Effects of Additives on the Mechanical and Fire Resistance Properties of Pultruded Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source Materials
2.2. Pultrusion Setup
2.3. Fire Behavior
2.3.1. Combustibility
2.3.2. Ignitability
2.3.3. Smoke Generation Index
2.3.4. Toxicity of Combustion Products
2.3.5. Material Flammability
2.3.6. Flame Spread Index
2.4. Material Characterization
3. Results
3.1. Resin Reactivity
3.2. Manufactured Materials
3.3. Mechanical Properties
3.4. Fire Behavior Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-reinforced polymer composites for construction—State-of-the-art review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Bank, L.C. Composites for Construction: Structural Design with FRP Materials; Wiley: Hoboken, NJ, USA, 2007; ISBN 0471681261. [Google Scholar]
- Bartus, S.D.; Vaidya, U.K.; Ulven, C.A. Design and development of a long fiber thermoplastic bus seat. J. Thermoplast. Compos. Mater. 2006, 19, 131–154. [Google Scholar] [CrossRef]
- Fortier, V.; Brunel, J.-E.; Lebel, L. Fastening composite structures using braided thermoplastic composite rivets. J. Compos. Mater. 2019, 54, 002199831986737. [Google Scholar] [CrossRef]
- Moskaleva, A.; Gusev, S.; Konev, S.; Sergeichev, I.; Safonov, A.; Hernandez-Montes, E. Composite freeform shell structures: Design, construction and testing. Compos. Struct. 2023, 306, 116603. [Google Scholar] [CrossRef]
- Vaidya, U.K.; Chawla, K.K. Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. 2008, 53, 185–218. [Google Scholar] [CrossRef]
- Quadrino, A.; Penna, R.; Feo, L.; Nisticò, N. Mechanical characterization of pultruded elements: Fiber orientation influence vs web-flange junction local problem. Experimental and numerical tests. Compos. Part B Eng. 2018, 142, 68–84. [Google Scholar] [CrossRef]
- Ding, L.; Liu, L.; Wang, X.; Shen, H.; Wu, Z. Effects of connecting materials on the static and fatigue behavior of pultruded basalt fiber-reinforced polymer bolted joints. Constr. Build. Mater. 2021, 273, 121683. [Google Scholar] [CrossRef]
- Volk, M.; Wong, J.; Arreguin, S.; Ermanni, P. Pultrusion of large thermoplastic composite profiles up to Ø 40 mm from glass-fibre/PET commingled yarns. Compos. Part B Eng. 2021, 227, 109339. [Google Scholar] [CrossRef]
- Madenci, E.; Özkılıç, Y.O.; Gemi, L. Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations. Compos. Struct. 2020, 254, 112806. [Google Scholar] [CrossRef]
- Ueda, M.; Ui, N.; Ohtani, A. Lightweight and anti-corrosive fiber reinforced thermoplastic rivet. Compos. Struct. 2018, 188, 356–362. [Google Scholar] [CrossRef]
- Starr, T. Pultrusion for Engineers; Woodhead Publishing: Sawston, UK, 2000; ISBN 9781855738881. [Google Scholar]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Pultruded materials and structures: A review. J. Compos. Mater. 2020, 54, 4081–4117. [Google Scholar] [CrossRef]
- Volk, M.; Yuksel, O.; Baran, I.; Hattel, J.H.; Spangenberg, J.; Sandberg, M. Cost-efficient, automated, and sustainable composite profile manufacture: A review of the state of the art, innovations, and future of pultrusion technologies. Compos. Part B Eng. 2022, 246, 110135. [Google Scholar] [CrossRef]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic pultrusion: A review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Vedernikov, A.; Gemi, L.; Madenci, E.; Onuralp Özkılıç, Y.; Yazman, Ş.; Gusev, S.; Sulimov, A.; Bondareva, J.; Evlashin, S.; Konev, S.; et al. Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates. Compos. Struct. 2022, 301, 116216. [Google Scholar] [CrossRef]
- Fairuz, A.M.; Sapuan, S.M.; Zainudin, E.S.; Jaafar, C.N.A. Polymer composite manufacturing using a pultrusion process: A review. Am. J. Appl. Sci. 2014, 11, 1798–1810. [Google Scholar] [CrossRef]
- Minchenkov, K.; Vedernikov, A.; Kuzminova, Y.; Gusev, S.; Sulimov, A.; Gulyaev, A.; Kreslavskaya, A.; Prosyanoy, I.; Xian, G. Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates. Compos. Commun. 2022, 35, 101281. [Google Scholar] [CrossRef]
- Minchenkov, K.; Gusev, S.; Sulimov, A.; Sergeichev, I.; Safonov, A. Experimental and numerical analyses of the thermoplastic pultrusion of large structural profiles. Mater. Des. 2023, 232, 112149. [Google Scholar] [CrossRef]
- Korotkov, R.; Vedernikov, A.; Gusev, S.; Alajarmeh, O.; Akhatov, I.; Safonov, A. Shape memory behavior of unidirectional pultruded laminate. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106609. [Google Scholar] [CrossRef]
- Safonov, A.A.; Suvorova, Y.V. Optimization of the pultrusion process for a rod with a large diameter. J. Mach. Manuf. Reliab. 2009, 38, 572–578. [Google Scholar] [CrossRef]
- Vedernikov, A.; Tucci, F.; Carlone, P.; Gusev, S.; Konev, S.; Firsov, D.; Akhatov, I.; Safonov, A. Effects of pulling speed on structural performance of L-shaped pultruded profiles. Compos. Struct. 2021, 255, 112967. [Google Scholar] [CrossRef]
- Baran, I.; Akkerman, R.; Hattel, J.H. Modelling the pultrusion process of an industrial L-shaped composite profile. Compos. Struct. 2014, 118, 37–48. [Google Scholar] [CrossRef]
- Chotard, T.J.; Pasquiet, J.; Benzeggagh, M.L. Residual performance of scarf patch-repaired pultruded shapes initially impact damaged. Compos. Struct. 2001, 53, 317–331. [Google Scholar] [CrossRef]
- Ascione, F.; Mancusi, G.; Spadea, S.; Lamberti, M.; Lebon, F.; Maurel-Pantel, A. On the flexural behaviour of GFRP beams obtained by bonding simple panels: An experimental investigation. Compos. Struct. 2015, 131, 55–65. [Google Scholar] [CrossRef]
- Alajarmeh, O.; Zeng, X.; Aravinthan, T.; Shelley, T.; Alhawamdeh, M.; Mohammed, A.; Nicol, L.; Vedernikov, A.; Safonov, A.; Schubel, P. Compressive behaviour of hollow box pultruded FRP columns with continuous-wound fibres. Thin-Walled Struct. 2021, 168, 108300. [Google Scholar] [CrossRef]
- Jiangtao, Y.; Yichao, W.; Kexu, H.; Kequan, Y.; Jianzhuang, X. The performance of near-surface mounted CFRP strengthened RC beam in fire. Fire Saf. J. 2017, 90, 86–94. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Bhatt, P.P.; Naser, M.Z. High temperature properties of fiber reinforced polymers and fire insulation for fire resistance modeling of strengthened concrete structures. Compos. Part B Eng. 2019, 175, 107104. [Google Scholar] [CrossRef]
- Buchanan, A.H. Structural Design for Fire Safety; John Wiley & Sons, Ltd.: Chichester, UK, 2001; ISBN 9780470972892. [Google Scholar]
- Bisby, L.A.; Green, M.F.; Kodur, V.K.R. Response to fire of concrete structures that incorporate FRP. Prog. Struct. Eng. Mater. 2005, 7, 136–149. [Google Scholar] [CrossRef]
- Morgan, A.B. The Future of Flame Retardant Polymers—Unmet Needs and Likely New Approaches. Polym. Rev. 2019, 59, 25–54. [Google Scholar] [CrossRef]
- Correia, J.R.; Bai, Y.; Keller, T. A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications. Compos. Struct. 2015, 127, 267–287. [Google Scholar] [CrossRef]
- Correia, J.R.; Branco, F.A.; Ferreira, J.G. The effect of different passive fire protection systems on the fire reaction properties of GFRP pultruded profiles for civil construction. Compos. Part A Appl. Sci. Manuf. 2010, 41, 441–452. [Google Scholar] [CrossRef]
- Clarke, J. Structural Design of Polymer Composites—Eurocomp Design Code and Background Document; E & N Spon: London, UK, 1996. [Google Scholar]
- Bai, Y.; Keller, T.; Vallée, T. Modeling of stiffness of FRP composites under elevated and high temperatures. Compos. Sci. Technol. 2008, 68, 3099–3106. [Google Scholar] [CrossRef]
- Bai, Y.; Post, N.L.; Lesko, J.J.; Keller, T. Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites. Thermochim. Acta 2008, 469, 28–35. [Google Scholar] [CrossRef]
- Correia, J.R.; Gomes, M.M.; Pires, J.M.; Branco, F.A. Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment. Compos. Struct. 2013, 98, 303–313. [Google Scholar] [CrossRef]
- Bai, Y.; Keller, T. Modeling of Strength Degradation for Fiber-reinforced Polymer Composites in Fire. J. Compos. Mater. 2009, 43, 2371–2385. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials. Solid Mechanics and Its Applications; Springer: Dordrecht, The Netherlands, 2006; ISBN 9781402053559. [Google Scholar]
- Mouritz, A.P.; Mathys, Z. Post-fire mechanical properties of glass-reinforced polyester composites. Compos. Sci. Technol. 2001, 61, 475–490. [Google Scholar] [CrossRef]
- Ohlemiller, T.J.; Shields, J.R. The effect of surface coatings on fire growth over composite materials in a corner configuration. Fire Saf. J. 1999, 32, 173–193. [Google Scholar] [CrossRef]
- Jian, R.; Wang, P.; Xia, L.; Yu, X.; Zheng, X.; Shao, Z. Low-flammability epoxy resins with improved mechanical properties using a Lewis base based on phosphaphenanthrene and 2-aminothiazole. J. Mater. Sci. 2017, 52, 9907–9921. [Google Scholar] [CrossRef]
- Wei, S.M. Application study of FRTP materials in the civil engineering products. Appl. Mech. Mater. 2013, 395–396, 447–450. [Google Scholar] [CrossRef]
- Jia, X.-W.; Mu, W.-L.; Shao, Z.-B.; Xu, Y.-J. Flame-Retardant Cycloaliphatic Epoxy Systems with High Dielectric Performance for Electronic Packaging Materials. Int. J. Mol. Sci. 2023, 24, 2301. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Ashrafi, H.; Bazli, M.; Ozbakkaloglu, T. Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries. Compos. Struct. 2019, 223, 110959. [Google Scholar] [CrossRef]
- Lyon, R.E.; Balaguru, P.N.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovics, M. Fire-resistant aluminosilicate composites. Fire Mater. 1997, 21, 67–73. [Google Scholar] [CrossRef]
- Dodds, N.; Gibson, A.G.; Dewhurst, D.; Davies, J.M. Fire behaviour of composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 689–702. [Google Scholar] [CrossRef]
- Correia, J.R.; Branco, F.A.; Ferreira, J.G.; Bai, Y.; Keller, T. Fire protection systems for building floors made of pultruded GFRP profiles: Part 1: Experimental investigations. Compos. Part B Eng. 2010, 41, 617–629. [Google Scholar] [CrossRef]
- Seraji, S.M.; Song, P.; Varley, R.J.; Bourbigot, S.; Voice, D.; Wang, H. Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. Chem. Eng. J. 2022, 430, 132785. [Google Scholar] [CrossRef]
- Hörold, S. Phosphorus flame retardants in thermoset resins. Polym. Degrad. Stab. 1999, 64, 427–431. [Google Scholar] [CrossRef]
- Laoutid, F.; Lorgouilloux, M.; Lesueur, D.; Bonnaud, L.; Dubois, P. Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polym. Degrad. Stab. 2013, 98, 1617–1625. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The fire retardant behaviour of huntite and hydromagnesite—A review. Polym. Degrad. Stab. 2010, 95, 2213–2225. [Google Scholar] [CrossRef]
- Ahmad, R.; Ha, J.H.; Song, I.H. Fabrication of self-setting Al(OH)3 foams for potential fire-retarding applications. Mater. Lett. 2015, 139, 252–254. [Google Scholar] [CrossRef]
- Othmer, K. Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2001; ISBN 9780471484943. [Google Scholar]
- Lu, H.; Song, L.; Hu, Y. A review on flame retardant technology in China. Part II: Flame retardant polymeric nanocomposites and coatings. Polym. Adv. Technol. 2011, 22, 379–394. [Google Scholar] [CrossRef]
- Reuter, J.; Greiner, L.; Schönberger, F.; Döring, M. Synergistic flame retardant interplay of phosphorus containing flame retardants with aluminum trihydrate depending on the specific surface area in unsaturated polyester resin. J. Appl. Polym. Sci. 2019, 136, 47270. [Google Scholar] [CrossRef]
- Hull, T.R.; Witkowski, A.; Hollingbery, L. Fire retardant action of mineral fillers. Polym. Degrad. Stab. 2011, 96, 1462–1469. [Google Scholar] [CrossRef]
- Bourbigot, S.; Le Bras, M.; Duquesne, S.; Rochery, M. Recent Advances for Intumescent Polymers. Macromol. Mater. Eng. 2004, 289, 499–511. [Google Scholar] [CrossRef]
- Bourbigot, S.; Duquesne, S. Fire retardant polymers: Recent developments and opportunities. J. Mater. Chem. 2007, 17, 2283. [Google Scholar] [CrossRef]
- Tavares Teles Araujo, P.; Pereira da Silva Ribeiro, S.; Landesmann, A. Experimental evaluation of tri-hydrated aluminium in fire-retardant properties of glass fibre reinforced polymers. Fire Mater. 2022, 46, 1000–1010. [Google Scholar] [CrossRef]
- Copeland, D. Optimizing composite design to meet flame retardant requirements in pultruded parts. In Proceedings of the CAMX 2018—Composites and Advanced Materials Expo, Dallas, TX, USA, 18 October 2018. [Google Scholar]
- Rowen, J.B. Composite flame retardant and smoke suppressing surfacing mat. In Proceedings of the International SAMPE Symposium and Exhibition (Proceedings), Long Beach, CA, USA, 11–15 May 2003; Volume 48 II. [Google Scholar]
- Sommer, M.; Schowe, H.; Hörold, S. New formulations for flame retardant halogene-free pultrusion profiles. SAMPE J. 2001, 37, 30–37. [Google Scholar]
- Ma, C.C.M.; Lee, C.T.; Wu, H. Der Mechanical properties, thermal stability, and flame retardance of pultruded fiber-reinforced poly(ethylene oxide)-toughened novolak-type phenolic resin. J. Appl. Polym. Sci. 1998, 69, 1129–1136. [Google Scholar] [CrossRef]
- Chen, C.H. Pultruded glass fiber reinforced brominated-epoxy composites: Dynamic mechanical and flame retardant properties. Mod. Phys. Lett. B 2020, 34, 2040015. [Google Scholar] [CrossRef]
- Bishop, G.R.; Sheard, P.A. Fire-resistant composites for structural sections. Compos. Struct. 1992, 21, 85–89. [Google Scholar] [CrossRef]
- Petersen, M.R.; Chen, A.; Roll, M.; Jung, S.J.; Yossef, M. Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler. Compos. Part B Eng. 2015, 78, 109–121. [Google Scholar] [CrossRef]
- Vedernikov, A.; Nasonov, Y.; Korotkov, R.; Gusev, S.; Akhatov, I.; Safonov, A. Effects of additives on the cure kinetics of vinyl ester pultrusion resins. J. Compos. Mater. 2021, 55, 2921–2937. [Google Scholar] [CrossRef]
- Federal Law of Russian Federation No. 123-FZ of July 22, 2008 (as Amended on December 27, 2018) “Technical Regulations on Fire Safety Requirements”. Available online: http://www.kremlin.ru/acts/bank/27899 (accessed on 8 August 2023).
- GOST 30244-94; Building Materials. Methods for Combustibility Test. Ministry of Construction of Russia: Moscow, Russia, 1994.
- GOST 30402-96; Building Materials. Ignitability Test Method. Ministry of Construction of Russia: Moscow, Russia, 1996.
- GOST 12.1.044-89; Occupational Safety Standards System. Fire and Explosion Hazard of Substances and Materials. Nomenclature of Indices and Methods of Their Determination. Ministry of Construction of Russia: Moscow, Russia, 1989; p. 100.
- ASTM D6641/D6641M-16; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. ASTM: West Conshohocken, PA, USA, 2017.
- EN ISO 527-5:2009; Plastics—Determination of tensile properties—Part 5: Test conditions for unidirectional fibre-reinforced plastic composites. ISO: Geneva, Switzerland, 2009.
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D2344/D2344M-16; Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D 24-71-99; Standard Test Method for Gel Time and Peak Exothermic Temperature of Reacting Thermosetting Resins. ASTM: West Conshohocken, PA, USA, 2000.
- Evans, D. Profile design, specification, properties and related matters. In Pultrusion for Engineers; Elsevier: Amsterdam, The Netherlands, 2000; pp. 66–96. [Google Scholar]
- Novo, P.J.; Silva, J.F.; Nunes, J.P.; Marques, A.T. Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos. Part B Eng. 2016, 89, 328–339. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. Thermal decomposition, combustion and flame-retardancy of epoxy resins? A review of the recent literature. Polym. Int. 2004, 53, 1901–1929. [Google Scholar] [CrossRef]
- Luda, M.P.; Balabanovich, A.I.; Camino, G. Thermal decomposition of fire retardant brominated epoxy resins. J. Anal. Appl. Pyrolysis 2002, 65, 25–40. [Google Scholar] [CrossRef]
Resin Mixture | Components | ||||||||
---|---|---|---|---|---|---|---|---|---|
Atlac 430 | Devinil 950 TG | Trigonox C | Percadox 16 | BYK-A555 | Zinc Stearate | Alumina Trihydrate | BYK-W996 | Triphenyl Phosphate | |
I | 23.39 (93) * | - | 0.36 (1.4) | 1.22 (4.9) | 0.07 (0.3) | 0.09 (0.4) | - | - | - |
II | - | 23.39 (93) | 0.36 (1.4) | 1.22 (4.9) | 0.07 (0.3) | 0.09 (0.4) | - | - | - |
III | - | 23.57 (72) | 0.36 (1) | 1.24 (4) | 0.07 (0.2) | 0.09 (0.3) | 7.07 (22) | 0.14 (0.4) | - |
IV | - | 23.81 (48) | 0.36 (0.1) | 1.24 (3) | 0.07 (0.01) | 0.10 (0.02) | 23.81 (48) | 0.48 (1) | - |
V | - | 23.81 (46) | 0.36 (0.1) | 1.24 (2) | 0.07(0.01) | 0.10 (0.01 | 23.81 (46) | 0.48 (1) | 2.38 (5) |
Additive effect | Resin | Resin | Initiator | Initiator | Deaerator | Friction reducer | Flame retardant | Wetting, dispersing | Flame retardant |
Fire Hazard Properties of Construction Materials | Fire Hazard Class of Construction Materials, with Corresponding Group Rating | |||||
---|---|---|---|---|---|---|
KM0 | KM1 | KM2 | KM3 | KM4 | KM5 | |
Combustibility | NG | G1 | G1 | G2 | G3 | G4 |
Ignitability | - | B1 | B2 | B2 | B2 | B3 |
Smoke generation | - | D2 | D2 | D3 | D3 | D3 |
Toxicity | - | Т2 | Т2 | Т2 | Т3 | Т4 |
Flame spread | - | RP1 | RP1 | RP2 | RP2 | RP4 |
Material Combustibility Group | Flue Gas Temperature, °C | Damaged Length Ratio, % | Mass Loss, % | After-Flame Time, s |
---|---|---|---|---|
G1 | T ≤ 135 | ≤ 65 | ≤ 20 | = 0 |
G2 | T ≤ 235 | ≤ 85 | ≤ 50 | ≤ 30 |
G3 | T ≤ 450 | > 85 | ≤ 50 | ≤ 300 |
G4 | T > 450 | > 85 | > 50 | > 300 |
Group | Heat Flux Density, kW/m2 |
---|---|
B1 | ≥ 35 |
B2 | 20 < q < 35 |
B3 | < 20 |
Group | Smoke Generation Index, m2/kg |
---|---|
D1 | < 50 |
D2 | < 500 |
D3 | > 500 |
Toxicity Groups | Toxicity Index Depending on Exposure Time | |||
---|---|---|---|---|
5 min | 15 min | 30 min | 60 min | |
T1 (Low hazard) | > 210 | > 150 | > 120 | > 90 |
T2 (Moderate hazard) | 70 < ≤ 210 | 50 < ≤ 150 | 40 < ≤ 120 | 30 < ≤ 90 |
T3 (High hazard) | 25 < ≤ 70 | 17 < ≤ 50 | 13 < ≤ 40 | 10 < ≤ 30 |
T4 (Extreme hazard) | < 25 | < 17 | < 13 | < 10 |
Group | Subgroup | Temperature Change (∆tmax), °C | Mass Loss (∆m), % | Time (τ), min |
---|---|---|---|---|
Non-flammable | - | < 60 | < 60 | - |
Flammable | Poorly flammable | ≥ 60 | ≥ 60 | > 4 |
Moderately flammable | ≤ 4 | |||
Highly flammable | ≤ 0.5 |
Group | Flame Spread Index |
---|---|
Non-spreading | = 0 |
Slowly spreading | ≤ 20 |
Rapidly spreading | > 20 |
PRM-I | PRM-II | PRM-III | PRM-IV | PRM-V | |
---|---|---|---|---|---|
Matrix | 0.37 | 0.37 | 0.36 | 0.37 | 0.37 |
Additives | - | - | 0.05 | 0.17 | 0.20 |
Reinforcement | 0.63 | 0.63 | 0.59 | 0.46 | 0.43 |
Number of rovings | 62 | 62 | 56 | 37 | 32 |
Property | PRM-I | PRM-II | PRM-III | PRM-IV | PRM-V | |
---|---|---|---|---|---|---|
Longitudinal | Tensile strength (MPa) | 934 ± 47 | 868 ± 34 | 768 ± 26 | 550 ± 41 | 550 ± 55 |
Tensile modulus (GPa) | 44.3 ± 1.2 | 44.8 ± 1.7 | 42.0 ± 1.5 | 33.4 ± 9.0 | 31.6 ± 1.9 | |
Tensile modulus theoretical (GPa) | 44.5 | 44.5 | 41.3 | 30.9 | 28.2 | |
Compressive strength (MPa) | 568 ± 70 | 394 ± 62 | 510 ± 49 | 423 ± 43 | 436 ± 61 | |
Compressive modulus (GPa) | 42.7 ± 2.3 | 47.6 ± 4.5 | 44.2 ± 1.4 | 31.7 ± 1.8 | 32.4 ± 1.6 | |
Flexural strength (MPa) | 851 ± 78 | 540 ± 89 | 550 ± 64 | 436 ± 67 | 507 ± 57 | |
Flexural modulus (GPa) | 32.4 ± 2.1 | 32.4 ± 2.4 | 32.5 ± 1.9 | 21.8 ± 1.2 | 22.8 ± 0.8 | |
ILSS (MPa) | 33.1 ± 2.9 | 16.0 ± 1.4 | 23.5 ± 1.5 | 30.6 ± 3.0 | 26.8 ± 1.3 | |
Transversal | Tensile strength (MPa) | 124 ± 12 | 119 ± 10 | 105 ± 12 | 128 ± 16 | 102 ± 31 |
Tensile modulus (GPa) | 8.5 ± 0.4 | 6.4 ± 0.2 | 6.9 ± 0.4 | 7.0 ± 0.6 | 7.9 ± 0.9 | |
Compressive strength (MPa) | 119 ± 14 | 80 ± 12 | 88 ± 8 | 80 ± 10 | 71 ± 10 | |
Compressive modulus (GPa) | 11.5 ± 0.8 | 10.8 ± 1.7 | 11.0 ± 1.1 | 11.1 ± 0.9 | 10.4 ± 1.2 | |
Flexural strength (MPa) | 258 ± 24 | 120 ± 11 | 283 ± 30 | 182 ± 28 | 182 ± 24 | |
Flexural modulus (GPa) | 19.7 ± 1.2 | 18.9 ± 1.8 | 34.3 ± 2.0 | 17.7 ± 1.2 | 17.9 ± 1.2 | |
ILSS (MPa) | 13.0 ± 2.4 | 14.8 ± 4.9 | 27.0 ± 9.2 | 12 ± 2.4 | 11.3 ± 2.6 | |
Fiber volume fraction | 0.63 | 0.63 | 0.59 | 0.46 | 0.43 |
Material | Flue Gas Temperature, °C | Damaged Length Ratio, % | Mass Loss, % | After-Flame Time, s | Combustibility Group |
---|---|---|---|---|---|
PRM-I | T = 427 (G3) | SL = 100 (G3) | SM = 13 (G1) | = 0 (G1) | G3 |
PRM-II | T = 59 (G1) | SL = 32 (G1) | SM = 4 (G1) | = 0 (G1) | G1 |
PRM-III | T ≤ 59 (G1) | SL > 29 (G1) | SM = 4 (G1) | ≤ 0 (G1) | G1 |
PRM-IV | T > 57 (G1) | SL > 28 (G1) | SM = 4 (G1) | > 0 (G1) | G1 |
PRM-V | T > 58 (G1) | SL > 25 (G1) | SM = 3 (G1) | > 0 (G1) | G1 |
Material | Heat Flux Density, kW/m2 | Flammability Group |
---|---|---|
PRM-I | q = 20 (B2) | B2 |
PRM-II | q = 20 (B2) | B2 |
PRM-III | q = 20 (B2) | B2 |
PRM-IV | q = 30 (B2) | B2 |
PRM-V | q =25 (B2) | B2 |
Material | Smoke Generation Index, m2/kg | Group |
---|---|---|
PRM-I | Dm = 226 | D2 |
PRM-II | Dm = 340 | D2 |
PRM-III | Dm = 325 | D2 |
PRM-IV | Dm = 241 | D2 |
PRM-V | Dm = 281 | D2 |
Material | Toxicity Index | Toxicity Groups |
---|---|---|
PRM-I | H = 65 | T2 |
PRM-II | H = 72 | T2 |
PRM-III | H = 67 | T2 |
PRM-IV | H = 70 | T2 |
PRM-V | H = 71 | T2 |
Material | Flame Spread Index | Group |
---|---|---|
PRM-I | = 7.2 | Slowly spreading |
PRM-II | = 8.8 | Slowly spreading |
PRM-III | = 7.9 | Slowly spreading |
PRM-IV | = 1.9 | Slowly spreading |
PRM-V | = 2.7 | Slowly spreading |
Material | ), °C | ), % | ), s | Group, Subgroup |
---|---|---|---|---|
PRM-I | = 195 | = 19.5 | = 133 | Flammable, moderately flammable |
PRM-II | = 47 | = 19.1 | = 300 | Non-flammable |
PRM-III | = 68 | = 18.1 | = 107 | Flammable, moderately flammable |
PRM-IV | = 57 | = 18.5 | = 300 | Non-flammable |
PRM-V | = 58 | = 20.9 | = 300 | Non-flammable |
Property | PRM-I | PRM-II | PRM-III | PRM-IV | PRM-V |
---|---|---|---|---|---|
Combustibility | G3 | G1 | G1 | G1 | G1 |
Ignitability | B2 | B2 | B2 | B2 | B2 |
Smoke generation | D2 | D2 | D2 | D2 | D2 |
Toxicity | T2 | T2 | T2 | T2 | T2 |
Flame spread | Slowly spreading | Slowly spreading | Slowly spreading | Slowly spreading | Slowly spreading |
Flammability | Flammable, moderately flammable | Non-flammable | Flammable, moderately flammable | Non-flammable | Non-flammable |
Hazard class | KM4 | KM2 | KM2 | KM2 | KM2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanovskaia, N.; Minchenkov, K.; Gusev, S.; Klimova-Korsmik, O.; Safonov, A. Effects of Additives on the Mechanical and Fire Resistance Properties of Pultruded Composites. Polymers 2023, 15, 3581. https://doi.org/10.3390/polym15173581
Romanovskaia N, Minchenkov K, Gusev S, Klimova-Korsmik O, Safonov A. Effects of Additives on the Mechanical and Fire Resistance Properties of Pultruded Composites. Polymers. 2023; 15(17):3581. https://doi.org/10.3390/polym15173581
Chicago/Turabian StyleRomanovskaia, Natalia, Kirill Minchenkov, Sergey Gusev, Olga Klimova-Korsmik, and Alexander Safonov. 2023. "Effects of Additives on the Mechanical and Fire Resistance Properties of Pultruded Composites" Polymers 15, no. 17: 3581. https://doi.org/10.3390/polym15173581
APA StyleRomanovskaia, N., Minchenkov, K., Gusev, S., Klimova-Korsmik, O., & Safonov, A. (2023). Effects of Additives on the Mechanical and Fire Resistance Properties of Pultruded Composites. Polymers, 15(17), 3581. https://doi.org/10.3390/polym15173581