The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept
Abstract
:1. Introduction
2. Materials and Methods
Fabrication of the Double-Faced Woven Fabric
3. Results and Discussion
3.1. Wetting Time and Spreading Speed Property of the Substrate
3.2. Absorption Rate and Maximum Wetted Radius of the Substrate
3.3. Accumulative One-Way Transport Index of the Substrate
3.4. Finger Print of Moisture Management Properties and Classification of the Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bandodkar, A.J.; Jeerapan, I.; Wang, J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens. 2016, 1, 464–482. [Google Scholar] [CrossRef]
- Matzeu, G.; Florea, L.; Diamond, D. Advances in Wearable Chemical Sensor Design for Monitoring Biological Fluids. Sens. Actuators B Chem. 2015, 211, 403–418. [Google Scholar] [CrossRef]
- Garcia, D.E.; Chen, T.-H.; Wei, F.; Ho, C.-M. A Parametric Design Study of an Electrochemical Sensor; Razeghi, M., Mohseni, H., Eds.; SPIE: San Diego, CA, USA, 2009; p. 73970R. [Google Scholar]
- Su, Y. Effect of Configuration of Protective Fabrics on Thermal Protective Performance under Steam Exposure. J. Fiber Bioeng. Inform. 2017, 10, 201–209. [Google Scholar] [CrossRef]
- Atmaca, M.; Dal, V.; Yılmaz, A. Ahmet Berk Berk Kurtulus Investigation of the Effects of Fabric Parameters on Air Permeability of Woolen Fabrics. Text. Res. J. 2015, 85, 2099–2107. [Google Scholar] [CrossRef]
- Maes, D. Applications of Distance Fabrics and Multiple Layer Weaves in Technical Textiles. 2011. Available online: https://www.researchgate.net/publication/293338397_Multi-layered_fabrics_offer_more_technical_possibilities (accessed on 8 October 2023).
- Teyeme, Y.; Malengier, B.; Tesfaye, T.; Vasile, S.; Van Langenhove, L. Comparative Analysis of Thermophysiological Comfort-Related Properties of Elastic Knitted Fabrics for Cycling Sportswear. Materials 2020, 13, 4024. [Google Scholar] [CrossRef] [PubMed]
- Syed, U.; Jhatial, R.A.; Peerzada, M.H. Influence of Warp Yarn Tension on Cotton Woven Fabric Structures. Mehran Univ. Res. J. Eng. Technol. 2013, 32, 125–132. [Google Scholar]
- Perera, Y.S.; Muwanwella, R.M.H.W.; Fernando, P.R.; Fernando, S.K.; Jayawardana, T.S.S. Evolution of 3D Weaving and 3D Woven Fabric Structures. Fash. Text. 2021, 8, 11. [Google Scholar] [CrossRef]
- Ahmad, Z. Tensile Behavior of Basalt/Glass Single and Multilayer-Woven Fabrics. J. Text. Inst. 2018, 109, 686–694. [Google Scholar] [CrossRef]
- Bilisik, K.; Karaduman, N.S.; Bilisik, N.E. 3D Fabrics for Technical Textile Applications. In Non-Woven Fabrics; Jeon, H.-Y., Ed.; InTech: Sydney, Australia, 2016; ISBN 978-953-51-2271-5. [Google Scholar]
- Baskan, H.; Acikgoz, H.; Atakan, R.; Eryuruk, H.; Akalın, N.; Kose, H.; Li, Y.; Kursun Bahadir, S.; Kalaoglu, F. Running Functional Sport Vest and Short for E-Textile Applications. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 072004. [Google Scholar] [CrossRef]
- Das, S. Study on comfort properties of different woven fabric. Int. J. Manag. Appl. Sci. 2016, 2, 5. [Google Scholar]
- Conway, R. Coating of Textiles. In Handbook of Technical Textiles; Elsevier: Amsterdam, The Netherlands, 2016; pp. 211–229. ISBN 978-1-78242-458-1. [Google Scholar]
- Petrusic, S.; Onofrei, E.; Bedek, G.; Codau, C.; Dupont, D.; Soulat, D. Moisture Management of Underwear Fabrics and Linings of Firefighter Protective Clothing Assemblies. J. Text. Inst. 2015, 106, 1270–1281. [Google Scholar] [CrossRef]
- Chattopadhyay, R.; Sinha, S.K. A study on spinning limits and yarn properties with progressive change in yarn count in friction spinning. AUTEX Res. J. 2007, 7, 8. [Google Scholar]
- AATCC TM 195-2011; Test Method for Liquid Moisture Management Properties of Textile Fabrics. AATCC: Research Triangle Park, NC, USA, 2011.
- Razzaque, A.; Tesinova, P.; Hes, L.; Salacova, J.; Abid, H.A. Investigation on Hydrostatic Resistance and Thermal Performance of Layered Waterproof Breathable Fabrics. Fibers Polym. 2017, 18, 1924–1930. [Google Scholar] [CrossRef]
- Özdïl, N.; ÖzçelïK, G.; Süpüren, G.; Průchová, J. A study on the moisture transport properties of the cotton knitted fabrics in single jersey structure. Tekstil Ve Konfeksiyon 2009, 19, 218–223. [Google Scholar]
- Brnada, S.; Pušić, T.; Dekanić, T.; Kovačević, S. Impact of Fabric Construction on Adsorption and Spreading of Liquid Contaminations. Materials 2022, 15, 1998. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Li, Y.; Liu, Y.; Ma, Y.; Cheng, L.; Hu, Y. Effect of Weaving Structures on the Water Wicking–Evaporating Behavior of Woven Fabrics. Polymers 2020, 12, 422. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, M. Moisture Management Properties of Seersucker Woven Fabrics of Different Structure. Fibres Text. East. Eur. 2019, 27, 43–50. [Google Scholar] [CrossRef]
- Rouhani, S.T.; Fashandi, H. Breathable Dual-Layer Textile Composed of Cellulose Dense Membrane and Plasma-Treated Fabric with Enhanced Comfort. Cellulose 2018, 25, 5427–5442. [Google Scholar] [CrossRef]
- Rv, A. Moisture Management Properties of Textiles and Its Evaluation. Curr. Trends Fash. Technol. Text. Eng. 2018, 3, 50–55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soekoco, A.S.; Mustafa, D.; Oktavian, D.; Bahtiar, F.; Martina, T.; Nugraha; Yuliarto, B. The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept. Polymers 2023, 15, 4579. https://doi.org/10.3390/polym15234579
Soekoco AS, Mustafa D, Oktavian D, Bahtiar F, Martina T, Nugraha, Yuliarto B. The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept. Polymers. 2023; 15(23):4579. https://doi.org/10.3390/polym15234579
Chicago/Turabian StyleSoekoco, Asril Senoaji, Dody Mustafa, Dinan Oktavian, Fahruk Bahtiar, Tina Martina, Nugraha, and Brian Yuliarto. 2023. "The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept" Polymers 15, no. 23: 4579. https://doi.org/10.3390/polym15234579
APA StyleSoekoco, A. S., Mustafa, D., Oktavian, D., Bahtiar, F., Martina, T., Nugraha, & Yuliarto, B. (2023). The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept. Polymers, 15(23), 4579. https://doi.org/10.3390/polym15234579