrossRef]
- Aivali, S.; Andrikopoulos, K.C.; Andreopoulou, A.K. Nucleophilic Aromatic Substitution of Pentafluorophenyl-Substituted Quinoline with a Functional Perylene: A Route to the Modification of Semiconducting Polymers. Polymers 2023, 15, 2721. [Google Scholar] [CrossRef]
- Krishnan, R.; Parthiban, A. Semifluorinated multiple pendant group bearing poly(arylene ether) copolymers prepared at room temperature. J. Polym. Res. 2013, 20, 230. [Google Scholar] [CrossRef]
- Krishnan, R.; Parthiban, A. A multifunctionalization of octafluorocyclopentene under mild conditions. Eur. Polym. J. 2018, 101, 66–76. [Google Scholar] [CrossRef]
- Jaye, J.A.; Sletten, E.M. Recent advances in the preparation of semifluorinated polymers. Polym. Chem. 2021, 12, 6515. [Google Scholar] [CrossRef]
- Kaseman, D.C.; Janicke, M.T.; Frankle, R.K.; Nelson, T.; Angles-Tamayo, G.; Batrice, R.J.; Magnelind, P.E.; Espy, M.A.; Williams, R.F. Chemical Analysis of Fluorobenzenes via Multinuclear Detection in the Strong Heteronuclear J-Coupling Regime. Appl. Sci 2020, 10, 3836. [Google Scholar] [CrossRef]
- Xiao, F.; Sasi, P.C.; Yao, B.; Kubátová, A.; Golovko, S.A.; Golovko, M.Y.; Soli, D. Thermal Stability and Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon. Environ. Sci. Technol. Lett. 2020, 7, 343–350. [Google Scholar] [CrossRef]
- Al-tarawneh, S.S.; Ababneh, T.; Aljaafreh, I. Amination of ether-linked polymers via the application of Ullmann-coupling reaction: Synthesis, characterization, porosity, and thermal stability evaluation. Int. J. Polym. Anal. 2021, 26, 618–629. [Google Scholar] [CrossRef]
- Shockravi, A.; Javadi, A.; Abouzari-Lotf, E. Fluorinated ortho-linked polyamides derived from non-coplanar 1,1′-thiobis(2-naphthol): Synthesis and characterization. Polym. J. 2011, 43, 816–825. [Google Scholar] [CrossRef]
- Bae, Y.-S.; Yazaydın, A.Ö.; Snurr, R.Q. Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores. Langmuir 2010, 26, 5475–5483. [Google Scholar] [CrossRef]
- Merukan Chola, N.; Gajera, P.; Kulkarni, H.; Kumar, G.; Parmar, R.; Nagarale, R.K.; Sethia, G. Sorption of Carbon Dioxide and Nitrogen on Porous Hyper-Cross-Linked Aromatic Polymers: Effect of Textural Properties, Composition, and Electrostatic Interactions. ACS Omega 2023, 8, 24761–24772. [Google Scholar] [CrossRef]
- Shi, K.; Li, Z.; Anstine, D.M.; Tang, D.; Colina, C.M.; Sholl, D.S.; Siepmann, J.I.; Snurr, R.Q. Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials. J. Chem. Theory Comput. 2023, 19, 4568–4583. [Google Scholar] [CrossRef]
- Kupgan, G.; Liyana-Arachchi, T.P.; Colina, C.M. NLDFT Pore Size Distribution in Amorphous Microporous Materials. Langmuir 2017, 33, 11138–11145. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, B.; Wang, Z. Facile Synthesis of Fluorinated Microporous Polyaminals for Adsorption of Carbon Dioxide and Selectivities over Nitrogen and Methane. Macromolecules 2016, 49, 2575–2581. [Google Scholar] [CrossRef]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; De los Rios-Escalante, P.R.; Farooqi, Z.U.R.; Ali, L.; Shafiq, M. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century. King Saud Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Li, J.R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.K.; Balbuena, P.B.; Zhou, H.C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Hu, L.; Ge, B.; Yu, X.; Deng, J. Porous Polymer Materials for CO2 Capture and Electrocatalytic Reduction. Materials 2023, 16, 1630. [Google Scholar] [CrossRef]
- Al-Shboul, T.; Al-Tarawneh, S.; Ababneh, T.; Jazzazi, T. Post-Functionalization of Bromo-Substituted Ether-Linked Polymers via Ullman Coupling Reaction: Synthesis, Characterization and Their Role toward Carbon Dioxide Capture. Separations 2022, 9, 55. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Liu, G.; Yuan, Z.; Li, B.; Zhang, X.; Wei, J. Porous metal-organic frameworks for methane storage and capture: Status and challenges. New Carbon Mater. 2021, 36, 468–496. [Google Scholar] [CrossRef]
- Peng, A.Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J.T.; Farha, O.K.; Yildirim, T. Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges. J. Am. Chem. Soc. 2013, 135, 11887–11894. [Google Scholar] [CrossRef]
- Chang, G.; Wen, H.; Li, B.; Zhou, W.; Wang, H.; Alfooty, K.; Bao, Z.; Chen, B. A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Cryst. Growth Des. 2016, 16, 3395–3399. [Google Scholar] [CrossRef]
- Mohammed, S.; Sunkara, A.K.; Walike, C.E.; Gadikota, G. The Role of Surface Hydrophobicity on the Structure and Dynamics of CO2 and CH4 Confined in Silica Nanopores. Front. Clim. 2021, 3, 713708. [Google Scholar] [CrossRef]
- An, J.; Geib, S.J.; Rosi, N.L. High and Selective CO2 Uptake in a Cobalt Adeninate Metal—Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores. J. Am. Chem. Soc. 2010, 132, 38–39. [Google Scholar] [CrossRef]
- Sekizkardes, A.K.; Altarawneh, S.; Kahveci, Z.; İslamoğlu, T.; El-Kaderi, H.M. Highly Selective CO2 Capture by Triazine-Based Benzimidazole-Linked Polymers. Macromolecules 2014, 47, 8328–8334. [Google Scholar] [CrossRef]
- Liu, C.; Wei, L.; Jia, X.; Gu, Y.; Guo, H.; Geng, X. Fluorinated-Polyether-Grafted Graphene-Oxide Magnetic Composite Material for Oil–Water Separation. AppliedChem 2023, 3, 400–413. [Google Scholar] [CrossRef]
- Hameed, B.H.; Rahman, A.A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 2008, 160, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, M.; Shi, Z.; He, B. Isotherm analysis of phenol adsorption on polymeric adsorbents from nonaqueous solution. J. Colloid Interface Sci. 2004, 271, 47–54. [Google Scholar] [CrossRef]
Polymer | Appearance | Solubility | % Yield | Mn (g/mol) | Mwt (g/mol) |
---|---|---|---|---|---|
DAB-Z-1h | Dark brown | DMSO a, DMAc a, THF c | 88 | insoluble in THF | |
DAB-Z-1O | Dark brown | DMSO, DMAc, THF a | 70 | 3106 | 7328 |
DAB-A-1h | Pale brown | DMSO, DMAc, THF a | 82 | 1381 | 4886 |
DAB-A-1O | Pale brown | THF b, DMSO c, DMAc c | 69 | 4068 | 11,948 |
Polymer | Decomposition (°C) | Ts (DTA) | T (°C) 50% | T (°C) 100% | T (°C) 95% |
---|---|---|---|---|---|
DAB-Z-1h | 420 | 498 | 500 | - | 590 |
DAB-Z-1O | 423 | 521 | 493 | - | 566 |
DAB-A-1h | 230 | 461 | 471 | 649 | - |
DAB-A-1O | 283 | 484 | 544 | 661 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altarawneh, S.S.; El-Kaderi, H.M.; Richard, A.J.; Alakayleh, O.M.; Aljaafreh, I.Y.; Almatarneh, M.H.; Ababneh, T.S.; Al-Momani, L.A.; Aldalabeeh, R.H. Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution. Polymers 2023, 15, 4191. https://doi.org/10.3390/polym15204191
Altarawneh SS, El-Kaderi HM, Richard AJ, Alakayleh OM, Aljaafreh IY, Almatarneh MH, Ababneh TS, Al-Momani LA, Aldalabeeh RH. Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution. Polymers. 2023; 15(20):4191. https://doi.org/10.3390/polym15204191
Chicago/Turabian StyleAltarawneh, Suha S., Hani M. El-Kaderi, Alexander J. Richard, Osama M. Alakayleh, Ibtesam Y. Aljaafreh, Mansour H. Almatarneh, Taher S. Ababneh, Lo’ay A. Al-Momani, and Rawan H. Aldalabeeh. 2023. "Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution" Polymers 15, no. 20: 4191. https://doi.org/10.3390/polym15204191
APA StyleAltarawneh, S. S., El-Kaderi, H. M., Richard, A. J., Alakayleh, O. M., Aljaafreh, I. Y., Almatarneh, M. H., Ababneh, T. S., Al-Momani, L. A., & Aldalabeeh, R. H. (2023). Synthesis, Characterization, and Environmental Applications of Novel Per-Fluorinated Organic Polymers with Azo- and Azomethine-Based Linkers via Nucleophilic Aromatic Substitution. Polymers, 15(20), 4191. https://doi.org/10.3390/polym15204191