Development and Evaluation of Cellulose/Graphene-Oxide Based Composite for Removing Phenol from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Cellulose from a Ground Nut Shell
2.3. Preparation of Graphene Oxide (GO)
2.4. Preparation of GO–Cellulose Composite
2.5. Characterization
2.6. Phenol Adsorption Experiments
3. Results and Discussion
3.1. Characterization of Extracted Cellulose, GO, and GO–Cellulose Composite
3.2. X-ray Diffraction (XRD) Analysis
3.3. FE-SEM andEDSAnalyses
3.4. Thermogravimetric Analysis (TGA) and Differential Thermal Gravimetry (DTG)
3.5. Pore Specifications and Surface Area Analysis
3.6. Adsorption of Phenol Onto GO–Cellulose Composite
3.6.1. Effect of Contact Time
3.6.2. Effect of GO–Cellulose Composite Dose
3.6.3. Effect of pH
3.6.4. Effect of Temperature
3.6.5. The Effect of the Initial Concentration of Phenol
4. Comparison of Phenol Removal with Various Adsorbents Reported in the Literature
5. Adsorption Isotherms and Kinetic Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, S.A.; Davodian, M.; Abbasian, A.R. Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides. J. Taiwan Inst. Chem. Eng. 2017, 75, 97–104. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Alhaija, M.A. Removal of phenol from petroleum refinery wastewater through adsorptionon date-pit activated carbon. Chem. Eng. J. 2010, 162, 997–1005. [Google Scholar] [CrossRef]
- Department of Health and Human Services, Public Health Service; Agency for Toxic Substances and Disease Registry. Public Health Statement, Phenol; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008. [Google Scholar]
- Bukowska, B.; Kowalska, S. The presence and toxicity of phenol derivatives—Their effect on human erythrocytes. Curr. Top. Biophys. 2003, 27, 43–51. [Google Scholar]
- Said, K.A.M.; Ismail, A.F.; Karim, Z.A.; Abdullah, M.S.; Hafeez, A. A review of technologies for the phenolic compounds recovery andphenol removal from wastewater. Process Saf. Environ. Prot. 2021, 151, 257–289. [Google Scholar] [CrossRef]
- Kulkarni, S.J.; Kaware, J.P. Review on research for removal of phenol from wastewater. Int. J. Sci. Res. Publ. 2013, 3, 1–5. [Google Scholar]
- Wei, Z.; Zhang, Y.; Wang, W.; Dong, S.; Jiang, T.; Wei, D. Synthesis of cost-effective pomelo peel dimethoxydiphenylsilanederived materials for pyrene adsorption: From surface properties toadsorption mechanisms. ACS Omega 2020, 5, 9465–9476. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Luo, H.; Wang, H.; Zhang, L.; Liu, P.; Feng, L. Fast adsorption of nickel ions by porous graphene oxide/sawdustcomposite and reuse for phenol degradation from aqueous solutions. J. Colloid Interface Sci. 2014, 436, 90–98. [Google Scholar] [CrossRef]
- Roostaei, N.; Tezel, F.H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manag. 2004, 70, 157–164. [Google Scholar] [CrossRef]
- Rengaraj, S.; Moon, S.-H.; Sivabalan, R.; Arabindoo, B.; Murugesan, V. Agricultural solid waste for the removal of organics: Adsorption of phenol from water and wastewaterby palm seed coat activated carbon. Waste Manag. 2002, 22, 543–548. [Google Scholar] [CrossRef]
- Hameed, B.H.; Rahman, A.A. Removal of phenol from aqueous solutions by adsorption ontoactivated carbon prepared from biomass material. J. Hazard. Mater. 2008, 160, 576–581. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, S.; Misra, A.K.; Fan, M. Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chem. Eng. J. 2007, 129, 133–142. [Google Scholar] [CrossRef]
- Li, N.; Yue, Q.; Gao, B.; Xu, X.; Su, R.; Yu, B. One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. J. Clean. Prod. 2019, 207, 764–771. [Google Scholar] [CrossRef]
- Owalude, S.O.; Tella, A.C. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.; Ramteke, D.S.; Wate, S.R. Adsorption of malachite green on groundnut shell wastebased powdered activated carbon. Waste Mange 2007, 27, 1129–1138. [Google Scholar] [CrossRef]
- Siro, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials:a review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, R.; Ma, Y.Q.; Guan, W.B.; Wu, X.L.; Liu, X.; Li, H.; Du, Y.L.; Pan, C.P. Preparation of cellulose/graphene composite and its applicationsfortriazine pesticides adsorption from water. ACS Sustain. Chem. Eng. 2015, 3, 396–405. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, Y.; Peng, J.; Zhao, N.; Li, S.; Zhai, M. Preparation of graphene oxide/cellulose composites in ionic liquid for Ce(III) removal. Carbohydr. Polym. 2019, 208, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, K.; Tehrani, A.D.; Adeli, M. Bioconjugated graphene oxide hydrogel as an effective adsorbent forcationic dyes removal. Ecotoxicol. Environ. Saf. 2018, 147, 34–42. [Google Scholar] [CrossRef]
- Abu-Nada, A.; Abdala, A.; McKay, G. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: A review. J. Environ. Chem. Eng. 2021, 9, 105858. [Google Scholar] [CrossRef]
- Parvin, N.; Babapoor, A.; Nematollahzadeh, A.; Mousavi, S.M. Removal of phenol and β-naphthol from aqueous solution by decoratedgraphene oxide with magnetic iron for modified polyrhodanineasnanocomposite adsorbents: Kinetic, equilibrium and thermodynamic studies. React. Funct. Polym. 2020, 156, 104718. [Google Scholar] [CrossRef]
- Modi, A.; Bellare, J. Efficient removal of 2,4-dichlorophenol from contaminated water andalleviation of membrane fouling by highfluxpolysulfone-iron oxide/graphene oxide composite hollowfiber membranes. J. Water Process. Eng. 2020, 33, 101113. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.-F.; Yao, J. Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. J. Phys. Chem. Solids 2021, 150, 109839. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, X.; Liu, Y.; Liu, Z.; Chen, W. Preparation of graphene oxide/cellulose composites with microcrystalline cellulose acid hydrolysis using the waste acids generated by the hummers method of graphene oxide synthesis. Polymers 2021, 13, 4453. [Google Scholar] [CrossRef]
- Chen, Y.; Potschke, P.; Pionteck, J.; Voit, B.; Qi, H. Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxi de for multiple sensing applications. J. Mater. Chem. A 2018, 6, 7777–7785. [Google Scholar] [CrossRef]
- Tao, J.; Yang, J.; Ma, C.; Li, J.; Du, K.; Wei, Z.; Chen, C.; Wang, Z.; Zhao, C.; Deng, X. Cellulose nanocrystals/graphene oxide composite for the adsorption and removal of levofloxacin hydrochloride antibiotic from aqueous solution. R. Soc. Open Sci. 2020, 7, 200857. [Google Scholar] [CrossRef]
- Abd-Elhamid, A.I.; Elgoud, E.M.A.; Aly, H.F. Graphene oxide modifed with carboxymethyl cellulose for high adsorption capacities towards Nd(III) and Ce(III) from aqueous solutions. Cellulose 2022, 29, 9831–9846. [Google Scholar] [CrossRef]
- Hao, Y.; Qu, J.; Liu, Z.; Li, S.; Yang, H.; Sai, H.; Yang, H.; Peng, J.; Zhao, L.; Zhai, M. Efficient adsorption of ce (iii) onto porous cellulose/graphene oxide composite microspheres prepared in ionic liquid. Cellul. Chem. Technol. 2021, 55, 1163–1175. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, S.; Zhang, L.; You, T.; Xu, F. Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 2016, 9, 582. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, T.; Nair, V.; Patel, P.; Gupta, A.D. Extraction of cellulose and biofuel production from groundnut shells and its application to increase crop yield. World J. Pharm. Pharm. Sci. 2017, 6, 1820–1831. [Google Scholar]
- Bano, S.; Negi, Y.S. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr. Polym. 2017, 157, 1041–1049. [Google Scholar] [CrossRef]
- Soliman, M.; Sadek, A.A.; Abdelhamid, H.N.; Hussein, K. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res. Vet. Sci. 2021, 137, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Suo, F.; Xie, G.; Zhang, J.; Li, J.; Li, C.; Liu, X.; Zhang, Y.; Ma, Y.; Ji, M. A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphoruspesticide removal. RSC Adv. 2018, 8, 7735–7743. [Google Scholar] [CrossRef] [Green Version]
- Dan, H.; Li, N.; Xu, X.; Gao, Y.; Huang, Y.; Akram, M.; Yin, W.; Gao, B.; Yue, Q. Mechanism of sonication time on structure and adsorption properties of3D peanut shell/graphene oxide aerogel. Sci. Total Environ. 2020, 739, 139983. [Google Scholar] [CrossRef] [PubMed]
- Mungse, H.P.; Sharma, O.P.; Sugimura, H.; Khatri, O.P. Hydrothermal deoxygenation of graphene oxide insub- and supercritical water. RSC Adv. 2014, 4, 22589. [Google Scholar] [CrossRef]
- Kumar, B.; Deeba, F.; Priyadarshi, R.; Bano, S.; Kumar, A.; Negi, Y.S. Development of novel cross-linked carboxymethyl cellulose/poly(potassium 1-hydroxy acrylate): Synthesis, characterization and properties. Polym. Bull. 2020, 77, 4555–4570. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.; Jiang, C.; Zhang, C. Adsorptive removal of phenol by single and double networkcomposite hydrogels based on hydroxypropyl cellulose and grapheneoxide. J. Mater. Res. 2018, 33, 3898–3905. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewiczc, M.; Mierzwaa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEMand electron spectroscopy methods. J. Electron Spectros. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Trilokesh, C.; Uppuluri, K.B. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci. Rep. 2019, 9, 16709. [Google Scholar] [CrossRef]
- Fang, L.; Catchmark, J.M. Structure characterization of native cellulose during dehydration and rehydration. Cellulose 2014, 21, 3951–3963. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Ralph, S.A.; Baez, C.; Reiner, R.S.; Verrill, S.P. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 2017, 24, 1971–1984. [Google Scholar] [CrossRef]
- Krishnamachari, P.; Hashaikeh, R.; Tiner, M. Modified cellulose morphologies and its composites; SEM and TEM analysis. Micron 2011, 42, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Negi, Y.S. Water absorption and viscosity behaviour of thermally stable novel graft copolymer of carboxymethyl cellulose and poly(sodium 1-hydroxy acrylate). Carbohydr. Polym. 2018, 181, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Li, Z.; Tan, W.-Z.; Liu, X.-H.; Sun, Z.F.; Ren, P.-G.; Yan, D.-X. Facile preparation of 3D regenerated cellulose/graphene oxidecomposite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci. 2018, 532, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Hu, F.; Zhang, T.; Qiu, F.; Dai, H. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study. Bioresour. Technol. 2018, 249, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kandasubramanian, B. Graphene and graphene oxide-based composites for removal of organic pollutants: A review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Mandal, A.; Mukhopadhyay, P.; Das, S.K. The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration. SN Appl. Sci. 2019, 1, 192. [Google Scholar] [CrossRef] [Green Version]
- Mandal, A.; Mukhopadhyay, P.; Das, S.K. Adsorptive removal of phenol from wastewater using guava tree bark. Environ. Sci. Pollut. Res. 2020, 27, 23937–23949. [Google Scholar] [CrossRef]
- Xiong, Q.; Bai, Q.; Li, C.; He, Y.; Shen, Y.; Uyama, H. A cellulose acetate/amygdalus pedunculata shell derived activated carbon composite monolith for phenol adsorption. RSC Adv. 2018, 8, 7599–7605. [Google Scholar] [CrossRef] [Green Version]
- Kilic, M.; Varol, E.A.; Pütün, A.E. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 2011, 189, 397–403. [Google Scholar] [CrossRef]
- Pan, B.; Pan, B.; Zhang, W.; Zhang, Q.; Zhang, Q.; Zheng, S. Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. J. Hazard. Mater. 2008, 157, 293–299. [Google Scholar] [CrossRef]
- Nirmala, G.; Murugesan, T.; Rambabu, K.; Sathiyanarayanan, K.; Show, P.L. Adsorptive removal of phenol using banyan root activated carbon. Chem. Eng. Commun. 2019, 208, 831–842. [Google Scholar] [CrossRef]
- Mishra, S.; Yadav, S.S.; Rawat, S.; Singh, J.; Koduru, J.R. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. J. Environ. Manag. 2019, 246, 362–373. [Google Scholar] [CrossRef]
- Alinnor, I.J.; Nwachukwu, M.A. Removal of phenol from aqueous solution onto modified fly ash. Int. J. Res. Chem. Environ. 2012, 2, 124–129. [Google Scholar]
- Spiridon, Q.B.; Preda, E.; Botez, A.; Pitulice, L. Phenol removal from wastewater by adsorption on zeolitic composite. Environ. Sci. Pollut. Res. 2013, 20, 6367–6381. [Google Scholar] [CrossRef]
- Vazquez, I.; Iglesias, J.R.; Maranon, E.; Castrillon, L.; Alvarez, M. Removal of residual phenols from coke wastewater by adsorption. J. Hazard. Mater. 2007, 147, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, M.; Goswami, S.; Banerjee, P.; Sengupta, S.; Das, P.; Banerjee, P.K.; Datta, S. Ultrasonic assisted graphene oxide nanosheet for the removal of phenol containing solution. Environ. Technol. Innov. 2017, 13, 398–407. [Google Scholar] [CrossRef]
- Gupta, H.; Gupta, B. Adsorption of polycyclic aromatic hydrocarbons on banana peel activated carbon. Desalin. Water Treat. 2016, 57, 9498–9509. [Google Scholar] [CrossRef]
- Singh, S.; Parveen, N.; Gupta, H. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environ. Technol. Innov. 2018, 12, 189–195. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, H.; Dhiman, S.; Sahu, N.K. Decontamination of cationic dye brilliant green from the aqueous media. Appl. Water Sci. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Gupta, H.; Singh, S. Kinetics and thermodynamics of phenanthrene adsorption from water on orange rind activated carbon. Environ. Technol. Innov. 2018, 10, 208–214. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, H. Activated carbon fromsawdust for naphthalene removal from contaminated water. Environ. Technol. Innov. 2020, 20, 101080. [Google Scholar] [CrossRef]
- Yuan, J.; Feng, L.; Wang, J.-X. Rapid adsorption of naphthalene from aqueous solution by naphthylmethyl derived porous carbon materials. J. Mol. Liq. 2020, 304, 112768. [Google Scholar] [CrossRef]
Sample | Carbon | Oxygen | Sodium | Chlorine |
---|---|---|---|---|
GO | 56.8 | 43.2 | - | - |
Cellulose | 50.2 | 41.7 | 3.2 | 4.9 |
GO−cellulose | 65.0 | 29.6 | 5.2 | 0.3 |
Sample | SBET (m2/g) | VT (cm3/ g) | Vmic (cm3/ g) | Dp (nm) |
---|---|---|---|---|
Cellulose | 1.023 | 1.28 | 0.001 | 3.146 |
GO–cellulose | 6.042 | 4.094 | 0.003 | 4.757 |
Entry No. | Time (Min) | Dose (g) | pH | Temperature (°C) | Phenol Removal (%) |
---|---|---|---|---|---|
1 | 10 | 0.050 | 7.0 | 30 | 34 ± 1 |
2 | 20 | 0.050 | 7.0 | 30 | 38 ± 2 |
3 | 30 | 0.050 | 7.0 | 30 | 40 ± 1 |
4 | 40 | 0.050 | 7.0 | 30 | 43 ± 1 |
5 | 50 | 0.050 | 7.0 | 30 | 44 ± 1 |
6 | 60 | 0.050 | 7.0 | 30 | 44 ± 2 |
7 | 40 | 0.075 | 7.0 | 30 | 57 ± 3 |
8 | 40 | 0.100 | 7.0 | 30 | 68 ± 3 |
9 | 40 | 0.125 | 7.0 | 30 | 74 ± 2 |
10 | 40 | 0.150 | 7.0 | 30 | 74 ± 2 |
11 | 40 | 0.175 | 7.0 | 30 | 75 ± 2 |
12 | 40 | 0.125 | 3.0 | 30 | 79 ± 1 |
13 | 40 | 0.125 | 4.0 | 30 | 82 ± 1 |
14 | 40 | 0.125 | 5.0 | 30 | 81 ± 1 |
15 | 40 | 0.125 | 6.0 | 30 | 78 ± 1 |
16 | 40 | 0.125 | 8.0 | 30 | 76 ± 2 |
17 | 40 | 0.125 | 9.0 | 30 | 75 ± 3 |
18 | 40 | 0.125 | 10.0 | 30 | 62 ± 3 |
19 | 40 | 0.125 | 11.0 | 30 | 57 ± 4 |
20 | 40 | 0.125 | 7.0 | 40 | 84 ± 1 |
21 | 40 | 0.125 | 7.0 | 50 | 86 ± 2 |
22 | 40 | 0.125 | 7.0 | 60 | 89 ± 1 |
23 | 40 | 0.125 | 7.0 | 70 | 91 ± 2 |
Adsorbents | qe(mg/g) | Ref. |
---|---|---|
PSCC (palm seed coat activated carbon) | 18.3 | [10] |
Fe3O4/PRd composite | 4.98 | [21] |
CA/APS-derived AC composite | 45.0 | [49] |
ACK1 activated carbon | 17.83 | [50] |
ACK2 activated carbon | 45.49 | [50] |
Activated bentonites | 4–16 | [51] |
Banyanroot activated carbon (BRAC) | 26.95 | [52] |
Corn husk activated carbon | 7.8 | [53] |
Modified fly ash | 4.79 | [54] |
BioZheolith | 2.354 | [55] |
Surfactant-modified alumina | 6.64 | [8] |
NH2-MIL-101 (Al) | 0.76 | [8] |
Bagasse fly ash | 0.060 | [8] |
Rice husk | 0.0022 | [8] |
Petroleum coke | 6.01 | [8] |
Pyrolyzed sewage sludge | 5.56 | [8] |
Activated coal | 1.48 | [56] |
Ultrasonic assisted graphene oxide nanosheet | 10.23 | [57] |
GO–cellulose | 6.192 | This study |
LANGMUIR PARAMETERS | FRENDLICH PARAMETERS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Term | Values | Term | Values | ||||||||
30 °C | 40 °C | 50 °C | 60 °C | 70 °C | 30 °C | 40 °C | 50 °C | 60 °C | 70 °C | ||
B | 0.025 | 0.0833 | 0.0800 | 0.100 | 0.0133 | 1/n | 0.6696 | 0.5331 | 0.5277 | 0.4969 | 0.4891 |
R 2 | 0.9957 | 0.9873 | 0.9963 | 0.9974 | 0.9923 | R 2 | 0.9863 | 0.9867 | 0.9773 | 0.9679 | 0.9662 |
Q° | 3.33 × 104 | 2.00 × 104 | 2.50 × 104 | 2.52 × 104 | 2.53 × 104 | Kf | 1426.59 | 2635.72 | 3052.81 | 3847.68 | 4430.98 |
Pseudo-First-Order | Pseudo-Second-Order | Intra-Particle Diffusion | |||
---|---|---|---|---|---|
Rate Constant | R2 | Rate Constant | R2 | Rate Constant | R2 |
6.37 × 10−2 | 0.9499 | 2.58 × 10−2 | 0.999 | 4.05 × 10−1 | 0.9797 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Kumar, B.; Gupta, H.; Kumar, A. Development and Evaluation of Cellulose/Graphene-Oxide Based Composite for Removing Phenol from Aqueous Solutions. Polymers 2023, 15, 572. https://doi.org/10.3390/polym15030572
Kumar N, Kumar B, Gupta H, Kumar A. Development and Evaluation of Cellulose/Graphene-Oxide Based Composite for Removing Phenol from Aqueous Solutions. Polymers. 2023; 15(3):572. https://doi.org/10.3390/polym15030572
Chicago/Turabian StyleKumar, Naveen, Bijender Kumar, Himanshu Gupta, and Anuj Kumar. 2023. "Development and Evaluation of Cellulose/Graphene-Oxide Based Composite for Removing Phenol from Aqueous Solutions" Polymers 15, no. 3: 572. https://doi.org/10.3390/polym15030572
APA StyleKumar, N., Kumar, B., Gupta, H., & Kumar, A. (2023). Development and Evaluation of Cellulose/Graphene-Oxide Based Composite for Removing Phenol from Aqueous Solutions. Polymers, 15(3), 572. https://doi.org/10.3390/polym15030572