Fire Performance of Cotton Fabrics Coated with 10-(2,5-Dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide (DOPO-HQ) Zr-Based Metal-Organic Frameworks
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagent and Materials
2.2. Sample Preparation of DOPO-HQ@Zr-MOF Microcomposites
2.3. Functionalization of Cotton Substrates with DOPO-HQ@Zr-MOF
2.4. Characterization
3. Results and Discussion
3.1. UV-VIS Spectroscopy
3.2. FT-IR Characterization
3.3. Flammability Tests
3.4. Morphology Investigation
3.5. Thermal Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravandi, S.H.; Valizadeh, M. Properties of fibers and fabrics that contribute to human comfort. In Improving Comfort in Clothing; Song, G., Ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 61–78. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Hu, J.; Jiao, J.; Li, J. Smart moisture management and thermoregulation properties of stimuli-responsive cotton modified with polymer brushes. RSC Adv. 2014, 4, 63691–63695. [Google Scholar] [CrossRef]
- Yu, G. Natural Textile Fibres: Vegetable Fibres—Chapter 2. In Textiles and Fashion; Sinclair, R., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 29–56. [Google Scholar] [CrossRef]
- Grover, T.; Khandual, A.; Luximon, A. Fire protection: Flammability and textile fibres. Safety 2014, 61, 39–45+48. [Google Scholar]
- Hull, T.R.; Law, R.J.; Bergman, Å. Chapter 4—Environmental Drivers for Replacement of Halogenated Flame Retardants. In Polymer Green Flame Retardants; Papaspyrides, C.D., Kiliaris, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–179. [Google Scholar] [CrossRef]
- Schuhmann, M.; Baier, H.-D.; Lewis, D.; Hawkes, J.; Sigmund, H. New Halogen-Free Solutions for Flame-Retardant Textiles. Melliand Int. 2012, 18, 122–124. [Google Scholar]
- Mauerer, O. New reactive, halogen-free flame retardant system for epoxy resins. Polym. Degrad. Stab. 2005, 88, 70–73. [Google Scholar] [CrossRef]
- Xing, W.; Jie, G.; Song, L.; Hu, S.; Lv, X.; Wang, X.; Hu, Y. Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings. Thermochim. Acta 2011, 513, 75–82. [Google Scholar] [CrossRef]
- Siriviriyanun, A.; O’rear, E.A.; Yanumet, N. Self-extinguishing cotton fabric with minimal phosphorus deposition. Cellulose 2008, 15, 731–737. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, X.; Wu, J.; Wei, M.; Yu, Q.; Xiujuan, T.; Wang, Z. Performance comparison of epoxy resins modified with diphenylphosphine oxide and DOPO. Fire Mater. 2019, 43, 892–902. [Google Scholar] [CrossRef]
- Liu, M.; Yin, H.; Chen, X.; Yang, J.; Liang, Y.; Zhang, J.; Yang, F.; Deng, Y.; Lu, S. Preliminary ecotoxicity hazard evaluation of DOPO-HQ as a potential alternative to halogenated flame retardants. Chemosphere 2018, 193, 126–133. [Google Scholar] [CrossRef]
- He, M.; Zhang, D.; Zhao, W.; Qin, S.; Yu, J. Flame retardant and thermal decomposition mechanism of poly(butylene terephthalate)/DOPO-HQ composites. Polym. Compos. 2018, 40, 974–985. [Google Scholar] [CrossRef]
- Shi, X.; Peng, X.; Zhu, J.; Lin, G.; Kuang, T. Synthesis of DOPO-HQ-functionalized graphene oxide as a novel and efficient flame retardant and its application on polylactic acid: Thermal property, flame retardancy, and mechanical performance. J. Colloid Interface Sci. 2018, 524, 267–278. [Google Scholar] [CrossRef]
- Lu, A.X.; McEntee, M.; Browe, M.A.; Hall, M.G.; DeCoste, J.B.; Peterson, G.W. MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH2 for Chemical Protection and Decontamination. ACS Appl. Mater. Interfaces 2017, 9, 13632–13636. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2017, 21, 108–121. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Lett. 2020, 12, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, C.; Zhong, C.; Li, J. The Electrochemical Sensors Based on MOF and Their Applications. Prog. Chem. 2017, 29, 1206–1214. [Google Scholar] [CrossRef]
- Pascanu, V.; Miera, G.G.; Inge, A.K.; Martín-Matute, B. Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.-L.; Zhou, D.-D.; Zhang, J.; Hu, S.; Haranczyk, M.; Wang, D.-Y. Simultaneous Improvement of Mechanical and Fire-Safety Properties of Polymer Composites with Phosphonate-Loaded MOF Additives. ACS Appl. Mater. Interfaces 2019, 11, 20325–20332. [Google Scholar] [CrossRef]
- Cheng, C.; Xu, J.; Gao, W.; Jiang, S.; Guo, R. Preparation of flexible supercapacitor with RGO/Ni-MOF film on Ni-coated polyester fabric. Electrochim. Acta 2019, 318, 23–31. [Google Scholar] [CrossRef]
- Bunge, M.A.; Pasciak, E.; Choi, J.; Haverhals, L.; Reichert, W.M.; Glover, T.G. Ionic Liquid Welding of the UIO-66-NH2 MOF to Cotton Textiles. Ind. Eng. Chem. Res. 2020, 59, 19285–19298. [Google Scholar] [CrossRef]
- Rubin, H.N.; Neufeld, B.H.; Reynolds, M.M. Surface-Anchored Metal–Organic Framework–Cotton Material for Tunable Antibacterial Copper Delivery. ACS Appl. Mater. Interfaces 2018, 10, 15189–15199. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Rehan, M.; Emam, H.E. Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohydr. Polym. 2018, 195, 460–467. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Metal-organic frameworks for flame retardant polymers application: A critical review. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106113. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, H.S.; Hinestroza, J.P.; Ochoa-Puentes, C.; Sierra, C.A.; Soto, C.Y. Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers. J. Appl. Polym. Sci. 2014, 131, 40815. [Google Scholar] [CrossRef]
- Schelling, M.; Kim, M.; Otal, E.; Hinestroza, J. Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66) for the Decomposition and Enhanced Adsorption of Micropollutants in Water. Bioengineering 2018, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.A.; Sicard, C.; Serre, C.; Roubeau, O.; Gascón, I. Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr). Beilstein J. Nanotechnol. 2019, 10, 654–665. [Google Scholar] [CrossRef]
- Khabzina, Y.; Dhainaut, J.; Ahlhelm, M.; Richter, H.-J.; Reinsch, H.; Stock, N.; Farrusseng, D. Synthesis and Shaping Scale-up Study of Functionalized UiO-66 MOF for Ammonia Air Purification Filters. Ind. Eng. Chem. Res. 2018, 57, 8200–8208. [Google Scholar] [CrossRef]
- Wu, Q.; Lis, M.J. Barrier Effects of Cellulosic Fibers with Hybrid Coating Based on Zirconium Metal-Organic Framework. Polymers 2022, 14, 3071. [Google Scholar] [CrossRef]
- Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; van Tendeloo, G.; Fischer, R.A. Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti; x = 1, 2): Preparation and Microstructural Characterisation. Eur. J. Inorg. Chem. 2011, 2011, 1876–1887. [Google Scholar] [CrossRef]
- Tian, P.; He, X.; Li, W.; Zhao, L.; Fang, W.; Chen, H.; Zhang, F.; Zhang, W.; Wang, W. Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. J. Mater. Sci. 2018, 53, 12016–12029. [Google Scholar] [CrossRef]
- Portella, E.H.; Romanzini, D.; Angrizani, C.C.; Amico, S.C.; Zattera, A.J. Influence of Stacking Sequence on the Mechanical and Dynamic Mechanical Properties of Cotton/Glass Fiber Reinforced Polyester Composites. Mater. Res. 2016, 19, 542–547. [Google Scholar] [CrossRef]
- Chung, C.; Lee, M.; Choe, E.K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004, 58, 417–420. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Zhang, Q.; Wang, K.; Carmalt, C.J.; Parkin, I.P.; Zhang, Z.; Zhang, X. Durable fire retardant, superhydrophobic, abrasive resistant and air/UV stable coatings. J. Colloid Interface Sci. 2020, 582, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.A.A.; Clark, H.C. Chemistry of the trifluoromethyl group: Part V. Infrared spectra of some phosphorus compounds containing CF3. Can. J. Chem. 1962, 40, 393–398. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, C.; Tan, B.; Xu, D.; Wang, Y.; Qi, T. Application of a Sustainable Bioderived Solvent (Biodiesel) for Phenol Extraction. ACS Omega 2019, 4, 10431–10437. [Google Scholar] [CrossRef]
- Eid, M.M. Characterization of Nanoparticles by FTIR and FTIR-Microscopy. In Handbook of Consumer Nanoproducts; Springer Nature: Singapore, 2021. [Google Scholar] [CrossRef]
- Wan, C.; Liu, M.; Liu, S.; Chen, Y.; Zhang, G.; Zhang, F. An efficient and durable DOPO/H3PO4-based flame retardant for cotton fabric. Cellulose 2021, 28, 7421–7434. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Moltó, J.; Font, R.; Conesa, J.A.; Martín-Gullón, I. Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. J. Anal. Appl. Pyrolysis 2006, 76, 124–131. [Google Scholar] [CrossRef]
- Kim, M.L.; Otal, E.H.; Hinestroza, J.P. Cellulose meets reticular chemistry: Interactions between cellulosic substrates and metal–organic frameworks. Cellulose 2019, 26, 123–137. [Google Scholar] [CrossRef]
Sample | Dip-Dry (Cycles) | W0 (g) | W1 (g) | Add. wt (%) |
---|---|---|---|---|
CO/DOPO-HQ@Zr-MOF-1 | 1 | 5.68 | 5.84 | 2.82 |
CO/DOPO-HQ@Zr-MOF-10 | 10 | 5.82 | 6.52 | 12.03 |
T10% (°C) | Stage 1 | Stage 2 | Residue at 800 °C (wt%) | |||
---|---|---|---|---|---|---|
Sample | Tmax (°C) | Rmax (wt%/min) | Tmax (°C) | Rmax (wt%/min) | ||
Untreated cotton | 318.5 | 341.6 | 37.6 | 479 | 93.4 | −1.21 |
CO/DOPO-HQ@Zr-MOF-1 | 305.9 | 321.9 | 37.8 | 485 | 90 | 0.77 |
CO/DOPO-HQ@Zr-MOF-10 | 296.8 | 320.2 | 38.8 | 484.5 | 76.4 | 4.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Lis, M.J.; Hinestroza, J.P. Fire Performance of Cotton Fabrics Coated with 10-(2,5-Dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide (DOPO-HQ) Zr-Based Metal-Organic Frameworks. Polymers 2023, 15, 4379. https://doi.org/10.3390/polym15224379
Wu Q, Lis MJ, Hinestroza JP. Fire Performance of Cotton Fabrics Coated with 10-(2,5-Dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide (DOPO-HQ) Zr-Based Metal-Organic Frameworks. Polymers. 2023; 15(22):4379. https://doi.org/10.3390/polym15224379
Chicago/Turabian StyleWu, Qiuyue, Manuel José Lis, and Juan P. Hinestroza. 2023. "Fire Performance of Cotton Fabrics Coated with 10-(2,5-Dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide (DOPO-HQ) Zr-Based Metal-Organic Frameworks" Polymers 15, no. 22: 4379. https://doi.org/10.3390/polym15224379
APA StyleWu, Q., Lis, M. J., & Hinestroza, J. P. (2023). Fire Performance of Cotton Fabrics Coated with 10-(2,5-Dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide (DOPO-HQ) Zr-Based Metal-Organic Frameworks. Polymers, 15(22), 4379. https://doi.org/10.3390/polym15224379