Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Production of Collagen
2.3. Fabrication of Cross-Linked Collagen Hydrogels
2.4. Collagen Hydrogel Characterization
2.4.1. Dehydration of Hydrogels
2.4.2. Determination of Porosity
2.4.3. Swelling Ratio and Water-Holding Capability
2.4.4. Thermogravimetric Analysis (TGA) of Collagen Hydrogels
2.4.5. Thermal Transition Analysis of Collagen Hydrogels
2.4.6. Analysis by X-Ray Diffraction (XRD)
2.4.7. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.4.8. Measurements of Dynamic Rheology
2.4.9. Enzymatic Analysis of Stability
2.4.10. Scanning Electron Microscopy (SEM)
2.4.11. Statistical Evaluation
3. Results and Discussion
3.1. Porosity Measurements
3.2. Water-Holding Capability
3.3. Swelling Property
3.4. Thermogravimetric Analysis (TGA) of Collagen Hydrogels
3.5. Differential Scanning Calorimetry (DSC) Measurements
3.6. Analysis by X-Ray Diffraction (XRD)
3.7. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.8. Dynamic Rheological Measurements
3.9. Enzymatic Degradation of Hydrogels
3.10. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Z.; Duan, L.; Wu, L.; Shen, L.; Li, G. Rheological Properties of Glutaraldehyde-Crosslinked Collagen Solutions Analyzed Quantitatively Using Mechanical Models. Mater. Sci. Eng. C 2016, 63, 10–17. [Google Scholar] [CrossRef]
- Deng, C.; Liu, Y.; Li, J.; Yadav, M.P.; Yin, L. Diverse Rheological Properties, Mechanical Characteristics and Microstructures of Corn Fiber Gum/Soy Protein Isolate Hydrogels Prepared by Laccase and Heat Treatment. Food Hydrocoll. 2018, 76, 113–122. [Google Scholar] [CrossRef]
- Skopinska-Wisniewska, J.; Kuderko, J.; Bajek, A.; Maj, M.; Sionkowska, A.; Ziegler-Borowska, M. Collagen/Elastin Hydrogels Cross-Linked by Squaric Acid. Mater. Sci. Eng. C 2016, 60, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tang, C.; Xiong, S.; Yuan, Q.; Gu, Z.; Li, Z.; Hu, Y. Modification of Collagen for Biomedical Applications: A Review of Physical and Chemical Methods. Curr. Org. Chem. 2016, 20, 1797–1812. [Google Scholar] [CrossRef]
- Myllyharju, J.; Kivirikko, K.I. Collagens and Collagen-Related Diseases. Ann. Med. 2001, 33, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Rajan, V.K.; Muraleedharan, K. A Computational Investigation on the Structure, Global Parameters and Antioxidant Capacity of a Polyphenol, Gallic Acid. Food Chem. 2017, 220, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Omotoso, G.O.; Gbadamosi, I.T.; Olajide, O.J.; Dada-Habeeb, S.O.; Arogundade, T.T.; Yawson, E.O. Moringa Oleifera Phytochemicals Protect the Brain against Experimental Nicotine-Induced Neurobehavioral Disturbances and Cerebellar Degeneration. Pathophysiology 2018, 25, 57–62. [Google Scholar] [CrossRef] [PubMed]
- El-Lakkany, N.M.; El-Maadawy, W.H.; Seif el-Din, S.H.; Saleh, S.; Safar, M.M.; Ezzat, S.M.; Mohamed, S.H.; Botros, S.S.; Demerdash, Z.; Hammam, O.A. Antifibrotic Effects of Gallic Acid on Hepatic Stellate Cells: In Vitro and in Vivo Mechanistic Study. J. Tradit. Complement. Med. 2018, 9, 45–53. [Google Scholar] [CrossRef]
- Gong, W.; Wang, R.; Huang, H.; Hou, Y.; Wang, X.; He, W.; Gong, X.; Hu, J. Construction of Double Network Hydrogels Using Agarose and Gallic Acid with Antibacterial and Anti-Inflammatory Properties for Wound Healing. Int. J. Biol. Macromol. 2023, 227, 698–710. [Google Scholar] [CrossRef]
- Yu, S.-H.; Mi, F.-L.; Pang, J.-C.; Jiang, S.-C.; Kuo, T.-H.; Wu, S.-J.; Shyu, S.-S. Preparation and Characterization of Radical and pH-Responsive Chitosan–Gallic Acid Conjugate Drug Carriers. Carbohydr. Polym. 2011, 84, 794–802. [Google Scholar] [CrossRef]
- Kang, B.; Vales, T.; Cho, B.-K.; Kim, J.-K.; Kim, H.-J. Development of Gallic Acid-Modified Hydrogels Using Interpenetrating Chitosan Network and Evaluation of Their Antioxidant Activity. Molecules 2017, 22, 1976. [Google Scholar] [CrossRef] [PubMed]
- Thanyacharoen, T.; Chuysinuan, P.; Techasakul, S.; Nooeaid, P.; Ummartyotin, S. Development of a Gallic Acid-Loaded Chitosan and Polyvinyl Alcohol Hydrogel Composite: Release Characteristics and Antioxidant Activity. Int. J. Biol. Macromol. 2018, 107, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Kobayashi, T. Ultrasound Stimulated Release of Gallic Acid from Chitin Hydrogel Matrix. Mater. Sci. Eng. C 2017, 75, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidi, M.M.J.; Al-Bayaty, F.H.; Al Batran, R.; Hassandarvish, P.; Rouhollahi, E. Protective Effect of Ellagic Acid on Healing Alveolar Bone after Tooth Extraction in Rat—A Histological and Immunohistochemical Study. Arch. Oral Biol. 2014, 59, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Yang, Y.; Yang, F.; Wan, K.; Fan, D.; Wang, D. Novel Oral Administrated Ellagic Acid Nanoparticles for Enhancing Oral Bioavailability and Anti-Inflammatory Efficacy. J. Drug Deliv. Sci. Technol. 2018, 46, 215–222. [Google Scholar] [CrossRef]
- Guvvala, P.R.; Ravindra, J.P.; Selvaraju, S.; Arangasamy, A.; Venkata, K.M. Ellagic and Ferulic Acids Protect Arsenic-Induced Male Reproductive Toxicity via Regulating Nfe2l2, Ppargc1a and StAR Expressions in Testis. Toxicology 2019, 413, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tokutomi, H.; Takeda, T.; Hoshino, N.; Akutagawa, T. Molecular Structure of the Photo-Oxidation Product of Ellagic Acid in Solution. ACS Omega 2018, 3, 11179–11183. [Google Scholar] [CrossRef]
- Zuccari, G.; Baldassari, S.; Ailuno, G.; Turrini, F.; Alfei, S.; Caviglioli, G. Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. Appl. Sci. 2020, 10, 3353. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Castillo, C.M.S.; Caroca, R.; Lazo-Vélez, M.A.; Antonyak, H.; Polishchuk, A.; Lysiuk, R.; Oliinyk, P.; De Masi, L.; et al. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. Oxid. Med. Cell. Longev. 2022, 2022, 3848084. [Google Scholar] [CrossRef]
- Huang, Z.; Delparastan, P.; Burch, P.; Cheng, J.; Cao, Y.; Messersmith, P.B. Injectable Dynamic Covalent Hydrogels of Boronic Acid Polymers Cross-Linked by Bioactive Plant-Derived Polyphenols. Biomater. Sci. 2018, 6, 2487–2495. [Google Scholar] [CrossRef]
- Zhu, S.; Gu, Z.; Xiong, S.; An, Y.; Liu, Y.; Yin, T.; You, J.; Hu, Y. Fabrication of a Novel Bio-Inspired Collagen–Polydopamine Hydrogel and Insights into the Formation Mechanism for Biomedical Applications. RSC Adv. 2016, 6, 66180–66190. [Google Scholar] [CrossRef]
- Liu, L.; Wen, H.; Rao, Z.; Zhu, C.; Liu, M.; Min, L.; Fan, L.; Tao, S. Preparation and Characterization of Chitosan—Collagen Peptide/Oxidized Konjac Glucomannan Hydrogel. Int. J. Biol. Macromol. 2018, 108, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Loh, Q.L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Gao, J.; He, Q.; Wu, J.; Liang, D.; Yang, H.; Chen, R. Enhanced Antibacterial and Wound Healing Activities of Microporous Chitosan-Ag/ZnO Composite Dressing. Carbohydr. Polym. 2016, 156, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Baker, A.B. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front. Bioeng. Biotechnol. 2016, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, B.; Mazur, O. Collagen-Based Materials Modified by Phenolic Acids—A Review. Materials 2020, 13, 3641. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Lin, R.-Z.; Melero-Martin, J.M.; Chen, Y.-C. Comparison of Covalently and Physically Cross-Linked Collagen Hydrogels on Mediating Vascular Network Formation for Engineering Adipose Tissue. Artif. Cells Nanomed. Biotechnol. 2018, 46, S434–S447. [Google Scholar] [CrossRef]
- Sapuła, P.; Bialik-Wąs, K.; Malarz, K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023, 15, 253. [Google Scholar] [CrossRef]
- Lin, H.; Dan, W.; Dan, N. The Water State in Crosslinked Poly(Vinyl Alcohol)–Collagen Hydrogel and Its Swelling Behavior. J. Appl. Polym. Sci. 2012, 123, 2753–2761. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Li, W.; Du, Z.; Qin, S. Preparation and Characterization of Novel Poly (Vinyl Alcohol)/Collagen Double-Network Hydrogels. Int. J. Biol. Macromol. 2018, 118, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Naeem, A.; Liu, Y.; Guan, Y. Ellagic Acid Inclusion Complex-Loaded Hydrogels as an Efficient Controlled Release System: Design, Fabrication and In Vitro Evaluation. J. Funct. Biomater. 2023, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Guo, L.; Li, R.; Shao, J.; Lu, L.; Yang, P.; Zhao, A.; Liu, Y. Ellagic Acid–Cyclodextrin Inclusion Complex-Loaded Thiol–Ene Hydrogel with Antioxidant, Antibacterial, and Anti-Inflammatory Properties for Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 4959–4972. [Google Scholar] [CrossRef]
- Buitimea-Cantúa, N.E.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Phenolic–Protein Interactions: Effects on Food Properties and Health Benefits. J. Med. Food 2017, 21, 188–198. [Google Scholar] [CrossRef]
- Tian, X.; Wang, Y.; Duan, S.; Hao, Y.; Zhao, K.; Li, Y.; Dai, R.; Wang, W. Evaluation of a Novel Nano-Size Collagenous Matrix Film Cross-Linked with Gallotannins Catalyzed by Laccase. Food Chem. 2021, 351, 129335. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–Polyphenol Conjugates: Antioxidant Property, Functionalities, and Their Applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Yan, M.; An, X.; Duan, S.; Jiang, Z.; Liu, X.; Zhao, X.; Li, Y. A Comparative Study on Cross-Linking of Fibrillar Gel Prepared by Tilapia Collagen and Hyaluronic Acid with EDC/NHS and Genipin. Int. J. Biol. Macromol. 2022, 213, 639–650. [Google Scholar] [CrossRef]
- Durga, R.; Jimenez, N.; Ramanathan, S.; Suraneni, P.; Pestle, W.J. Use of Thermogravimetric Analysis to Estimate Collagen and Hydroxyapatite Contents in Archaeological Bone. J. Archaeol. Sci. 2022, 145, 105644. [Google Scholar] [CrossRef]
- Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C. Aqueous Thermal Degradation of Gallic Acid. Geochim. Cosmochim. Acta 1988, 52, 341–344. [Google Scholar] [CrossRef]
- Zeugolis, D.I.; Paul, G.R.; Attenburrow, G. Cross-Linking of Extruded Collagen Fibers—A Biomimetic Three-Dimensional Scaffold for Tissue Engineering Applications. J. Biomed. Mater. Res. Part A 2009, 89A, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, J.; Ding, C.; Liu, W.; Li, G. The Rheological and Structural Properties of Fish Collagen Cross-Linked by N-Hydroxysuccinimide Activated Adipic Acid. Food Hydrocoll. 2013, 30, 504–511. [Google Scholar] [CrossRef]
- Bam, P.; Bhatta, A.; Krishnamoorthy, G. Design of Biostable Scaffold Based on Collagen Crosslinked by Dialdehyde Chitosan with Presence of Gallic Acid. Int. J. Biol. Macromol. 2019, 130, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Deming, T.J. Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116, 786–808. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, X.; Zhu, W.; Li, L.; Peng, M.; Zhong, Y.; Naeem, A.; Zang, Z.; Guan, Y. Synthesis of Gallic Acid-Loaded Chitosan-Grafted-2-Acrylamido-2-Methylpropane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery: In Vitro Biodegradation, Antioxidant, and Antibacterial Effects. Gels 2022, 8, 806. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dan, W.; Xiong, S.; Kang, Y.; Dhinakar, A.; Wu, J.; Gu, Z. Development of Collagen/Polydopamine Complexed Matrix as Mechanically Enhanced and Highly Biocompatible Semi-Natural Tissue Engineering Scaffold. Acta Biomater. 2017, 47, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, C.; Zhou, J.; Wu, J.; Lin, W. Modular Design of Vegetable Polyphenols Enables Covalent Bonding with Collagen for Eco-Leather. Ind. Crops Prod. 2023, 204, 117394. [Google Scholar] [CrossRef]
- Andonegi, M.; Heras, K.L.; Santos-Vizcaíno, E.; Igartua, M.; Hernandez, R.M.; de la Caba, K.; Guerrero, P. Structure-Properties Relationship of Chitosan/Collagen Films with Potential for Biomedical Applications. Carbohydr. Polym. 2020, 237, 116159. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, Q.; Yang, M.; Liu, R.; Zhu, S.; Li, J.; Zhang, W.; You, J.; Xiong, S.; Hu, Y. Development of Biocompatible and Antibacterial Collagen Hydrogels via Dialdehyde Polysaccharide Modification and Tetracycline Hydrochloride Loading. Macromol. Mater. Eng. 2019, 304, 1800755. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Liu, A.; Wang, W. Improved Thermal-Stability and Mechanical Properties of Type I Collagen by Crosslinking with Casein, Keratin and Soy Protein Isolate Using Transglutaminase. Int. J. Biol. Macromol. 2017, 98, 292–301. [Google Scholar] [CrossRef]
- Xie, M.; Hu, B.; Yan, Y.; Zhou, L.; Ou, S.; Zeng, X. Rheological Properties of Gallic Acid-Grafted-Chitosans with Different Substitution Degrees. LWT 2016, 74, 472–479. [Google Scholar] [CrossRef]
- Choi, I.; Lee, S.E.; Chang, Y.; Lacroix, M.; Han, J. Effect of Oxidized Phenolic Compounds on Cross-Linking and Properties of Biodegradable Active Packaging Film Composed of Turmeric and Gelatin. LWT 2018, 93, 427–433. [Google Scholar] [CrossRef]
- Jayachandran, B.; Parvin, T.N.; Alam, M.M.; Chanda, K.; MM, B. Insights on Chemical Crosslinking Strategies for Proteins. Molecules 2022, 27, 8124. [Google Scholar] [CrossRef] [PubMed]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef]
Samples | (w/w of Protein) | Δ1 | Δ2 | Δ3 | Δ4 | Residue (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Td1 | Δw1 | Td2 | Δw2 | Td3 | Δw3 | Td4 | Δw4 | |||
GA | Control | 96.4 | 10.1 | 228.3 | 3.0 | 366.7 | 47.6 | 489.3 | 11.1 | 28.2 |
5% | 85.3 | 10.8 | 247.3 | 5.1 | 392.6 | 43.1 | 539.6 | 11.3 | 28.7 | |
10% | 87.6 | 7.5 | 257.9 | 6.2 | 397.4 | 37.7 | 538.2 | 16.1 | 32.5 | |
30% | 91.1 | 9.4 | 252.2 | 5.9 | 397.7 | 25.7 | 540.4 | 18.5 | 40.5 | |
50% | 99.8 | 7.2 | 253.5 | 5.7 | 388.5 | 35.2 | 541.2 | 8.1 | 43.8 | |
100% | 99.8 | 6.5 | 246.5 | 5.3 | 400.1 | 51.7 | 543.5 | 19.1 | 17.4 | |
EA | 5% | 99.3 | 11.5 | 255.1 | 4.7 | 380.8 | 45.6 | 540.3 | 14.3 | 23.9 |
10% | 91.4 | 6.5 | 251.3 | 5.3 | 406.1 | 50.4 | 540.1 | 10.7 | 27.1 | |
30% | 77.5 | 11 | 234.1 | 2.6 | 415.8 | 40.2 | 541.3 | 7.1 | 39.1 | |
50% | 89.7 | 7.3 | 232.5 | 3.3 | 330.1 | 27.9 | 539.8 | 18.6 | 42.9 | |
100% | 84.3 | 7.9 | 256.1 | 9.7 | 405.4 | 52.4 | 540.6 | 13.9 | 16.1 |
Treatments | Sample | Thermal Denaturation Temperature (Td) °C |
---|---|---|
GA | Control | 56.78 |
5% | 63.35 | |
10% | 65.88 | |
30% | 68.93 | |
50% | 71.19 | |
100% | 74.96 | |
EA | 5% | 62.15 |
10% | 66.13 | |
30% | 67.84 | |
50% | 70.51 | |
100% | 75.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, S.; Yue, W.; Li, J.; Yu, X.; Ying, T.; Liu, R.; You, J.; Xiong, S.; Hu, Y. Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel. Polymers 2023, 15, 4647. https://doi.org/10.3390/polym15244647
Munir S, Yue W, Li J, Yu X, Ying T, Liu R, You J, Xiong S, Hu Y. Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel. Polymers. 2023; 15(24):4647. https://doi.org/10.3390/polym15244647
Chicago/Turabian StyleMunir, Sadia, Wei Yue, Jinling Li, Xiaoyue Yu, Tianhao Ying, Ru Liu, Juan You, Shanbai Xiong, and Yang Hu. 2023. "Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel" Polymers 15, no. 24: 4647. https://doi.org/10.3390/polym15244647
APA StyleMunir, S., Yue, W., Li, J., Yu, X., Ying, T., Liu, R., You, J., Xiong, S., & Hu, Y. (2023). Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel. Polymers, 15(24), 4647. https://doi.org/10.3390/polym15244647