Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment
2.3. Enzymolysis
2.4. Analysis Method
2.4.1. Composition Analysis of Wheat Straw
2.4.2. Determination and Definition of the Enzyme Activity
2.4.3. Determination of the Main Detection Indexes
2.4.4. Establishment of the Fitting Equation
2.4.5. Scanning Electron Microscopy (SEM) Analysis
2.4.6. Fourier Transform Infrared Analysis (FT-IR)
2.4.7. The X-ray Diffraction (XRD) Sample Preparation and Crystallinity Analysis
3. Results and Discussion
3.1. Components of Wheat Straw
3.2. Enzyme Activity Determination at Different Temperatures and pH Values
3.3. Effect of Enzyme Treatment on the Reducing Sugar and Soluble Solid Contents
3.4. Box–Behnken Response Surface Methodology
3.5. Establishment of the Fitting Equation
- (1)
- Establishment of the fitting equation between the beating degree and reducing sugar content.
- (2)
- Establishment of the fitting equation between the beating degree and the soluble solids.
3.6. Scanning Electron Microscopy Analysis of the Pulping Effect
3.7. Infrared Analysis of the Pulping Effect
3.8. X-ray Diffraction Analysis of the Pulping Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nations, Food and Agriculture Organization of the United. Pulp and Paper Capacities, Survey 2019–2024/Capacités de la Pâte et du Papier, Enquête 2019–2024/Capacidades de Pulpa y Papel, Estudio 2019–2024. Available online: https://www.fao.org/home/en (accessed on 1 December 2023).
- China Paper Association. China Pulp and Paper Industry: Annual Report 2022. China Pulp Pap. Ind. 2023, 44, 21–30+26. [Google Scholar]
- Liu, Z.; Wang, H.; Hui, L. Pulping and Papermaking of Non-Wood Fibers. Pulp Pap. Process. 2018, 1, 4–31. [Google Scholar]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues: Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lu, Y.; Aguedo, M.; Jacquet, N.; Ouyang, C.; He, W.; Yan, C.; Bai, W.; Guo, R.; Goffin, D.; et al. Isolation of High-Purity Cellulose Nanofibers from Wheat Straw through the Combined Environmentally Friendly Methods of Steam Explosion, Microwave-Assisted Hydrolysis, and Microfluidization. ACS Sustain. Chem. Eng. 2017, 5, 6183–6191. [Google Scholar] [CrossRef]
- Ge, P.J.; Zhao, J.; Xu, J.; Qu, Y.B.; You, J.X. Changes of chemical composition and elements of wheat straw in the process of xylanase-alkali mechanical pulping. J. Cell. Sci. Technol. 2005, 1–7. [Google Scholar] [CrossRef]
- Kuang, S.J. Discussion on some problems of wheat straw pulp and paper making. China Pulp Pap. 1992, 6, 4–12. [Google Scholar]
- Chen, X.; Wang, Z.J.; Wang, J. Study on fiber morphology and chemical composition of four common broadleaf wood. Hunan Papermak. Process Technol. 2009, 1, 5–7. [Google Scholar]
- Sain, M.; Panthapulakkal, S. Bioprocess preparation of wheat straw fibers and their characterization. Ind. Crops Prod. 2006, 23, 1–8. [Google Scholar] [CrossRef]
- Khristova, P.; Kordsachia, O.; Patt, R.; Karar, I.; Khider, T. Environmentally friendly pulping and bleaching of bagasse. Ind. Crops Prod. 2006, 23, 131–139. [Google Scholar] [CrossRef]
- Hideno, A. Short-time alkaline peroxide pretreatment for rapid pulping and efficient enzymatic hydrolysis of rice straw. Bioresour. Technol. 2017, 230, 140–142. [Google Scholar] [CrossRef]
- Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J.M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr. Polym. 2013, 94, 154–169. [Google Scholar] [CrossRef]
- Kim, J.; Sunagawa, M.; Kobayashi, S.; Shin, T.; Takayama, C. Developmental localization of calcitonin gene-related peptide in dorsal sensory axons and ventral motor neurons of mouse cervical spinal cord. Neurosci. Res. 2016, 105, 42–48. [Google Scholar] [CrossRef]
- Yue, Y.; Han, J.; Han, G.; Zhang, Q.; French, A.D.; Wu, Q. Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: Morphology, crystallinity and percentage estimation. Carbohydr. Polym. 2015, 133, 438–447. [Google Scholar] [CrossRef]
- Grabber, J.H. How Do Lignin Composition, Structure, and Cross-Linking Affect Degradability? A Review of Cell Wall Model Studies. Crop Sci. 2005, 45, 820–831. [Google Scholar] [CrossRef]
- Singh, A.K.; Chandra, R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquat. Toxicol. 2019, 211, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Kellock, M.; Maaheimo, H.; Marjamaa, K.; Rahikainen, J.; Zhang, H.; Holopainen-Mantila, U.; Ralph, J.; Tamminen, T.; Felby, C.; Kruus, K. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresour. Technol. 2019, 280, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, B.S.; Decker, S.R.; Tucker, M.P.; Himmel, M.E.; Vinzant, T.B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 2008, 101, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Przybysz Buzała, K.; Kalinowska, H.; Borkowski, J.; Przybysz, P. Effect of xylanases on refining process and kraft pulp properties. Cellulose 2017, 25, 1319–1328. [Google Scholar] [CrossRef]
- Dukare, A.; Sharma, K.; Kautkar, S.; Dhakane-Lad, J.; Yadav, R.; Nadanathangam, V.; Saxena, S. Microbial xylanase aided biobleaching effect on multiple components of lignocelluloses biomass based pulp and paper: A review. Nord. Pulp Pap. Res. J. 2023, 38, 459–480. [Google Scholar] [CrossRef]
- Gil, N.; Gil, C.; Amaral, M.E.; Costa, A.P.; Duarte, A.P. Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochem. Eng. J. 2009, 46, 89–95. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, S.; Khatri, M.; Arya, S.K. Biobleaching for pulp and paper industry in India: Emerging enzyme technology. Biocatal. Agric. Biotechnol. 2019, 17, 558–565. [Google Scholar] [CrossRef]
- Tofani, G.; Cornet, I.; Tavernier, S. Multiple linear regression to predict the brightness of waste fbres mixtures before bleaching. Chem. Pap. 2022, 76, 4351–4365. [Google Scholar] [CrossRef]
- Adamopoulos, S.; Karageorgos, A.; Rapti, E.; Birbilis, D. Predicting the properties of corrugated base papers using multiple linear regression and artificial neural networks. Drew. Pract. Nauk. Doniesienia Komun. 2016, 59, 161–172. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of structural carbohydrates and lignin in biomass national renewable. Energy Lab. 2011, 10, 1–15. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.O.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass. Natl. Renew. Energy Lab. 2008, 1–6. [Google Scholar]
- Hames, B.; Scarlata, C.; Sluiter, A. Determination of Protein Content in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- GB/T 5513-2019; Grain and Oil Testing—Determination of Reducing Sugars and Non-Reducing Sugars in Grain. State Administration for Market Regulation; National Standardization Administration: Beijing, China, 2019. Available online: https://kns.cnki.net/kcms2/article/abstract?v=z-q19lQZUWEiNhWAfCSeAn5Fx0O7HB21hvvas22byeprisLplIuwl4nhmFgi8OKOQVJxVNtNlRYqc_j9hiCDzakGfh8CnamSWTzzgkdcZWGsbO650bJn_ji-OA5cJJfBPEstdnwpL9c=&uniplatform=NZKPT&language=CHS (accessed on 1 December 2023).
- GB/T 23874-2009; Determination of Xylanase Activity of Feed Additive—Spectropho-Tometric Method. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration of China: Beijing, China, 2009. Available online: https://kns.cnki.net/kcms2/article/abstract?v=z-q19lQZUWHhwGZb99SgUJgD3IMnTAym3TsV2-Hy0SRJMYojb3dC4MjETzgCn--o8MfFYgbc3ccH246_vLtAOFzrugMmN0W-wogOj-e--levO4BS6dCdZ_AqRFWsG5dk&uniplatform=NZKPT&language=CHS (accessed on 1 December 2023).
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Blanco, Á.; Negro, C.; Díaz, L.L.; Saarimaa, V.; Sundberg, A.; Holmbom, B.R. Influence of Thermostable Lipase Treatment of Thermomechanical Pulp (TMP) on Extractives and Paper Properties. Appita Technol. Innov. Manuf. Environ. 2009, 62, 113–117. [Google Scholar]
- Roncero, M.B.; Colom, J.F.; Vidal, T. Cellulose protection during ozone treatments of oxygen delignified. Carbohydr. Polym. 2003, 51, 243–254. [Google Scholar] [CrossRef]
- Duan, C.; Wang, X.; Zhang, Y.; Xu, Y.; Ni, Y. Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp. Bioresour. Technol. 2017, 224, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.D.; Neog, B.; Goswami, T. Xylanase enzyme production from Bacillus australimaris P5 for prebleaching of bamboo (Bambusa tulda) pulp. Mater. Chem. Phys. 2020, 243, 122227. [Google Scholar] [CrossRef]
Composition | Dezhou City, Shandong Province | Linfen City, Shanxi Province | Huaihua City, Anhui Province | Suqian City, Jiangsu Province | Puyang City, Henan Province |
---|---|---|---|---|---|
Cellulose (dry basis) | 47.09% | 34.47% | 47.15% | 36.06% | 41.90% |
Hemicellulose (dry basis) | 32.28% | 36.43% | 35.06% | 35.09% | 31.67% |
Lignin (dry basis) | 10.23% | 7.72% | 12.75% | 7.94% | 8.51% |
Pectin (dry basis) | 1.45% | 2.52% | 1.96% | 2.48% | 1.95% |
Ash (dry basis) | 8.94% | 4.89% | 4.18% | 5.47% | 8.51% |
Water content | 9.11% | 8.04% | 9.01% | 6.81% | 7.17% |
Protein | 2.01% | 2.86% | 1.27% | 2.51% | 3.09% |
crude fat | 0.40% | 0.20% | 0.40% | 0.20% | 0.10% |
a | ||||||
---|---|---|---|---|---|---|
Factor | Level | |||||
−1 | 0 | 1 | ||||
KOH dosage (%) | 1.5 | 2.0 | 2.5 | |||
Liquid solid ratio | 7 | 8 | 9 | |||
revolutions (r) | 2500 | 3000 | 3500 | |||
b | ||||||
Serial Number | KOH Dosage (%) | Liquid Solid Ratio | Revolutions (r) | Beating Degree (°SR) | ||
1 | 2.0 | 8 | 3000 | 37.75 | ||
2 | 2.0 | 8 | 3000 | 37.33 | ||
3 | 2.5 | 7 | 3000 | 34.00 | ||
4 | 1.5 | 7 | 3000 | 46.00 | ||
5 | 1.5 | 8 | 2500 | 47.33 | ||
6 | 2.0 | 7 | 3500 | 36.50 | ||
7 | 1.5 | 9 | 3000 | 39.75 | ||
8 | 2.0 | 8 | 3000 | 37.50 | ||
9 | 2.0 | 7 | 2500 | 44.33 | ||
10 | 2.0 | 9 | 2500 | 38.75 | ||
11 | 2.0 | 8 | 3000 | 37.50 | ||
12 | 2.5 | 9 | 3000 | 28.33 | ||
13 | 2.0 | 8 | 3000 | 38.00 | ||
14 | 2.5 | 8 | 2500 | 34.25 | ||
15 | 1.5 | 8 | 3500 | 39.33 | ||
16 | 2.0 | 9 | 3500 | 30.75 | ||
17 | 2.5 | 8 | 3500 | 26.25 | ||
c | ||||||
Source | Sum of Squares | df | Mean Square | F Value | p Value Prob > F | |
Model | 503.42 | 9 | 55.94 | 313.47 | <0.0001 | significant |
KOH dosage (%) (A) | 307.27 | 1 | 307.27 | 1722 | <0.0001 | |
Liquid solid ratio (B) | 69.03 | 1 | 69.03 | 386.86 | <0.0001 | |
revolutions (r) (C) | 124.66 | 1 | 124.66 | 698.63 | <0.0001 | |
AB | 0.0841 | 1 | 0.0841 | 0.4713 | 0.5145 | |
AC | 0 | 1 | 0 | 0 | 1 | |
BC | 0.0441 | 1 | 0.0441 | 0.2471 | 0.6343 | |
A2 | 2.22 | 1 | 2.22 | 12.42 | 0.0097 | |
B2 | 0.0706 | 1 | 0.0706 | 0.3957 | 0.5493 | |
C2 | 0.0425 | 1 | 0.0425 | 0.2383 | 0.6403 | |
Residual | 1.25 | 7 | 0.1784 | |||
Lack of fit | 0.9749 | 3 | 0.325 | 4.74 | 0.0834 | not significant |
Pure error | 0.2741 | 4 | 0.0685 | |||
Cor total | 504.67 | 16 |
Wavemunber (cm−1) | Corresponding Structure |
---|---|
3348–3408 | O–H stretching vibration |
2895–2902 | C–H stretching vibration, CH3, CH2 |
1595–1597 | Stretching vibration of benzene ring (lignin) |
1460 | CH2 deformation vibration, Carbon skeleton vibration of benzene ring |
1423 | CH2 shear vibration, CH2 bending vibration (lignin), Benzene ring vibration |
1365–1371 | C–H bending vibration |
1327–1228 | C–O–C stretching vibration (lignin phenol ether bond), Syringyl, Condensation guaiacol |
1232–1234 | Acetyl and hydroxyl vibration, Syringa type C=O stretching vibration |
1034–1056 | C–O–C glucoside bond symmetric stretching vibration |
Blank Control | Xylanase | Pectinase | Xylanase + Pectinase | |
---|---|---|---|---|
Crystallinity index (CrI%) | 49.04 | 49.53 | 50.23 | 51.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Wei, S.; Xu, Y.; Yin, L.; Wang, R.; Li, P.; Liu, K. Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method. Polymers 2023, 15, 4637. https://doi.org/10.3390/polym15244637
Liang X, Wei S, Xu Y, Yin L, Wang R, Li P, Liu K. Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method. Polymers. 2023; 15(24):4637. https://doi.org/10.3390/polym15244637
Chicago/Turabian StyleLiang, Xiaoli, Shan Wei, Yanpeng Xu, Liang Yin, Ruiming Wang, Piwu Li, and Kaiquan Liu. 2023. "Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method" Polymers 15, no. 24: 4637. https://doi.org/10.3390/polym15244637
APA StyleLiang, X., Wei, S., Xu, Y., Yin, L., Wang, R., Li, P., & Liu, K. (2023). Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method. Polymers, 15(24), 4637. https://doi.org/10.3390/polym15244637