Processive Pathways to Metastability in Block Copolymer Thin Films
Abstract
:1. Introduction
2. Solvent-Induced Pathways to the Metastable Phases in Block Copolymer Thin Films
2.1. Classic Solvent Vapor Annealing
2.2. Direct Immersion Annealing
2.3. Solvent Drying
2.4. Limitations and Mitigations
3. Thermally Induced Pathways to Achieve the Metastable Phases in the Self-Assembling Block Copolymers
3.1. Microwave Annealing
3.2. Localized Annealing Methods
3.2.1. Laser Heating Methods
3.2.2. Cold Zone Annealing
3.3. Limitations and Future Prospects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mankowich, A.M. Micellar Molecular Weights of Selected Surface Active Agents. J. Phys. Chem. 1954, 58, 1027–1030. [Google Scholar] [CrossRef]
- Singh, M.; Wu, W.; Basutkar, M.N.; Strzalka, J.; Al-Enizi, A.M.; Douglas, J.F.; Karim, A. Ultra-Fast Vertical Ordering of Lamellar Block Copolymer Films on Unmodified Substrates. Macromolecules 2021, 54, 1564–1573. [Google Scholar] [CrossRef]
- Singh, M.; Odusanya, O.; Wilmes, G.M.; Eitouni, H.B.; Gomez, E.D.; Patel, A.J.; Chen, V.L.; Park, M.J.; Fragouli, P.; Iatrou, H.; et al. Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes. Macromolecules 2007, 40, 4578–4585. [Google Scholar] [CrossRef]
- Ruiz, R.; Kang, H.; Detcheverry, F.A.; Dobisz, E.; Kercher, D.S.; Albrecht, T.R.; de Pablo, J.J.; Nealey, P.F. Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly. Science 2008, 321, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Dolejsi, M.; Zhu, N.; Yim, S.; Loo, W.; Ma, P.; Zhou, C.; Craig, G.S.W.; Chen, W.; Wan, L.; et al. Optimized design of block copolymers with covarying properties for nanolithography. Nat. Mater. 2022, 21, 1426–1433. [Google Scholar] [CrossRef]
- Chang, B.S.; Loo, W.S.; Yu, B.; Dhuey, S.; Wan, L.; Nealey, P.F.; Ruiz, R. Sequential Brush Grafting for Chemically and Dimensionally Tolerant Directed Self-Assembly of Block Copolymers. ACS Appl. Mater. Interfaces 2022. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Ni, B.; Liu, Y.; Zhang, W.; Guo, Z.-H.; Lee, Y.-C.; Ho, R.-M.; Cheng, S.Z.D. Towards achieving a large-area and defect-free nano-line pattern via controlled self-assembly by sequential annealing. Giant 2021, 8, 100078. [Google Scholar] [CrossRef]
- Chang, B.S.; Li, C.; Dai, J.; Evans, K.; Huang, J.; He, M.; Hu, W.; Tian, Z.; Xu, T. Thermal Percolation in Well-Defined Nanocomposite Thin Films. ACS Appl. Mater. Interfaces 2022, 14, 14579–14587. [Google Scholar] [CrossRef]
- Chapman, D.V.; Hinckley, J.A.; Erstling, J.A.; Estroff, L.A.; Wiesner, U.B. Orthogonal Nanoprobes Enabling Two-Color Optical Super-Resolution Microscopy Imaging of the Two Domains of Diblock Copolymer Thin Film Nanocomposites. Chem. Mater. 2021, 33, 5156–5167. [Google Scholar] [CrossRef]
- Samant, S.; Hailu, S.; Singh, M.; Pradhan, N.; Yager, K.; Al-Enizi, A.M.; Raghavan, D.; Karim, A. Alignment frustration in block copolymer films with block copolymer grafted TiO2 nanoparticles under soft-shear cold zone annealing. Polym. Adv. Technol. 2021, 32, 2052–2060. [Google Scholar] [CrossRef]
- Huang, J.; Hall, A.; Jayapurna, I.; Algharbi, S.; Ginzburg, V.; Xu, T. Nanocomposites Based on Coil-Comb Diblock Copolymers. Macromolecules 2021, 54, 1006–1016. [Google Scholar] [CrossRef]
- Chen, X.C.; Kortright, J.B.; Balsara, N.P. Water Uptake and Proton Conductivity in Porous Block Copolymer Electrolyte Membranes. Macromolecules 2015, 48, 5648–5655. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, Y.; Savage, A.M.; Beyer, F.L.; Seifert, S.; Herring, A.M.; Knauss, D.M. Polyethylene-Based Block Copolymers for Anion Exchange Membranes. Macromolecules 2015, 48, 6523–6533. [Google Scholar] [CrossRef]
- Jackson, E.A.; Hillmyer, M.A. Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration. ACS Nano 2010, 4, 3548–3553. [Google Scholar] [CrossRef] [PubMed]
- Agbolaghi, S.; Alizadeh-Osgouei, M.; Abbaspoor, S.; Abbasi, F. Self-assembling nano mixed-brushes having co-continuous surface morphology by melt growing single crystals and comparison with solution patterned leopard-skin surface morphology. RSC Adv. 2015, 5, 1538–1548. [Google Scholar] [CrossRef]
- Abbaspoor, S.; Agbolaghi, S.; Abbasi, F. Chemical and physical effects of processing environment on simultaneous single crystallization of biodegradable poly(ε-caprolactone) and poly(l-lactide) brushes and poly(ethylene glycol) substrate. Eur. Polym. J. 2018, 103, 293–303. [Google Scholar] [CrossRef]
- Leibler, L. Theory of Microphase Separation in Block Copolymers. Macromolecules 1980, 13, 1602–1617. [Google Scholar] [CrossRef]
- Semenov, A.N. Contribution to the theory of microphase layering in block-copolymer melts. JETP 1985, 88, 1242–1256. [Google Scholar]
- Matsen, M.W.; Bates, F.S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641–7644. [Google Scholar] [CrossRef]
- Milner, S.T. Polymer Brushes. Science 1991, 251, 905–914. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Abbaspoor, S.; Abbasi, F. A comprehensive review on polymer single crystals—From fundamental concepts to applications. Prog. Polym. Sci. 2018, 81, 22–79. [Google Scholar] [CrossRef]
- Fredrickson, G.H.; Binder, K. Kinetics of metastable states in block copolymer melts. J. Chem. Phys. 1989, 91, 7265–7275. [Google Scholar] [CrossRef]
- Adamcik, J.; Mezzenga, R. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape. Angew. Chem. Int. Ed. 2018, 57, 8370–8382. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Ranjan, A. The metastable states of proteins. Protein Sci. 2020, 29, 1559–1568. [Google Scholar] [CrossRef]
- Kim, H.-C.; Russell, T.P. Ordering in thin films of asymmetric diblock copolymers. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 663–668. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, X.; Edwards, E.W.; La, Y.-H.; Nealey, P.F. Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology 2005, 16, S324. [Google Scholar] [CrossRef]
- Russell, T.P.; Hjelm, R.P., Jr.; Seeger, P.A. Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate). Macromolecules 1990, 23, 890–893. [Google Scholar] [CrossRef]
- Yan, H.; Blanford, C.F.; Lytle, J.C.; Carter, C.B.; Smyrl, W.H.; Stein, A. Influence of Processing Conditions on Structures of 3D Ordered Macroporous Metals Prepared by Colloidal Crystal Templating. Chem. Mater. 2001, 13, 4314–4321. [Google Scholar] [CrossRef]
- Alexandridis, P.; Spontak, R.J. Solvent-regulated ordering in block copolymers. Curr. Opin. Colloid Interface Sci. 1999, 4, 130–139. [Google Scholar] [CrossRef]
- Cavicchi, K.A.; Berthiaume, K.J.; Russell, T.P. Solvent annealing thin films of poly(isoprene-b-lactide). Polymer 2005, 46, 11635–11639. [Google Scholar] [CrossRef]
- Di, Z.; Posselt, D.; Smilgies, D.-M.; Papadakis, C.M. Structural Rearrangements in a Lamellar Diblock Copolymer Thin Film during Treatment with Saturated Solvent Vapor. Macromolecules 2010, 43, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Zettl, U.; Knoll, A.; Tsarkova, L. Effect of Confinement on the Mesoscale and Macroscopic Swelling of Thin Block Copolymer Films. Langmuir 2010, 26, 6610–6617. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Peng, J.; Cui, L.; Wang, H.; Li, B.; Han, Y. Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment. Macromolecules 2004, 37, 7301–7307. [Google Scholar] [CrossRef]
- Horvat, A.; Lyakhova, K.S.; Sevink, G.J.A.; Zvelindovsky, A.V.; Magerle, R. Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling. J. Chem. Phys. 2003, 120, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, H.; He, T.; Gong, Y. The Effect of the Preferential Affinity of the Solvent on the Microstructure of Solution-Cast Block Copolymer Thin Films. J. Phys. Chem. B 2010, 114, 1264–1270. [Google Scholar] [CrossRef]
- Jung, Y.S.; Ross, C.A. Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns. Adv. Mater. 2009, 21, 2540–2545. [Google Scholar] [CrossRef]
- Lin, Z.Q.; Kim, D.H.; Wu, X.D.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T.P. A Rapid Route to Arrays of Nanostructures in Thin Films. Adv. Mater. 2002, 14, 1373–1376. [Google Scholar] [CrossRef]
- Kim, S.H.; Misner, M.J.; Xu, T.; Kimura, M.; Russell, T.P. Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation. Adv. Mater. 2004, 16, 226–231. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, H.; Hu, Z.; He, T. Lateral Nanopatterns in Thin Diblock Copolymer Films Induced by Selective Solvents. Langmuir 2004, 20, 3805–3808. [Google Scholar] [CrossRef]
- Knoll, A.; Tsarkova, L.; Krausch, G. Nanoscaling of Microdomain Spacings in Thin Films of Cylinder-Forming Block Copolymers. Nano Lett. 2007, 7, 843–846. [Google Scholar] [CrossRef]
- Jeong, J.W.; Park, W.I.; Kim, M.-J.; Ross, C.A.; Jung, Y.S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-vinylpyridine-b-dimethylsiloxane) Block Copolymer. Nano Lett. 2011, 11, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- van Zoelen, W.; Asumaa, T.; Ruokolainen, J.; Ikkala, O.; ten Brinke, G. Phase Behavior of Solvent Vapor Annealed Thin Films of PS-b-P4VP(PDP) Supramolecules. Macromolecules 2008, 41, 3199–3208. [Google Scholar] [CrossRef] [Green Version]
- Gotrik, K.W.; Hannon, A.F.; Son, J.G.; Keller, B.; Alexander-Katz, A.; Ross, C.A. Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors. ACS Nano 2012, 6, 8052–8059. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.A.; Berezkin, A.V.; Tejsner, T.B.; Posselt, D.; Smilgies, D.-M.; Papadakis, C.M. Solvent Vapor Annealing of a Diblock Copolymer Thin Film with a Nonselective and a Selective Solvent: Importance of Pathway for the Morphological Changes. Macromol. Rapid Commun. 2020, 41, 2000150. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Libera, M. Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films. Macromolecules 1998, 31, 2569–2577. [Google Scholar] [CrossRef]
- Kimura, M.; Misner, M.J.; Xu, T.; Kim, S.H.; Russell, T.P. Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning. Langmuir 2003, 19, 9910–9913. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.; Xu, J.; Hofmann, T.; Ocko, B.M.; Russell, T.P. Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor. Macromolecules 2009, 42, 1278–1284. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, Z.; Fu, J.; Li, J.; Han, Y. Water-induced morphology evolution of block copolymer micellar thin films. Polymer 2005, 46, 5377–5384. [Google Scholar] [CrossRef]
- Huang, H.; Hu, Z.; Chen, Y.; Zhang, F.; Gong, Y.; He, T.; Wu, C. Effects of Casting Solvents on the Formation of Inverted Phase in Block Copolymer Thin Films. Macromolecules 2004, 37, 6523–6530. [Google Scholar] [CrossRef]
- Peng, J.; Xuan, Y.; Wang, H.; Yang, Y.; Li, B.; Han, Y. Solvent-induced microphase separation in diblock copolymer thin films with reversibly switchable morphology. J. Chem. Phys. 2004, 120, 11163–11170. [Google Scholar] [CrossRef]
- Tokarev, I.; Krenek, R.; Burkov, Y.; Schmeisser, D.; Sidorenko, A.; Minko, S.; Stamm, M. Microphase Separation in Thin Films of Poly(styrene-block-4-vinylpyridine) Copolymer−2-(4‘-Hydroxybenzeneazo)benzoic Acid Assembly. Macromolecules 2005, 38, 507–516. [Google Scholar] [CrossRef]
- Gong, Y.; Hu, Z.; Chen, Y.; Huang, H.; He, T. Ring-Shaped Morphology in Solution-Cast Polystyrene−Poly(methyl methacrylate) Block Copolymer Thin Films. Langmuir 2005, 21, 11870–11877. [Google Scholar] [CrossRef]
- Nagarajan, R.; Ganesh, K. Block copolymer self-assembly in selective solvents: Theory of solubilization in spherical micelles. Macromolecules 1989, 22, 4312–4325. [Google Scholar] [CrossRef]
- Ding, J.; Liu, G. Structures of Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Films Deposited on Mica Surfaces from Block-Selective Solvents. Langmuir 1999, 15, 1738–1747. [Google Scholar] [CrossRef]
- Ma, S.; Hou, Y.; Hao, J.; Lin, C.; Zhao, J.; Sui, X. Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers 2022, 14, 4568. [Google Scholar] [CrossRef] [PubMed]
- Park, W.I.; Choi, Y.J.; Yun, J.M.; Hong, S.W.; Jung, Y.S.; Kim, K.H. Enhancing the Directed Self-assembly Kinetics of Block Copolymers Using Binary Solvent Mixtures. ACS Appl. Mater. \& Interfaces 2015, 7, 25843–25850. [Google Scholar] [CrossRef] [PubMed]
- Chavis, M.A.; Smilgies, D.-M.; Wiesner, U.B.; Ober, C.K. Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. Adv. Funct. Mater. 2015, 25, 3057–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, W.; Yager, K.G.; Ross, C.A. In Situ Characterization of the Self-Assembly of a Polystyrene–Polydimethylsiloxane Block Copolymer during Solvent Vapor Annealing. Macromolecules 2015, 48, 8574–8584. [Google Scholar] [CrossRef]
- Papadakis, C.M.; Di, Z.; Posselt, D.; Smilgies, D.-M. Structural Instabilities in Lamellar Diblock Copolymer Thin Films During Solvent Vapor Uptake. Langmuir 2008, 24, 13815–13818. [Google Scholar] [CrossRef]
- Berezkin, A.V.; Jung, F.; Posselt, D.; Smilgies, D.-M.; Papadakis, C.M. In Situ Tracking of Composition and Morphology of a Diblock Copolymer Film with GISAXS during Exchange of Solvent Vapors at Elevated Temperatures. Adv. Funct. Mater. 2018, 28, 1706226. [Google Scholar] [CrossRef]
- Shelton, C.K.; Jones, R.L.; Epps, T.H., III. Kinetics of Domain Alignment in Block Polymer Thin Films during Solvent Vapor Annealing with Soft Shear: An in Situ Small-Angle Neutron Scattering Investigation. Macromolecules 2017, 50, 5367–5376. [Google Scholar] [CrossRef]
- Albert, J.N.L.; Bogart, T.D.; Lewis, R.L.; Beers, K.L.; Fasolka, M.J.; Hutchison, J.B.; Vogt, B.D.; Epps, T.H., III. Gradient Solvent Vapor Annealing of Block Copolymer Thin Films Using a Microfluidic Mixing Device. Nano Lett. 2011, 11, 1351–1357. [Google Scholar] [CrossRef]
- Sharp, J.S.; Jones, R.A.L. Swelling-induced morphology in ultrathin supported films of poly(d,l−lactide). Phys. Rev. E 2002, 66, 011801. [Google Scholar] [CrossRef] [PubMed]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Modi, A.; Bhaway, S.M.; Vogt, B.D.; Douglas, J.F.; Al-Enizi, A.; Elzatahry, A.; Sharma, A.; Karim, A. Direct Immersion Annealing of Thin Block Copolymer Films. ACS Appl. Mater. Interfaces 2015, 7, 21639–21645. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Sharma, A. Enhanced Self-Organized Dewetting of Ultrathin Polymer Films Under Water-Organic Solutions: Fabrication of Sub-micrometer Spherical Lens Arrays. Adv. Mater. 2010, 22, 5306–5309. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Sharma, A. Submicrometer Pattern Fabrication by Intensification of Instability in Ultrathin Polymer Films under a Water–Solvent Mix. Macromolecules 2011, 44, 4928–4935. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Sharma, A.; Joo, S.W. Dewetting of Stable Thin Polymer Films Induced by a Poor Solvent: Role of Polar Interactions. Macromolecules 2012, 45, 6628–6633. [Google Scholar] [CrossRef]
- Park, W.I.; Kim, J.M.; Jeong, J.W.; Jung, Y.S. Deep-Nanoscale Pattern Engineering by Immersion-Induced Self-Assembly. ACS Nano 2014, 8, 10009–10018. [Google Scholar] [CrossRef]
- Longanecker, M.; Modi, A.; Dobrynin, A.; Kim, S.; Yuan, G.; Jones, R.; Satija, S.; Bang, J.; Karim, A. Reduced Domain Size and Interfacial Width in Fast Ordering Nanofilled Block Copolymer Films by Direct Immersion Annealing. Macromolecules 2016, 49, 8563–8571. [Google Scholar] [CrossRef]
- Koenig, J.L. Dissolution of Symmetric Diblock Copolymers with Neutral Solvents, a Selective Solvent, a Nonsolvent, and Mixtures of a Solvent and Nonsolvent Monitored by FT-IR Imaging. Macromolecules 2003, 36, 4851–4861. [Google Scholar] [CrossRef]
- Ruiz, R.; Bosworth, J.K.; Black, C.T. Effect of structural anisotropy on the coarsening kinetics of diblock copolymer striped patterns. Phys. Rev. B 2008, 77, 054204. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Patel, B.B.; Walsh, D.J.; Kim, D.H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 2020, 6, eaaz7202. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, J.-H.; Shin, M.; Park, H.; Kim, J.-H.; Lee, S.-Y.; Park, S. Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation. Sci. Adv. 2015, 1, e1500101. [Google Scholar] [CrossRef] [Green Version]
- Park, W.I.; Tong, S.; Liu, Y.; Jung, I.W.; Roelofs, A.; Hong, S. Tunable and rapid self-assembly of block copolymers using mixed solvent vapors. Nanoscale 2014, 6, 15216–15221. [Google Scholar] [CrossRef]
- Zhang, X.; Harris, K.D.; Wu, N.L.Y.; Murphy, J.N.; Buriak, J.M. Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing. ACS Nano 2010, 4, 7021–7029. [Google Scholar] [CrossRef]
- Gotrik, K.W.; Ross, C.A. Solvothermal Annealing of Block Copolymer Thin Films. Nano Lett. 2013, 13, 5117–5122. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Cheng, M.-H.; Ko, H.-W.; Chu, C.-W.; Tu, Y.-H.; Chen, J.-T. Microwave-annealing-induced nanowetting of block copolymers in cylindrical nanopores. Soft Matter 2018, 14, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Borah, D.; Shaw, M.T.; Holmes, J.D.; Morris, M.A. Sub-10 nm Feature Size PS-b-PDMS Block Copolymer Structures Fabricated by a Microwave-Assisted Solvothermal Process. ACS Appl. Mater. Interfaces 2013, 5, 2004–2012. [Google Scholar] [CrossRef]
- Borah, D.; Senthamaraikannan, R.; Rasappa, S.; Kosmala, B.; Holmes, J.D.; Morris, M.A. Swift Nanopattern Formation of PS-b-PMMA and PS-b-PDMS Block Copolymer Films Using a Microwave Assisted Technique. ACS Nano 2013, 7, 6583–6596. [Google Scholar] [CrossRef]
- Higuchi, T.; Shimomura, M.; Yabu, H. Reorientation of Microphase-Separated Structures in Water-Suspended Block Copolymer Nanoparticles through Microwave Annealing. Macromolecules 2013, 46, 4064–4068. [Google Scholar] [CrossRef]
- Toolan, D.T.W.; Adlington, K.; Isakova, A.; Kalamiotis, A.; Mokarian-Tabari, P.; Dimitrakis, G.; Dodds, C.; Arnold, T.; Terrill, N.J.; Bras, W.; et al. Selective molecular annealing: In situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers. Phys. Chem. Chem. Phys. 2017, 19, 20412–20419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Chen, W.-C.; Borsali, R. Carbohydrate-Based Block Copolymer Thin Films: Ultrafast Nano-Organization with 7 nm Resolution Using Microwave Energy. Adv. Mater. 2017, 29, 1701645. [Google Scholar] [CrossRef]
- Jin, C.; Murphy, J.N.; Harris, K.D.; Buriak, J.M. Deconvoluting the Mechanism of Microwave Annealing of Block Copolymer Thin Films. ACS Nano 2014, 8, 3979–3991. [Google Scholar] [CrossRef] [PubMed]
- Mokarian-Tabari, P.; Cummins, C.; Rasappa, S.; Simao, C.; Sotomayor Torres, C.M.; Holmes, J.D.; Morris, M.A. Study of the Kinetics and Mechanism of Rapid Self-Assembly in Block Copolymer Thin Films during Solvo-Microwave Annealing. Langmuir 2014, 30, 10728–10739. [Google Scholar] [CrossRef] [PubMed]
- Kwan Wee, T.; Ulrich, W. Block Copolymer Self-Assembly Directed Hierarchically Structured Materials from Nonequilibrium Transient Laser Heating. Macromolecules 2019, 52, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Dieter, B. Laser Processing and Chemistry; Springer: Berlin/Hiedelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Shoji, M.; Satoshi, K. Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. IEEE\/ASME J. Microelectromechanical Syst. 1998, 7, 411–415. [Google Scholar] [CrossRef]
- Markus, D.; Georg von, F.; Martin, W.; Suresh, P.; Kurt, B.; Costas, M.S. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 2004, 3, 444–447. [Google Scholar] [CrossRef]
- Majewski, P.W.; Yager, K.G. Millisecond Ordering of Block Copolymer Films via Photothermal Gradients. ACS Nano 2015, 9, 3896–3906. [Google Scholar] [CrossRef]
- Swatantra Pratap, S.; Yilun, L.; Jibo, Z.; James, M.T.; Christopher, J.A. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS Nano 2017, 12, 289–297. [Google Scholar] [CrossRef]
- Brian, C.B.; August, W.B.; Jack, F.D.; Ronald, L.J.; Alamgir, K. Orientational order in block copolymer films zone annealed below the order--disorder transition temperature. Nano Lett. 2007, 7, 2789–2794. [Google Scholar] [CrossRef]
- Gurpreet, S.; Kevin, G.Y.; Brian, C.B.; Ho-Cheol, K.; Alamgir, K. Dynamic Thermal Field-Induced Gradient Soft-Shear for Highly Oriented Block Copolymer Thin Films. ACS Nano 2012. [Google Scholar] [CrossRef]
- Alan, G.J.; Byungki, J.; Christopher, K.O.; Michael, O.T. Control of PS-b-PMMA directed self-assembly registration by laser induced millisecond thermal annealing. Proc. SPIE 2014, 9049, 492–498. [Google Scholar] [CrossRef]
- Byungki, J.; Jing, S.; Florencia, P.; Manish, C.; Todd, R.Y.; Ulrich, W.; Christopher, K.O.; Michael, O.T. Kinetic rates of thermal transformations and diffusion in polymer systems measured during sub-millisecond laser-induced heating. ACS Nano 2012, 6, 5830–5836. [Google Scholar] [CrossRef]
- James, E.M. Physical properties of polymers handbook; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Hyeong Min, J.; Seung Hyun, L.; Seunghyun, L.; Ju Young, K.; Seung-Woo, S.; Bong Hoon, K.; Hwan Keon, L.; Jeong Ho, M.; Seung Keun, C.; Jun Soo, K.; et al. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. ACS Nano 2016, 10, 3435–3442. [Google Scholar] [CrossRef]
- Tang, J.L.; Tsai, M.A. Rapid formation of block copolymer thin film based on infrared laser irradiation. In Proceedings of the 2007 Conference on Lasers and Electro-Optics- Pacific Rim, Seoul, Republic of Korea, 26–31 August 2007; pp. 1–2. [Google Scholar]
- Hitesh, A.; Phong, D.; Kwan Wee, T.; Jerome, K.H.; Grazul, J.L.; Huolin, L.X.; David, A.M.; Michael, O.T.; Ulrich, W. Block copolymer self-assembly-directed single-crystal homo- and heteroepitaxial nanostructures. Science 2010, 330, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Gurpreet, S.; Saurabh, B.; Ren, Z.; Hongyi, Y.; Kevin, G.Y.; Mukerrem, C.; Miko, C.; Brian, C.B.; Alamgir, K. Large-scale roll-to-roll fabrication of vertically oriented block copolymer thin films. ACS Nano 2013. [Google Scholar] [CrossRef]
- Saumil, S.; Joseph, S.; Kevin, G.Y.; Kim, K.; Danielle, G.; Monali, B.; Namrata, S.; Gurpreet, S.; Brian, C.B.; Alamgir, K. Ordering Pathway of Block Copolymers under Dynamic Thermal Gradients Studied by in Situ GISAXS. Macromolecules 2016, 49, 8633–8642. [Google Scholar] [CrossRef]
- Gurpreet, S.; Kevin, G.Y.; Detlef, M.S.; Manish, M.K.; David, G.B.; Alamgir, K. Tuning Molecular Relaxation for Vertical Orientation in Cylindrical Block Copolymer Films via Sharp Dynamic Zone Annealing. Macromolecules 2012, 45, 7107–7117. [Google Scholar] [CrossRef]
- Kazuki, M.; Hirokazu, T.; Kenji, S.; Mikihito, T.; Takeji, H. Macroscopically oriented lamellar microdomains created by “cold zone-heating” method involving OOT. Polymer 2008, 49, 5146–5157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendeniya, N.; Hillery, K.; Chang, B.S. Processive Pathways to Metastability in Block Copolymer Thin Films. Polymers 2023, 15, 498. https://doi.org/10.3390/polym15030498
Hendeniya N, Hillery K, Chang BS. Processive Pathways to Metastability in Block Copolymer Thin Films. Polymers. 2023; 15(3):498. https://doi.org/10.3390/polym15030498
Chicago/Turabian StyleHendeniya, Nayanathara, Kaitlyn Hillery, and Boyce S. Chang. 2023. "Processive Pathways to Metastability in Block Copolymer Thin Films" Polymers 15, no. 3: 498. https://doi.org/10.3390/polym15030498
APA StyleHendeniya, N., Hillery, K., & Chang, B. S. (2023). Processive Pathways to Metastability in Block Copolymer Thin Films. Polymers, 15(3), 498. https://doi.org/10.3390/polym15030498