Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution
Abstract
:1. Introduction
2. Mercury as an Environmental Pollutant and Occurrence in the Atmosphere
3. Chitosan and its Modifications
4. Progress on the Synthesis of Chitosan Functionalized with Nanomaterials
4.1. Chitosan Modified with Carbon Nanotubes
4.2. Chitosan Modified with Metal Nanoparticles: Silver, Titanium Dioxide, Sulfur, and Zinc Oxide
4.2.1. Chitosan Modified with Silver Nanoparticles
4.2.2. Chitosan Modified with Titanium Dioxide
4.2.3. Chitosan Modified with Sulfur Nanoparticles
4.2.4. Chitosan Modified with Zinc Oxide
5. State of Art on Chitosan Modified with Nanomaterials for Environmental Remediation to Mercury Pollution
6. Adsorption Techniques for the Removal of Mercury from Contaminated Water and Atmosphere
6.1. Removal of Mercury from Wastewater Using Batch Adsorption Study
6.1.1. pH
6.1.2. Adsorbent Dosage
6.1.3. Temperature
6.1.4. The Contact Time
6.1.5. Initial Concentration of Pollutant
6.2. Removal of Mercury from the Atmosphere Using a Passive Sampler Adsorption Method
7. Conclusions
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Gworek, B.; Dmuchowski, W.; Baczewska, A.H.; Brągoszewska, P.; Bemowska-Kałabun, O.; Wrzosek-Jakubowska, J. Air Contamination by Mercury, Emissions and Transformations—A Review. Water Air Soil Pollut. 2017, 228, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Environmentally Sustainable Health Systems: A Strategic Document; World Health Organization, Regional Office for Europe: Geneve, Switzerland, 2017. [Google Scholar]
- Dabrowski, J.M.; Ashton, P.J.; Murray, K.; Leaner, J.J.; Mason, R. Anthropogenic Mercury Emissions in South Africa: Coal Combustion in Power Plants. Atmos. Environ. 2008, 42, 6620–6626. [Google Scholar] [CrossRef]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M. A Passive Sampler for Ambient Gaseous Oxidized Mercury Concentrations. Atmos. Environ. 2010, 44, 246–252. [Google Scholar] [CrossRef]
- Ebinghaus, R.; Kock, H.H.; Coggins, A.M.; Spain, T.G.; Jennings, S.G.; Temme, C. Long-Term Measurements of Atmospheric Mercury at Mace Head, Irish West Coast, between 1995 and 2001. Atmos. Environ. 2002, 36, 5267–5276. [Google Scholar] [CrossRef]
- Fang, G.C.; Wu, Y.S.; Chang, T.H. Comparison of Atmospheric Mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. J. Hazard. Mater. 2009, 162, 607–615. [Google Scholar] [CrossRef]
- USGS Science for Changing World. Available online: https://www.usgs.gov/mission-areas/water-resources (accessed on 12 July 2022).
- Chemnasiri, W.; Hernandez, F.E. Gold Nanorod-Based Mercury Sensor Using Functionalized Glass Substrates. Sens. Actuators B Chem. 2012, 173, 322–328. [Google Scholar] [CrossRef]
- Kim, M.-K.; Zoh, K.-D. Fate and Transport of Mercury in Environmental Media and Human Exposure. J. Prev. Med. Public Health 2012, 45, 335–343. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury Speciation, Transformation, and Transportation in Soils, Atmospheric Flux, and Implications for Risk Management: A Critical Review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef]
- Kocman, D.; Horvat, M.; Pirrone, N.; Cinnirella, S. Contribution of Contaminated Sites to the Global Mercury Budget. Environ. Res. 2013, 7, 4–78. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The Toxicology of Mercury: Current Research and Emerging Trends. Environ. Res. 2017, 157, 545–554. [Google Scholar] [CrossRef]
- Vélez-Torres, I.; Vanegas, D.C.; McLamore, E.S.; Hurtado, D. Mercury Pollution and Artisanal Gold Mining in Alto Cauca, Colombia: Woman’s Perception of Health and Environmental Impacts. J. Environ. Dev. 2018, 27, 415–444. [Google Scholar] [CrossRef]
- Noyma, N.P.; de Magalhaes, L.; Furtado, L.L.; Mucci, M.; van Oosterhout, F.; Huszar, V.L.M.; Marinho, M.M.; Lürling, M. Controlling Cyanobacterial Blooms through Effective Flocculation and Sedimentation with Combined Use of Flocculants and Phosphorus Adsorbing Natural Soil and Modified Clay. Water Res. 2016, 97, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R. Novel Nanocomposite Materials for Efficient and Selective Mercury Ions Capturing from Wastewater. Chem. Eng. J. 2017, 307, 456–465. [Google Scholar] [CrossRef]
- Sarma, G.K.; Sen Gupta, S.; Bhattacharyya, K.G. Nanomaterials as Versatile Adsorbents for Heavy Metal Ions in Water: A Review. Environ. Sci. Pollut. Res. 2019, 26, 6245–6278. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.-H. Nanomaterials for the Adsorptive Treatment of Hg (II) Ions from Water. Chem. Eng. J. 2019, 358, 264–282. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Flores, L.C. Plant Mediated Detoxification of Mercury and Lead. Arab. J. Chem. 2017, 10, S2335–S2342. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Zhang, Q.; Xuan, H.; Chen, Y.; Zhang, K.; Feng, S.; Alsaedi, A.; Hayat, T.; Chen, C. EDTA Functionalized Fe3O4/Graphene Oxide for Efficient Removal of U (VI) from Aqueous Solutions. J. Colloid Interface Sci. 2017, 506, 300–307. [Google Scholar] [CrossRef]
- Gore, C.T.; Omwoma, S.; Chen, W.; Song, Y.-F. Interweaved LDH/PAN Nanocomposite Films: Application in the Design of Effective Hexavalent Chromium Adsorption Technology. Chem. Eng. J. 2016, 284, 794–801. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Peng, Q.; Hu, X.; Liao, T.; Wang, H.; Lu, M. Removal of Lead (II) from Aqueous Solution with Ethylenediamine-Modified Yeast Biomass Coated with Magnetic Chitosan Microparticles: Kinetic and Equilibrium Modeling. Chem. Eng. J. 2013, 214, 189–197. [Google Scholar] [CrossRef]
- Yepsen, O.; Contreras, D.; Santander, P.; Yanez, J.; Mansilla, H.D.; Amarasiriwardena, D. Photocatalytic Degradation of Thimerosal in Human Vaccine’s Residues and Mercury Speciation of Degradation by-Products. Microchem. J. 2015, 121, 41–47. [Google Scholar] [CrossRef]
- Ghazy, S.E.; Abu El-Reash, G.M.; Al-Gammal, O.A.; Yousef, T. Flotation Separation of Mercury (II) from Environmental Water Samples Using Thiosemicarbazide Derivatives as Chelating Agents and Oleic Acid as Surfactant. Chem. Speciat. Bioavailab. 2010, 22, 127–134. [Google Scholar] [CrossRef]
- Lewis, A.S.; Huntington, T.G.; Marvin-Dipasquale, M.C.; Amirbahman, A. Mercury Remediation in Wetland Sediment Using Zero-Valent Iron and Granular Activated Carbon. Environ. Pollut. 2016, 212, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Awad, F.S.; AbouZied, K.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; Samy El-Shall, M. Effective Removal of Mercury(II) from Aqueous Solutions by Chemically Modified Graphene Oxide Nanosheets. Arab. J. Chem. 2020, 13, 2659–2670. [Google Scholar] [CrossRef]
- McLagan, D.S.; Mitchell, C.P.J.; Huang, H.; Abdul Hussain, B.; Duan Lei, Y.; Wania, F. The Effects of Meteorological Parameters and Diffusive Barrier Reuse on the Sampling Rate of a Passive Air Sampler for Gaseous Mercury. Atmos. Meas. Tech. 2017, 10, 3651–3660. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- Zhang, W.; Tong, Y.; Hu, D.; Ou, L.; Wang, X. Characterization of Atmospheric Mercury Concentrations along an Urban–Rural Gradient Using a Newly Developed Passive Sampler. Atmos. Environ. 2012, 47, 26–32. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 24. [Google Scholar] [CrossRef] [Green Version]
- Bora, T.; Dutta, J. Applications of Nanotechnology in Wastewater Treatment—A Review. J. Nanosci. Nanotechnol. 2014, 14, 613–626. [Google Scholar] [CrossRef]
- Leudjo Taka, A.; Pillay, K.; Yangkou Mbianda, X. Nanosponge Cyclodextrin Polyurethanes and Their Modification with Nanomaterials for the Removal of Pollutants from Waste Water: A Review. Carbohydr. Polym. 2017, 159, 94–107. [Google Scholar] [CrossRef]
- Leudjo Taka, A.; Klink, M.J.; Yangkou Mbianda, X.; Naidoo, E.B. Chitosan Nanocomposites for Water Treatment by Fixed-Bed Continuous Flow Column Adsorption: A Review. Carbohydr. Polym. 2021, 255, 117398. [Google Scholar] [CrossRef]
- Keshvardoostchokami, M.; Babaei, S.; Piri, F.; Zamani, A. Nitrate Removal from Aqueous Solutions by ZnO Nanoparticles and Chitosan-Polystyrene–Zn Nanocomposite: Kinetic, Isotherm, Batch and Fixed-Bed Studies. Int. J. Biol. Macromol. 2017, 101, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Leudjo Taka, A.; Doyle, B.P.; Carleschi, E.; Youmbi Fonkui, T.; Erasmus, R.; Fosso-Kankeu, E.; Pillay, K.; Mbianda, X.Y. Spectroscopic Characterization and Antimicrobial Activity of Nanoparticle Doped Cyclodextrin Polyurethane Bionanosponge. Mater. Sci. Eng. C 2020, 115, 111092. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Bank, M.S. Mercury in the Environment: Pattern and Process, 1st ed.; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Schroeder, W.H.; Munthe, J. Atmospheric Mercury—An Overview. Atmos. Environ. 1998, 32, 809. [Google Scholar] [CrossRef]
- Rytuba, J.J. Mercury from Mineral Deposits and Potential Environmental Impacts. Environ. Geol. 2003, 43, 326–338. [Google Scholar] [CrossRef]
- Gray, J.E.; Hines, M.E.; Higueras, P.L.; Adatto, I.; Lasorsa, B.K. Mercury Speciation and Microbial Transformations in Mine Wastes, Stream Sediments, and Surface Waters at the Almadén Mining District, Spain. Environ. Sci. Technol. 2004, 38, 4285–4292. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, C.; Lyu, Y.; Li, S.; Zhang, Y.; Du, X.; Zhai, Y. Insight into the Effect of SO2 on the Hg0 Removal Performance over a 1V-8Ce/AC Sorbent at Low Temperatures. J. Hazard. Mater. 2021, 402, 123502. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Ekino, S.; Susa, M.; Ninomiya, T.; Imamura, K.; Kitamura, T. Minamata Disease Revisited: An Update on the Acute and Chronic Manifestations of Methyl Mercury Poisoning. J. Neurol. Sci. 2007, 262, 131–144. [Google Scholar] [CrossRef]
- Pirrone, N.; Aas, W.; Cinnirella, S.; Ebinghaus, R.; Hedgecock, I.M.; Pacyna, J.; Sprovieri, F.; Sunderland, E.M. Toward the next Generation of Air Quality Monitoring: Mercury. Atmos. Environ. 2013, 80, 599–611. [Google Scholar] [CrossRef]
- Masekoameng, K.E.; Leaner, J.; Dabrowski, J. Trends in Anthropogenic Mercury Emissions Estimated for South Africa during 2000–2006. Atmos. Environ. 2010, 44, 3007–3014. [Google Scholar] [CrossRef]
- Brunke, E.; Ebinghaus, R.; Kock, H.; Labuschagne, C.; Slemr, F. Emissions of Mercury in Southern Africa Derived from Long-Term Observations at Cape Point, South Africa. Atmos. Chem. Phys. 2012, 12, 7465–7474. [Google Scholar] [CrossRef] [Green Version]
- Leaner, J.J.; Dabrowski, J.M.; Mason, R.P.; Resane, T.; Richardson, M.; Ginster, M.; Gericke, G.; Petersen, C.R.; Masekoameng, E.; Ashton, P.J. Mercury Emissions from Point Sources in South Africa. In Mercury Fate and Transport in the Global Atmosphere; Springer: Berlin/Heidelberg, Germany, 2009; Chapter 5; pp. 113–130. [Google Scholar]
- Scott, G.M.; Mdluli, T.N. The Minamata Treaty/Protocol: Potential Implications for South Africa. Clean Air J. Tydskr. vir Skoon Lug 2012, 22, 17–19. [Google Scholar] [CrossRef]
- Government Gazette. The 2017 National Framework for Air Quality Management in the Republic of South Africa. 2018; pp. 39–42. Available online: https://www.gov.za/documents/national-environmental-management-air-quality-act-2017-national-framework-air-quality (accessed on 20 December 2022).
- Pirrone, N.; Fino, A.; Sprovieri, F.; Macagnano, A.; Zampetti, E.; Papa, P. Development of a Plan for Global Monitoring of Human Exposure to and Environmental Concentration of Mercury; UNEP-GEF: Washington, DC, USA, 2018. [Google Scholar]
- Streets, D.G.; Horowitz, H.M.; Lu, Z.; Levin, L.; Thackray, C.P.; Sunderland, E.M. Global and Regional Trends in Mercury Emissions and Concentrations, 2010–2015. Atmos. Environ. 2019, 201, 417–427. [Google Scholar] [CrossRef]
- Koukouzas, N.; Vasilatos, C.; Itskos, G.; Mitsis, I.; Moutsatsou, A. Removal of Heavy Metals from Wastewater Using CFB-Coal Fly Ash Zeolitic Materials. J. Hazard. Mater. 2010, 173, 581–588. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M.; Soylak, M. Adsorption of Pb(II) and Cr(III) from Aqueous Solution on Celtek Clay. J. Hazard. Mater. 2007, 144, 41–46. [Google Scholar] [CrossRef]
- Zhang, T.; Hsu-Kim, H. Photolytic Degradation of Methylmercury Enhanced by Binding to Natural Organic Ligands. Nat. Geosci. 2010, 3, 473. [Google Scholar] [CrossRef] [Green Version]
- McLagan, D.S.; Mazur, M.E.E.; Mitchell, C.P.J.; Wania, F. Passive Air Sampling of Gaseous Elemental Mercury: A Critical Review. Atmos. Chem. Phys. 2016, 16, 3061–3076. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Feng, S.; Qu, W.; Yang, J.; Liu, S.; Liu, Y. Adsorption and Oxidation of Elemental Mercury on Chlorinated ZnS Surface. Energy Fuels 2018, 32, 7745–7751. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-Based Nanomaterials: A State-of-the-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef] [Green Version]
- Rizeq, B.R.; Younes, N.N.; Rasool, K.; Nasrallah, G.K. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int. J. Mol. Sci. 2019, 20, 5776. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, C. Chitosan-Based Biosorbents: Modification and Application for Biosorption of Heavy Metals and Radionuclides. Bioresour. Technol. 2014, 160, 129–141. [Google Scholar] [CrossRef] [PubMed]
- El Kadib, A. Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem 2015, 8, 217–244. [Google Scholar] [CrossRef]
- Vidal, R.R.L.; Moraes, J.S. Removal of Organic Pollutants from Wastewater Using Chitosan: A Literature Review. Int. J. Environ. Sci. Technol. 2019, 16, 1741–1754. [Google Scholar] [CrossRef]
- Casettari, L.; Vllasaliu, D.; Castagnino, E.; Stolnik, S.; Howdle, S.; Illum, L. PEGylated Chitosan Derivatives: Synthesis, Characterizations and Pharmaceutical Applications. Prog. Polym. Sci. 2012, 37, 659–685. [Google Scholar] [CrossRef]
- González-López, M.E.; Laureano-Anzaldo, C.M.; Pérez-Fonseca, A.A.; Arellano, M.; Robledo-Ortíz, J.R. Chemically Modified Polysaccharides for Hexavalent Chromium Adsorption. Sep. Purif. Rev. 2021, 50, 333–362. [Google Scholar] [CrossRef]
- Chu, C.-C.; Zhong, C. Organo-Soluble Chitosan Salts and Chitosan-Derived Biomaterials Prepared Thereof. U.S. Patent US8841440B2, 1 April 2009. [Google Scholar]
- Gagnon, J.; Binette, A. Chitosan Salts, Methods of Manufacture and Uses Thereof. WO Patent WO2008141452A1, 27 November 2008. [Google Scholar]
- Negm, N.A.; Hefni, H.H.H.; Abd-Elaal, A.A.A.; Badr, E.A.; Abou Kana, M.T.H. Advancement on Modification of Chitosan Biopolymer and Its Potential Applications. Int. J. Biol. Macromol. 2020, 152, 681–702. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, L.; Shen, W.; An, Q.; Xiao, Z.; Wang, H.; Cai, W.; Zhai, S.; Li, Z. Function Integrated Chitosan-Based Beads with throughout Sorption Sites and Inherent Diffusion Network for Efficient Phosphate Removal. Carbohydr. Polym. 2020, 230, 115639. [Google Scholar] [CrossRef]
- Escudero-Oñate, C.; Martínez-Francés, E. A Review of Chitosan-Based Materials for the Removal of Organic Pollution from Water and Bioaugmentation. In Chitin-Chitosan: Myriad Functionalities in Science and Technology; Dongre, R.S., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 4; ISBN 978-1-78923-407-7. [Google Scholar]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nano 2019, 9, 424. [Google Scholar] [CrossRef]
- Fiorani, G.; Saoncella, O.; Kaner, P.; Altinkaya, S.A.; Figoli, A.; Bonchio, M.; Carraro, M.; Kaner, P.; Figoli, A. Chitosan-Polyoxometalate Nanocomposites: Synthesis, Characterization and Application as Antimicrobial Agents. J. Clust. Sci. 2014, 25, 839–854. [Google Scholar] [CrossRef] [Green Version]
- Alshabanat, M.N.; Al-Anazy, M.M. An Experimental Study of Photocatalytic Degradation of Congo Red Using Polymer Nanocomposite Films. J. Chem. 2018, 2018, 9651850. [Google Scholar] [CrossRef]
- Triebel, C.; Vasylyev, S.; Damm, C.; Stara, H.; Özpınar, C.; Hausmann, S.; Peukert, W.; Münstedt, H. Polyurethane/Silver-Nanocomposites with Enhanced Silver Ion Release Using Multifunctional Invertible Polyesters. J. Mater. Chem. 2011, 21, 4377–4383. [Google Scholar] [CrossRef]
- Jaya, M.; Vivek, K.S. Cross-Linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar]
- Mallakpour, S.; Khodadadzadeh, L. Biocompatible and Biodegradable Chitosan Nanocomposites Loaded with Carbon Nanotubes. In Biodegradable and Biocompatible Polymer Composites; Woodhead Publishing: Sawston, UK, 2018; pp. 187–221. [Google Scholar] [CrossRef]
- Masheane, M.L.; Nthunya, L.N.; Malinga, S.P.; Nxumalo, E.N.; Mhlanga, S.D. Chitosan-Based Nanocomposites for de-Nitrification of Water. Phys. Chem. Earth, Parts A/B/C 2017, 100, 212–224. [Google Scholar] [CrossRef]
- Bui, G.T.; Wang, J.H.; Lin, J.L. Optimization of Micropump Performance Utilizing a Single Membrane with an Active Check Valve. Micromachines 2018, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- ZabihiSahebi, A.; Koushkbaghi, S.; Pishnamazi, M.; Askari, A.; Khosravi, R.; Irani, M. Synthesis of Cellulose Acetate/Chitosan/SWCNT/Fe3O4/TiO2 Composite Nanofibers for the Removal of Cr(VI), As(V), Methylene Blue and Congo Red from Aqueous Solutions. Int. J. Biol. Macromol. 2019, 140, 1296–1304. [Google Scholar] [CrossRef]
- Salam, M.A.; Makki, M.S.I.; Abdelaal, M.Y.A. Preparation and Characterization of Multi-Walled Carbon Nanotubes/Chitosan Nanocomposite and Its Application for the Removal of Heavy Metals from Aqueous Solution. J. Alloys Compd. 2011, 509, 2582–2587. [Google Scholar] [CrossRef]
- Moridi, Z.; Mottaghitalab, V.; Haghi, A.K. A Detailed Review of Recent Progress in Carbon Nanotube/Chitosan Nanocomposites. Cellul. Chem. Technol. 2011, 45, 549–563. [Google Scholar]
- Byrne, J.A.; Fernandez-Ibañez, P.A.; Dunlop, P.S.M.; Alrousan, D.M.A.; Hamilton, J.W.J.; Sabry, M.; Mottaleb, A. Photocatalytic Enhancement for Solar Disinfection of Water: A Review. Int. J. Photoenergy 2011, 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Day, D.; Ciston, S. Improving Solar Water Disinfection (Sodis) with a Photoreactive TiO2/SWCNT Composite on Plastic Pet Bottles. J. Exp. Second. Sci. 2012, 1, 40–43. [Google Scholar]
- Domènech, B.; Muñoz, M.; Muraviev, D.N.; Macanás, J. Polymer-Silver Nanocomposites as Antibacterial Materials. Microb. Pathog. Strateg. Combat. them Sci. Technol. Educ. 2013, 1, 630–640. [Google Scholar]
- Zhang, A.Q.; Cai, L.J.; Sui, L.; Qian, D.J.; Chen, M. Reducing Properties of Polymers in the Synthesis of Noble Metal Nanoparticles. Polym. Rev. 2013, 53, 240–276. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Li, C.; Elvis Cao, X.; Xu, M. Seawater-Assisted Synthesis of MnCe/Zeolite-13X for Removing Elemental Mercury from Coal-Fired Flue Gas. Fuel 2020, 262, 116605. [Google Scholar] [CrossRef]
- Cao, T.; Li, Z.; Xiong, Y.; Yang, Y.; Xu, S.; Bisson, T.; Gupta, R.; Xu, Z. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases. Environ. Sci. Technol. 2017, 51, 11909–11917. [Google Scholar] [CrossRef]
- Wang, J.; Deng, B.; Chen, H.; Wang, X.; Zheng, J. Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms. Environ. Sci. Technol. 2009, 43, 5223. [Google Scholar] [CrossRef]
- Tawabini, B.; Al-Khaldi, S.; Atieh, M.; Khaled, M. Removal of Mercury from Water by Multi-Walled Carbon Nanotubes. Water Sci. Technol. 2010, 61, 591–598. [Google Scholar] [CrossRef]
- Gao, J.; Bonzongo, J.-C.J.; Bitton, G.; Li, Y.; Wu, C.-Y. Nanowastes and the Environment: Using Mercury as an Example Pollutant to Assess the Environmental Fate of Chemicals Adsorbed onto Manufactured Nanomaterials. Environ. Toxicol. Chem. 2008, 27, 808–810. [Google Scholar] [CrossRef] [Green Version]
- Chae, S.H.; Lee, Y.H. Carbon Nanotubes and Graphene towards Soft Electronics. Nano Converg. 2014, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different Technical Applications of Carbon Nanotubes. Nanoscale Res. Lett. 2015, 10, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, F.V.; Francisco, W.; De Menezes, B.R.C.; Cividanes, L.D.S.; Coutinho, A.D.R.; Thim, G.P. Carbon Nanotube Functionalized with Dodecylamine for the Effective Dispersion in Solvents. Appl. Surf. Sci. 2015, 357, 2154–2159. [Google Scholar] [CrossRef]
- Patiño, Y.; Díaz, E.; Ordóñez, S.; Gallegos-Suarez, E.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Adsorption of Emerging Pollutants on Functionalized Multiwall Carbon Nanotubes. Chemosphere 2015, 136, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, P.; Shukla, D.K. Static and Dynamic Study of Carbon Nano Epoxy Composite. Int. J. Comput. Math. Sci. 2018, 7, 10. [Google Scholar]
- Darabont, A.; Nemes-Incze, P.; Kertész, K.; Tapasztó, L.; Koós, A.A.; Osváth, Z.; Sárközi, Z.; Vértesy, Z.; Horváth, Z.E.; Biró, L.P. Synthesis of Carbon Nanotubes by Spray Pyrolysis and Their Investigation by Electron Microscopy. J. Optoelectron. Adv. Mater. 2005, 7, 631–636. [Google Scholar]
- Motchelaho, M.A.M.; Xiong, H.; Moyo, M.; Jewell, L.L.; Coville, N.J. Effect of Acid Treatment on the Surface of Multiwalled Carbon Nanotubes Prepared from Fe–Co Supported on CaCO3: Correlation with Fischer–Tropsch Catalyst Activity. J. Mol. Catal. A Chem. 2011, 335, 189–198. [Google Scholar] [CrossRef]
- Mondal, S.; Aikat, K.; Halder, G. Ranitidine Hydrochloride Sorption onto Superheated Steam Activated Biochar Derived from Mung Bean Husk in Fixed Bed Column. J. Environ. Chem. Eng. 2016, 4, 488–497. [Google Scholar] [CrossRef]
- Futalan, C.M.; Kan, C.C.; Dalida, M.L.; Pascua, C.; Wan, M.W. Fixed-Bed Column Studies on the Removal of Copper Using Chitosan Immobilized on Bentonite. Carbohydr. Polym. 2011, 83, 697–704. [Google Scholar] [CrossRef]
- Jun, L.Y.; Mubarak, N.M.; Yee, M.J.; Yon, L.S.; Bing, C.H.; Khalid, M.; Abdullah, E.C. An Overview of Functionalised Carbon Nanomaterial for Organic Pollutant Removal. J. Ind. Eng. Chem. 2018, 67, 175–186. [Google Scholar] [CrossRef]
- Yin, F.; Gu, B.; Lin, Y.; Panwar, N.; Tjin, S.C.; Qu, J.; Lau, S.P.; Yong, K.T. Functionalized 2D Nanomaterials for Gene Delivery Applications. Coord. Chem. Rev. 2017, 347, 77–97. [Google Scholar] [CrossRef]
- Zare, K.; Kumar Gupta, V.; Moradi, O.; Salam Hamdy Makhlouf, A.; Sillanpää, M.; Nadagouda, M.N.; Sadegh, H.; Shahryari-ghoshekandi, R.; Pal, A.; Wang, Z.; et al. A Comparative Study on the Basis of Adsorption Capacity between CNTs and Activated Carbon as Adsorbents for Removal of Noxious Synthetic Dyes: A Review. J. Nanostructure Chem. 2015, 5, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.G.; Zhao, X.H.; Yang, H.; Chen, X.H.; Yang, Q.; Yu, L.Y.; Jiang, J.H.; Chen, X.Q. Aqueous Adsorption and Removal of Organic Contaminants by Carbon Nanotubes. Sci. Total Environ. 2014, 482–483, 241–251. [Google Scholar] [CrossRef]
- Delkash, M.; Ebrazi Bakhshayesh, B.; Kazemian, H. Using Zeolitic Adsorbents to Cleanup Special Wastewater Streams: A Review. Microporous Mesoporous Mater. 2015, 214, 224–241. [Google Scholar] [CrossRef]
- Tofighy, M.A.; Mohammadi, T. Adsorption of Divalent Heavy Metal Ions from Water Using Carbon Nanotube Sheets. J. Hazard. Mater. 2011, 185, 140–147. [Google Scholar] [CrossRef]
- Dutta, A.K.; Ghorai, U.K.; Chattopadhyay, K.K.; Banerjee, D. Removal of Textile Dyes by Carbon Nanotubes: A Comparison between Adsorption and UV Assisted Photocatalysis. Phys. E Low-Dimens. Syst. Nanostructures 2018, 99, 6–15. [Google Scholar] [CrossRef]
- Mamba, B.B.; Krause, R.W.; Malefetse, T.J.; Mhlanga, S.D.; Sithole, S.P.; Salipira, K.L.; Nxumalo, E.N. Removal of Geosmin and 2-Methylisorboneol (2-MIB) in Water from Zuikerbosch Treatment Plant (Rand Water) Using β-Cyclodextrin Polyurethanes. Water SA 2007, 33, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Mamba, G.; Mbianda, X.Y.; Govender, P.P. Phosphorylated Multiwalled Carbon Nanotube-Cyclodextrin Polymer: Synthesis, Characterisation and Potential Application in Water Purification. Carbohydr. Polym. 2013, 98, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, G.R.; Lee, D.J.; Kawamoto, T.; Tanaka, H.; Chen, M.L.; Luo, Y.K. Adsorption Removal of Cesium from Drinking Waters: A Mini Review on Use of Biosorbents and Other Adsorbents. Bioresour. Technol. 2014, 160, 142–149. [Google Scholar] [CrossRef]
- Salipira, K.L.; Krause, R.W.; Mamba, B.B.; Malefetse, T.J.; Cele, L.M.; Durbach, S.H. Cyclodextrin Polyurethanes Polymerized with Multi-Walled Carbon Nanotubes: Synthesis and Characterization. Mater. Chem. Phys. 2008, 111, 218–224. [Google Scholar] [CrossRef]
- Mamba, G.; Mbianda, X.Y.; Govender, P.P.; Mamba, B.B.; Krause, R.W. Application of Multiwalled Carbon Nanotube-Cyclodextrin Polymers in the Removal of Heavy Metals from Water. J. Appl. Sci. 2010, 10, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Salipira, K.L.; Mamba, B.B.; Krause, R.W.; Malefetse, T.J.; Durbach, S.H. Cyclodextrin Polyurethanes Polymerised with Carbon Nanotubes for the Removal of Organic Pollutants in Water. Water SA 2008, 34. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Fu, Y.; Jiang, R.; Yao, J.; Liu, L.; Chen, Y.; Xiao, L.; Zeng, G. Preparation, Characterization and Adsorption Properties of Chitosan Modified Magnetic Graphitized Multi-Walled Carbon Nanotubes for Highly Effective Removal of a Carcinogenic Dye from Aqueous Solution. Appl. Surf. Sci. 2013, 285, 865–873. [Google Scholar] [CrossRef]
- Dhermendra, K.T.; Behari, J.; Prasenjit, S. Application of Nanoparticles in Waste Water Treatment. World Appl. Sci. J. 2008, 3, 417–433. [Google Scholar]
- Xu, J.; Bravo, A.G.; Lagerkvist, A.; Bertilsson, S.; Sjöblom, R.; Kumpiene, J. Sources and Remediation Techniques for Mercury Contaminated Soil. Environ. Int. 2015, 74, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Prachi; Gautam, P.; Madathil, D.; Brijesh Nair, A.N. Nanotechnology in Waste Water Treatment: A Review. Int. J. ChemTech Res. 2013, 5, 2303–2308. [Google Scholar] [CrossRef]
- Liu, S.; Lim, M.; Fabris, R.; Chow, C.; Chiang, K.; Drikas, M.; Amal, R. Removal of Humic Acid Using TiO2 Photocatalytic Process—Fractionation and Molecular Weight Characterisation Studies. Chemosphere 2008, 72, 263. [Google Scholar] [CrossRef]
- Alonso, A.; Macanás, J.; Davies, G.-L.; Gounko, Y.; Muñoz, M.; Muraviev, D. Environmentally-Safe Catalytically Active and Biocide Polymer-Metal Nanocomposites with Enhanced Structural Parameters. In Advances in Nanocomposite Technology; Hashim, A., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 8. [Google Scholar]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of Silver Nanoparticles with Different Shapes. Arab. J. Chem. 2019, 12, 1823–1838. [Google Scholar] [CrossRef] [Green Version]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar]
- Liu, T.; Baek, D.R.; Kim, J.S.; Joo, S.-W.; Lim, J.K. Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient PH and Temperatures. ACS Omega 2020, 5, 16246–16254. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhang, Z.; Feng, C.; Li, M.; Chen, R.; Sugiura, N. Investigations on the Batch and Fixed-Bed Column Performance of Fluoride Adsorption by Kanuma Mud. Desalination 2011, 268, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Al-Sherbini, A.S.A.; Ghannam, H.E.A.; El-Ghanam, G.M.A.; El-Ella, A.A.; Youssef, A.M. Utilization of Chitosan/Ag Bionanocomposites as Eco-Friendly Photocatalytic Reactor for Bactericidal Effect and Heavy Metals Removal. Heliyon 2019, 5, e01980. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, H.N.; Wu, H.-F. Facile Synthesis of Nano Silver Ferrite (AgFeO2) Modified with Chitosan Applied for Biothiol Separation. Mater. Sci. Eng. C 2014, 45, 438–445. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Nyamukamba, P. Preparation of Photocatalytic TiO2 Nanoparticles Immobilized on Carbon Nanofibres for Water Purification. Master’s Thesis, University of Fort Hare, Alice, South Africa, 2011. [Google Scholar]
- Mahlambi, M.M.; Ngila, C.J.; Mamba, B.B. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles—A Review. J. Nanomater. 2015, 29, 5. [Google Scholar] [CrossRef] [Green Version]
- Naheed, Z.; Bushra, U.; Muhammad Bilal, K.N.; Shamaila, S.; Ghufrana, S.; Muhammad, J.A.; Sikander, R. Fabrication & Characterization of Chitosan Coated Biologically Synthesized TiO2 Nanoparticles against PDR E. Coli of Veterinary Origin. Adv. Polym. Technol. 2020, 2020, 8456024. [Google Scholar]
- Falk, G.S.; Borlaf, M.; López-Muñoz, M.J.; Fariñas, J.C.; Rodrigues Neto, J.B.; Moreno, R. Microwave Assisted Synthesis of TiO2 Nanoparticles:Photocatalyticactivity of Powder Sand Thin Films. J. Nanoparticles Res. 2018, 20, 23. [Google Scholar] [CrossRef]
- Taka, A.L. Metal-Decorated Carbon Nanostructures for Photocatalytic Reduction of CO2; University of Johannesburg: Johannesburg, South Africa, 2014; ISBN 9798738661815. [Google Scholar]
- Arularasu, M.V. Effect of Organic Capping Agents on the Optical and Photocatalytic Activity of Mesoporous TiO2 Nanoparticles by Sol–Gel Method. SN Appl. Sci. 2019, 1, 393. [Google Scholar] [CrossRef]
- Bahal, M.; Kaur, N.; Sharotri, N.; Sud, D. Investigations on Amphoteric Chitosan/TiO2 Bionanocomposites for Application in Visible Light Induced Photocatalytic Degradation. Adv. Polym. Technol. 2019, 2019, 2345631. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.T.; Nithya, A.; Jothivenkatachalam, K. Photocatalytic and Antimicrobial Activities of Chitosan-TiO2 Nanocomposite. Int. J. Biol. Macromol. 2017, 104, 1762–1773. [Google Scholar] [CrossRef] [PubMed]
- Dhanya, A.; Aparna, K. Synthesis and Evaluation of TiO2/Chitosan Based Hydrogel for the Adsorptional Photocatalytic Degradation of Azo and Anthraquinone Dye under UV Light Irradiation. Procedia Technol. 2016, 24, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.K.; Thakur, M.K. Eco-Friendly Polymer Nanocomposites: Processing and Properties. In Processing and Properties; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Roy Choudhury, S.; Goswami, A. Supramolecular Reactive Sulphur Nanoparticles: A Novel and Efficient Antimicrobial Agent. J. Appl. Microbiol. 2013, 114, 1–10. [Google Scholar] [CrossRef]
- Roy Choudhury, S.; Roy, S.; Goswami, A.; Basu, S. Polyethylene Glycol-Stabilized Sulphur Nanoparticles: An Effective Antimicrobial Agent against Multidrug-Resistant Bacteria. J. Antimicrob. Chemother. 2012, 67, 1134–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, S.; Das, G.; Raul, P.K.; Karak, N. Green One-Step Approach to Prepare Sulfur/Reduced Graphene Oxide Nanohybrid for Effective Mercury Ions Removal. J. Phys. Chem. C 2013, 117, 7636–7642. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, J.; Chen, H.; Gu, S.; Zhao, R.; Shao, J.; Jia, L. Nanotechnology-Based Intelligent Drug Design for Cancer Metastasis Treatment. Biotechnol. Adv. 2014, 32, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Suleiman, A.A.A.; Hussein, A.; Hammouti, B.; Hadda, T.B.; Warad, I. Sulfur Nanoparticles: Synthesis, Characterizations and Their Applications. J. Mater. Environ. Sci. 2013, 5, 1029–1033. [Google Scholar]
- Deshpande, A.S.; Khomane, R.B.; Vaidya, B.K.; Joshi, R.M.; Harle, A.S.; Sulfur, K.B. Nanoparticles: Synthesis, Characterizations and Their Applications. Nanoscale Res. Lett 2008, 3, 221. [Google Scholar] [CrossRef] [Green Version]
- Shankar, S.; Rhim, J.W. Preparation of Sulfur Nanoparticle-Incorporated Antimicrobial Chitosan Films. Food Hydrocoll. 2018, 82, 116–123. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Y.; Li, J.; Yue, C.; Lei, X. Electrochemical Sensor for Detection of Hydrogen Peroxide Modified with Prussian Blue Electrodeposition on Nitrogen, Phosphorus and Sulfur Co-Doped Porous Carbons-Chitosan. Mater. Sci. Eng. C 2017, 77, 1242–1246. [Google Scholar] [CrossRef]
- Shankar, S.; Pangeni, R.; Park, J.W.; Rhim, J.-W. Preparation of Sulfur Nanoparticles and Their Antibacterial Activity and Cytotoxic Effect. Mater. Sci. Eng. C 2018, 92, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Ma, J.; Chen, J.; Shen, C.; Li, H.; Liu, W. Carbonaceous Sulfur-Containing Chitosan–Fe(III): A Novel Adsorbent for Efficient Removal of Copper (II) from Water. Chem. Eng. J. 2015, 259, 372–380. [Google Scholar] [CrossRef]
- Gurgur, E.; Oluyamo, S.S.; Adetuyi, A.O.; Omotunde, O.I.; Okoronkwo, A. Green Synthesis of Zinc Oxide Nanoparticles and Zinc Oxide-Silver, Zinc Oxide-Copper Nanocomposites Using Bridelia Ferruginea as Biotemplate. SN Appl. Sci. 2020, 2, 911. [Google Scholar] [CrossRef] [Green Version]
- Shankar, S.; Rhim, J.-W. Effect of Zn Salts and Hydrolyzing Agents on the Morphology and Antibacterial Activity of Zinc Oxide Nanoparticles. Environ. Chem. Lett. 2019, 17, 1105–1109. [Google Scholar] [CrossRef]
- Yue, S.; Yan, Z.; Shi, Y.; Ran, G. Synthesis of Zinc Oxide Nanotubes within Ultrathin Anodic Aluminum Oxide Membrane by Sol–Gel Method. Mater. Lett. 2013, 98, 246–249. [Google Scholar] [CrossRef]
- Dimapilis, E.A.S.; Hsu, C.S.; Mendoza, R.M.O.; Lu, M.C. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 2018, 28, 47–56. [Google Scholar] [CrossRef]
- Syeed Tofa, T.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Benhebal, H.; Chaib, M.; Salmon, T.; Geens, J.; Leonard, A.; Lambert, S.D.; Crine, M.; Heinrichs, B. Photocatalytic Degradation of Phenol and Benzoic Acid Using Zinc Oxide Powders Prepared by the Sol–Gel Process. Alexandria Eng. J. 2013, 52, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.M.; Menazea, A.A.; Kabary, H.A.; El-Sherbiny, A.E.; Samy, A. The Influence of Calcination Temperature on Structural and Antimicrobial Characteristics of Zinc Oxide Nanoparticles Synthesized by Sol–Gel Method. J. Mol. Struct. 2019, 1196, 332–337. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, M.; Fan, H.; Xu, Y.; Shao, Y.; Yang, X.; Yang, S. Synthesis and Characterization of Nitrogen Doped ZnO Tetrapods and Application in Photocatalytic Degradation of Organic Pollutants under Visible Light. Mater. Lett. 2013, 99, 105–107. [Google Scholar] [CrossRef]
- Taghavi Fardood, S.; Ramazani, A.; Moradnia, F.; Afshari, Z.; Ganjkhanlu, S.; Yekke Zare, F. Green Synthesis of ZnO Nanoparticles via Sol-Gel Method and Investigation of Its Application in Solvent-Free Synthesis of 12-Aryl-Tetrahydrobenzo[α]Xanthene-11-One Derivatives Under Microwave Irradiation. Chem. Methodol. 2019, 3, 632–642. [Google Scholar] [CrossRef] [Green Version]
- Scientific Figure on Research Gate Nanotechnology-Based Controlled Release of Sustainable Fertilizers: A Review. Available online: https://www.researchgate.net/figure/Fabrication-of-zinc-oxide-ZnO-nanoparticles-by-sol-gel-method-employing-zinc-acetate_fig4_359962592 (accessed on 15 October 2022).
- Hassan, H.; Salama, A.; El-ziaty, A.K.; El-Sakhawy, M. New Chitosan/Silica/Zinc Oxide Nanocomposite as Adsorbent for Dye Removal. Int. J. Biol. Macromol. 2019, 131, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Moradi Dehaghi, S.; Rahmanifar, B.; Moradi, A.M.; Azar, P.A. Removal of Permethrin Pesticide from Water by Chitosan–Zinc Oxide Nanoparticles Composite as an Adsorbent. J. Saudi Chem. Soc. 2014, 18, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Preethi, S.; Abarna, K.; Nithyasri, M.; Kishore, P.; Deepika, K.; Ranjithkumar, R.; Bhuvaneshwari, V.; Bharathi, D. Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Antibacterial Activity onto Cotton Fabrics and Dye Degradation Applications. Int. J. Biol. Macromol. 2020, 164, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Ran, Q.; Sheng, F.; Chang, G.; Zhong, M.; Xu, S. Sulfur-Doped Reduced Graphene Oxide@chitosan Composite for the Selective and Sensitive Electrochemical Detection of Hg2+ in Fish Muscle. Microchem. J. 2022, 175, 1–29. [Google Scholar] [CrossRef]
- Amanulla, B.; Perumal, K.N.; Ramaraj, S.K. Chitosan Functionalized Gold Nanoparticles Assembled on Sulphur Doped Graphitic Carbon Nitride as a New Platform for Colorimetric Detection of Trace Hg2+. Sens. Actuators B Chem. 2019, 281, 281–287. [Google Scholar] [CrossRef]
- Shawky, H.A.; El-Aassar, A.H.M.; Abo-Zeid, D.E. Chitosan/Carbon Nanotube Composite Beads: Preparation, Characterization, and Cost Evaluation for Mercury Removal from Wastewater of Some Industrial Cities in Egypt. J. Appl. Sci. 2011, 125, E93–E101. [Google Scholar] [CrossRef]
- Sharma, P.; Mourya, M.; Choudhary, D.; Goswami, M.; Kundu, I.; Dobhal, M.P.; Tripathi, C.S.P.; Guin, D. Thiol Terminated Chitosan Capped Silver Nanoparticles for Sensitive and Selective Detection of Mercury (II) Ions in Water. Sens. Actuators B Chem. 2018, 268, 310–318. [Google Scholar] [CrossRef]
- Zhou, L.; Xiong, W.; Liu, S. Preparation of a Gold Electrode Modified with Au–TiO2 Nanoparticles as an Electrochemical Sensor for the Detection of Mercury(II) Ions. J. Mater. Sci. 2015, 50, 769–776. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Nabil, G.M.; Abdel-Aal, H.; Fekry, N.A.; Osman, M.M. Imprinting “Nano-SiO2-Crosslinked Chitosan-Nano-TiO2” Polymeric Nanocomposite for Selective and Instantaneous Microwave-Assisted Sorption of Hg(II) and Cu(II). ACS Sustain. Chem. Eng. 2018, 6, 4564–4573. [Google Scholar] [CrossRef]
- Dąbrowski, A. Adsorption—From Theory to Practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Patel, H.; Yadav, S. A Study on Application of Queuing Theory at Petrol Retail Outlet. Int. J. Knowl. Manag. Tour. Hosp. 2019, 2, 151–159. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Xu, Y.; Ni, L.; Meng, X.; Hu, Z.; Zhong, G.; Meng, M.; Wang, Y.; Han, J. Efficient Static and Dynamic Removal of Sr(II) from Aqueous Solution Using Chitosan Ion-Imprinted Polymer Functionalized with Dithiocarbamate. J. Environ. Chem. Eng. 2015, 3, 1061–1071. [Google Scholar] [CrossRef]
- Xue, J.; Liao, C.; Wang, J.; Cryder, Z.; Xu, T.; Liu, F.; Gan, J. Development of Passive Samplers for in Situ Measurement of Pyrethroid Insecticides in Surface Water. Environ. Pollut. 2017, 224, 516–523. [Google Scholar] [CrossRef]
- Yelebe, Z.R.; Yelebe, B.Z.; Samuel, R.J. Design of Fixed Bed Column for the Removal of Metal Contaminants from Industrial Wastewater. J. Eng. Appl. Sci 2013, 5, 68–77. [Google Scholar]
- Alvarez, D. Overview of Passive Samplers for Assessing Contaminants in Water; USGS, Columbia Environmental Research Center: Columbia, MO, USA, 2019; pp. 1–49. [Google Scholar]
- Mulgundmath, V.P.; Jones, R.A.; Tezel, F.H.; Thibault, J. Fixed Bed Adsorption for the Removal of Carbon Dioxide from Nitrogen: Breakthrough Behaviour and Modelling for Heat and Mass Transfer. Sep. Purif. Technol. 2012, 85, 17–27. [Google Scholar] [CrossRef]
- Saltalı, K.; Sarı, A.; Aydın, M. Removal of Ammonium Ion from Aqueous Solution by Natural Turkish (Yıldızeli) Zeolite for Environmental Quality. J. Hazard. Mater. 2007, 141, 258–263. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Removal of Emerging Pharmaceutical Contaminants by Adsorption in a Fixed-Bed Column: A Review. Ecotoxicol. Environ. Saf. 2018, 149, 257–266. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Elgarahy, A.M.; Khan, Z.A.; Almughamisi, M.S.; Al-Bogami, A.S. Perspectives Regarding Metal/Mineral-Incorporating Materials for Water Purification: With Special Focus on Cr(vi) Removal. Mater. Adv. 2020, 1, 1546–1574. [Google Scholar] [CrossRef]
- Berekaa, M.M. Nanotechnology in Wastewater Treatment; Influence of Nanomaterials on Microbial Systems. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 713–726. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Diallo, M.; Savage, N.; Diallo, M.; Duncan, J.; Street, A.; Sustich, R. Nanotechnology Applications for Clean Water; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Mahmoodi, N.M.; Salehi, R.; Arami, M.; Bahrami, H. Dye Removal from Colored Textile Wastewater Using Chitosan in Binary Systems. Desalination 2011, 267, 64–72. [Google Scholar] [CrossRef]
- Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Patel, H. Fixed-Bed Column Adsorption Study: A Comprehensive Review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, M.L. Nanostructured Conducting Polymers for the Removal of Organic Pollutants from Aqueous Solutions: Batch and Column Studies. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2018. [Google Scholar]
- Xie, J.; Lin, Y.; Li, C.; Wu, D.; Kong, H. Removal and Recovery of Phosphate from Water by Activated Aluminum Oxide and Lanthanum Oxide. Powder Technol. 2015, 269, 351–357. [Google Scholar] [CrossRef]
- Das, N.; Das, D. Recovery of Rare Earth Metals through Biosorption: An Overview. J. Rare Earths 2013, 31, 933–943. [Google Scholar] [CrossRef]
- Srivastava, V.; Sharma, Y.C.; Sillanpää, M. Green Synthesis of Magnesium Oxide Nanoflower and Its Application for the Removal of Divalent Metallic Species from Synthetic Wastewater. Ceram. Int. 2015, 41, 6702–6709. [Google Scholar] [CrossRef]
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Wastewater Treatment by Batch Adsorption Method onto Micro-Particles of Dried Withania Frutescens Plant as a New Adsorbent. J. Environ. Manag. 2012, 95, S61–S65. [Google Scholar] [CrossRef] [PubMed]
- Kot-Wasik, A.; Zabiegała, B.; Urbanowicz, M.; Dominiak, E.; Wasik, A.; Namieśnik, J. Advances in Passive Sampling in Environmental Studies. Anal. Chim. Acta 2007, 602, 141–163. [Google Scholar] [CrossRef]
- Mclagan, D.S.; Monaci, F.; Huang, H.; Lei, Y.D.; Mitchell, C.P.J.; Wania, F. Characterization and Quantification of Atmospheric Mercury Sources Using Passive Air Samplers. J. Geophys. Res. Atmos. 2019, 124, 2351–2362. [Google Scholar] [CrossRef]
- Król, S.; Zabiegała, B.; Namieśnik, J. Monitoring VOCs in Atmospheric Air II. Sample Collection and Preparation. TrAC Trends Anal. Chem. 2010, 29, 1101–1112. [Google Scholar] [CrossRef]
- Tang, H.; Sandeluk, J.; Lin, L.; Lown, J.W. A New All-Season Passive Sampling System for Monitoring H2S in Air. Sci. World J. 2002, 2, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macagnano, A.; Papa, P.; Avossa, J.; Perri, V.; Marelli, M.; Sprovieri, F.; Zampetti, E.; De Cesare, F.; Bearzotti, A.; Pirrone, N. Passive Sampling of Gaseous Elemental Mercury Based on a Composite TiO2NP/AuNP Layer. Nanomaterials 2018, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Papa, P.; Fratoddi, I.; Venditti, I.; Vichi, F.; Macagnano, A.; Zampetti, E.; Bearzotti, A. Materials Use of Gold Nanoparticles as Substrate for Diffusive Monitoring of Gaseous Mercury. Materials 2018, 11, 2119. [Google Scholar] [CrossRef] [Green Version]
- Bearzotti, A.; Papa, P.; Macagnano, A.; Zampetti, E.; Venditti, I.; Fioravanti, R.; Fontana, L.; Matassa, R.; Familiari, G.; Fratoddi, I. Environmental Hg Vapours Adsorption and Detection by Using Functionalized Gold Nanoparticles Network. J. Environ. Chem. Eng. 2018, 6, 4706–4713. [Google Scholar] [CrossRef]
- Nechita, P. Applications of Chitosan in Wastewater Treatment. In Biological Activities and Application of Marine Polysaccharides; Shalaby, E.A., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Karimi, F.; Ayati, A.; Tanhaei, B.; Sanati, A.L.; Afshar, S.; Kardan, A.; Karaman, C. Removal of Metal Ions Using a New Magnetic Chitosan Nano-Bio-Adsorbent; A Powerful Approach in Water Treatment. Environ. Res. 2022, 203, 111753. [Google Scholar] [CrossRef] [PubMed]
- Chadha, U.; Selvaraj, S.K.; Thanu, S.V.; Cholapadath, V.; Mathew, A.; Zaiyan, M.; Manikandan, M.; Paramsivam, V. A Review of the Function of Using Carbon Nanomaterials in Membrane Filtration for Contaminant Removal from Wastewater. Mater. Res. Express 2022, 9, 1. [Google Scholar] [CrossRef]
- Kulkarni, K.; Chadha, U.; Yadav, S.; Tarun, D.M.; Thenmukilan, K.G.; Bhardwaj, P.; Sonar, P. Latest Trends and Advancement in Porous Carbon for Biowaste Organization and Utilization. ECS J. Solid State Sci. Technol. 2021, 11, 011003. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Preparation and Applications of Chitosan and Cellulose Composite Materials. J. Environ. Manag. 2022, 301, 113850. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan Nanoparticle Based Delivery Systems for Sustainable Agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef]
- Lee, S.J.; Heo, D.N.; Moon, J.H.; Ko, W.K.; Lee, J.B.; Bae, M.S.; Park, S.W.; Kim, J.E.; Lee, D.H.; Kim, E.C. Electrospun Chitosan Nanofibers with Controlled Levels of Silver Nanoparticles. Preparation, Characterization and Antibacterial Activity. Carbohydr. Polym. 2014, 111, 530–537. [Google Scholar] [CrossRef] [PubMed]
Techniques | Advantages | Limitations | Reference |
---|---|---|---|
Adsorption | High efficiency Cost effective Availability of a wide selection of adsorbents High adsorption rates Easy to operate | Low selectivity | [16,17] |
Solvent extraction | High Hg(II) selectivity | Time consuming Generation of secondary wastes Requires post-treatment step because of low separation efficiency | [17,18] |
Chemical precipitation | Simple and convenient Not energy intensive | Large amounts of chemicals are needed Usually uses corrosive chemical Inefficient in wastewater with low concentrations of Hg ions Generation of sludge causing secondary contamination | [19,20,21] |
Photocatalytic | Inexpensive depending on catalyst used | Formation of volatile Hg(0), which is also toxic and requires trapping | [22] |
Flotation | Highly efficient High Hg selectivity Low detention periods | High initial capital costs | [23] |
Ion exchange | Simple Cost-effective Efficient when thio based resins are used Tends to be cheap when natural zeolites are used | Requires a pretreatment step High cost of resins Resins used during the process require chemical regeneration that creates secondary pollution | [17,21] |
Phytoremediation bio-remediation | Low cost Formation of less harmful by-products | For live microorganisms, the method is ineffective when metal concentration is high May affect plant growth and photosynthesis ability Sensitive to operational environment | [18] |
Materials | Advantages | Disadvantages | Reference |
---|---|---|---|
MnCe/zeolite | High thermal stability Superior and high activity | High cost operation | [84] |
Ag-SBA-15 | Multi-functional materials Outstanding regeneration capability Strong tolerance to complex flue gas High thermal and mechanical stability | High operating cost High operating temperatures. | [85] |
Ag nanoparticles | High removal rate, Ultrahigh Ag atom utilization (150%) High selectivity and stability | High cost | [86] |
MWCNTs | High efficiency | Low selectivity High cost | [87] |
SiO2–TiO2 | High stability | Poor photocatalytic activity | [88] |
Activated carbon | Good adsorption capacity popular for the removal of pollutant from waste water. | They are costly (the higher the quality the greater the cost) Low selectivity | [29] |
Chitosan-Based Nanomaterial | Techniques | Target Media (H2O or atm) | Removal Capacity | Reference |
---|---|---|---|---|
Sulfur-doped reduced graphene oxide@chitosan composite | Batch adsorption | H2O | 0.125 to 6 μM Hg2+ with a detection limit of 1.6 nM. | [159] |
Ch functionalized Au@S-g-C3N4 | Passive sampling | atm | Limit of detection 0.275 nM | [160] |
Chitosan/CNTs | Batch adsorption | H2O | 148.7 mg/g (CS); 183.2 mg/g (MWCNT-COOH-impregnated CS beads); 167.5 mg/g (MWCNT-impregnated CS beads); and 172.7 mg/g (SWCNT-impregnated CS composite beads) | [161] |
Thiol terminated chitosan capped silver nanoparticles (Mod-Ch-Ag NPs) | Batch adsorption | H2O | Detection limit is 5 ppb and response time is 5 s | [162] |
Au-TiO2 nanoparticles/chitosan/gold (Au–TiO2 NPs/Ch/Au) | Passive sampler | atm | 5.0–400.0 nM. In addition, the limit of detection is 1.0 nM with a 240 s preconcentration | [163] |
Nano-SiO2-Crosslinked chitosan-nano-TiO2 | Microwave-assisted sorption | H2O | 8000 μmol g–1 | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goci, M.C.; Leudjo Taka, A.; Martin, L.; Klink, M.J. Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers 2023, 15, 482. https://doi.org/10.3390/polym15030482
Goci MC, Leudjo Taka A, Martin L, Klink MJ. Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers. 2023; 15(3):482. https://doi.org/10.3390/polym15030482
Chicago/Turabian StyleGoci, Mvula Confidence, Anny Leudjo Taka, Lynwill Martin, and Michael John Klink. 2023. "Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution" Polymers 15, no. 3: 482. https://doi.org/10.3390/polym15030482
APA StyleGoci, M. C., Leudjo Taka, A., Martin, L., & Klink, M. J. (2023). Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers, 15(3), 482. https://doi.org/10.3390/polym15030482