Effect of Gamma Radiation on the Processability of New and Recycled PA-6 Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Data Analysis
3. Results
3.1. Rheological Characterization Results
3.2. Chemical Characterization Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia, J.M.; Robertson, M.L. The Future of Plastics Recycling. Science 2017, 358, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Moran, F.; Jaiswal, A.K. A Review on European Union’s Strategy for Plastics in a Circular Economy and Its Impact on Food Safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Facts 2022; PlasticsEurope: Brussels, Belgium, 2022. [Google Scholar]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Žagar, E.; Češarek, U.; Drinčić, A.; Sitar, S.; Shlyapnikov, I.M.; Pahovnik, D. Quantitative Determination of PA6 and/or PA66 Content in Polyamide-Containing Wastes. ACS Sustain. Chem. Eng. 2020, 8, 11818–11826. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamamoto, S. An Efficient Method To Depolymerize Polyamide Plastics: A New Use of Ionic Liquids. Org. Lett. 2007, 9, 2533–2535. [Google Scholar] [CrossRef]
- Kalfas, G.A. Mathematical Modeling of the Depolymerization of Polyamide Mixtures—Part I: Kinetic Mechanism and Parametric Studies in Batch Reactors. Polym. React. Eng. 1998, 6, 41–67. [Google Scholar] [CrossRef]
- Datta, J.; Błażek, K.; Włoch, M.; Bukowski, R. A New Approach to Chemical Recycling of Polyamide 6.6 and Synthesis of Polyurethanes with Recovered Intermediates. J. Polym. Environ. 2018, 26, 4415–4429. [Google Scholar] [CrossRef] [Green Version]
- Rollinson, A.; Oladejo, J. Chemical Recycling: Status, Sustainability, and Environmental Impacts; Global Alliance for Incinerator Alternatives (GAIA): Berkeley, CA, USA, 2020. [Google Scholar]
- Davenas, J.; Stevenson, I.; Celette, N.; Cambon, S.; Gardette, J.L.; Rivaton, A.; Vignoud, L. Stability of Polymers under Ionising Radiation: The Many Faces of Radiation Interactions with Polymers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2002, 191, 653–661. [Google Scholar] [CrossRef]
- Naikwadi, A.T.; Sharma, B.K.; Bhatt, K.D.; Mahanwar, P.A. Gamma Radiation Processed Polymeric Materials for High Performance Applications: A Review. Front. Chem. 2022, 10, 837111. [Google Scholar] [CrossRef]
- Ashfaq, A.; Clochard, M.-C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef]
- Clough, R.L. High-Energy Radiation and Polymers: A Review of Commercial Processes and Emerging Applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 185, 8–33. [Google Scholar] [CrossRef]
- Charlesby, A. Radiation Mechanisms in Polymers. In Irradiation of Polymers; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1967; Volume 66, p. 1. ISBN 9780841200678. [Google Scholar]
- Tamada, M. Radiation Processing of Polymers and Its Applications BT—Radiation Applications; Kudo, H., Ed.; Springer: Singapore, 2018; pp. 63–80. ISBN 978-981-10-7350-2. [Google Scholar]
- Porubská, M.; Babić, D.; Janigová, I.; Šlouf, M.; Jomová, K.; Chodák, I. The Effect of Gamma Irradiation in Air and Inert Atmosphere on Structure and Properties of Unfilled or Glass Fibre-Reinforced Polyamide 6. Polym. Bull. 2016, 73, 1775–1794. [Google Scholar] [CrossRef]
- Porubská, M. Radiation Effects in Polyamides. In Radiation Effects in Materials; Monteiro, W.A., Ed.; IntechOpen: Rijeka, Croatia, 2016; Chapter 10; ISBN 978-953-51-2418-4. [Google Scholar]
- Bhattacharya, A. Radiation and Industrial Polymers. Prog. Polym. Sci. 2000, 25, 371–401. [Google Scholar] [CrossRef]
- Smith, A.P.; Spontak, R.J.; Ade, H. On the Similarity of Macromolecular Responses to High-Energy Processes: Mechanical Milling vs. Irradiation. Polym. Degrad. Stab. 2001, 72, 519–524. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Ávila-Córdoba, L.I.; Martínez-López, M.; Herrera-Sosa, E.S.; Santiago, E.V.; Barrera-Díaz, C.E.; Ureña-Nuñez, F.; González, R. Gamma Radiation as a Recycling Tool for Waste Materials Used in Concrete; Nenoi, M., Ed.; IntechOpen: Rijeka, Croatia, 2015; Chapter 11. [Google Scholar]
- Burillo, G.; Clough, R.L.; Czvikovszky, T.; Guven, O.; Le Moel, A.; Liu, W.; Singh, A.; Yang, J.; Zaharescu, T. Polymer Recycling: Potential Application of Radiation Technology. Radiat. Phys. Chem. 2002, 64, 41–51. [Google Scholar] [CrossRef]
- Gabbott, P. A Practical Introduction to Differential Scanning Calorimetry. In Principles and Applications of Thermal Analysis; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Adem, E.; Burillo, G.; del Castillo, L.F.; Vásquez, M.; Avalos-Borja, M.; Marcos-Fernández, A. Polyamide-6: The Effects on Mechanical and Physicochemical Properties by Electron Beam Irradiation at Different Temperatures. Radiat. Phys. Chem. 2014, 97, 165–171. [Google Scholar] [CrossRef]
- Dong, W.; Gijsman, P. Influence of Temperature on the Thermo-Oxidative Degradation of Polyamide 6 Films. Polym. Degrad. Stab. 2010, 95, 1054–1062. [Google Scholar] [CrossRef]
- Charlesby, A.; Pinner, S.H.; Bowden, F.P. Analysis of the Solubility Behaviour of Irradiated Polyethylene and Other Polymers. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1959, 249, 367–386. [Google Scholar] [CrossRef]
- Güven, O. Crosslinking and Scission in Polymers; Nato Science Series C; Springer: Amsterdam, The Netherlands, 2012; ISBN 9789400919242. [Google Scholar]
- Reiner, M.; Schoenfeld-Reiner, R. Viskosimetrische Untersuchungen an Lösungen Hochmolekularer Naturstoffe. I. Mitteilung. Kautschuk in Toluol. Kolloid-Zeitschrift 1933, 65, 44–62. [Google Scholar] [CrossRef]
- Colby, R.H.; Fetters, L.J.; Graessley, W.W. The Melt Viscosity-Molecular Weight Relationship for Linear Polymers. Macromolecules 1987, 20, 2226–2237. [Google Scholar] [CrossRef]
- Lin, Y.; Kouznetsova, T.B.; Chang, C.-C.; Craig, S.L. Enhanced Polymer Mechanical Degradation through Mechanochemically Unveiled Lactonization. Nat. Commun. 2020, 11, 4987. [Google Scholar] [CrossRef] [PubMed]
- La Mantia, F.P.; Curto, D.; Scaffaro, R. Recycling of Dry and Wet Polyamide 6. J. Appl. Polym. Sci. 2002, 86, 1899–1903. [Google Scholar] [CrossRef]
- Saramito, P. Quasi-Newtonian Fluids BT—Complex Fluids: Modeling and Algorithms; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–90. ISBN 978-3-319-44362-1. [Google Scholar]
- Su, K.-H.; Lin, J.-H.; Lin, C.-C. Influence of Reprocessing on the Mechanical Properties and Structure of Polyamide 6. J. Mater. Process. Technol. 2007, 192–193, 532–538. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Echtermeyer, A.T. Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers 2018, 10, 1017. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.D.; Hao, J.; Wang, W. Ultraviolet Weathering Performance of High-Density Polyethylene/Wood-Flour Composites with a Basalt-Fiber-Included Shell. Polymers 2018, 10, 831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromageot, D.; Roger, A.; Lemaire, J. Thermooxidation Yellowing of Aliphatic Polyamides. Die Angew. Makromol. Chem. 1989, 170, 71–85. [Google Scholar] [CrossRef]
- Karstens, T.; Rossbach, V. Thermo-Oxidative Degradation of Polyamide 6 and 6,6. Kinetics of the Formation and Inhibition of UV/VIS-Active Chromophores. Die Makromol. Chem. 1989, 190, 3033–3053. [Google Scholar] [CrossRef]
- Osmanoğlu, Y.E.; Sütçü, K. EPR Studies of the Free Radicals Generated in Gamma Irradiated Amino Acid Derivatives. J. Mol. Struct. 2017, 1145, 240–243. [Google Scholar] [CrossRef]
- Chiang, T.C.; Sibilia, J.P. Electron Paramagnetic Resonance Study of Thermal-Oxidative Degradation of Nylon 6. J. Polym. Sci. Part A-1 Polym. Chem. 1972, 10, 605–612. [Google Scholar] [CrossRef]
- Salehiyan, R.; Bandyopadhyay, J.; Ray, S.S. Mechanism of Thermal Degradation-Induced Gel Formation in Polyamide 6/Ethylene Vinyl Alcohol Blend Nanocomposites Studied by Time-Resolved Rheology and Hyphenated Thermogravimetric Analyzer Fourier Transform Infrared Spectroscopy Mass Spectroscopy: Synerg. ACS Omega 2019, 4, 9569–9582. [Google Scholar] [CrossRef]
Compound | Wavelength (cm−1) |
---|---|
Ketones | 1715 |
Aldehydes | 1725 |
Aliphatic carboxylic acids | 1750 |
Esters | 1735 |
CH2 scissor bond | 1458–1468 |
Spectrum Reference | Sample |
---|---|
Virgen | Virgin PA—no irradiation |
M1 | Virgin PA—100 kGy irradiation in air |
M3 | Virgin PA—350 kGy irradiation in air |
M7 | Recycled PA—100 kGy irradiation in air |
M9 | Recycled PA— 350 kGy irradiation in air |
Rec | Recycled PA—no irradiation |
Log MW < 3.84 | 3.84 < Log MW < 5.08 | Log MW > 5.08 | |
---|---|---|---|
VIRGIN 0 kGy | 12.24 | 83.18 | 4.58 |
VIRGIN 100 kGy | 16.11 | 74.13 | 9.76 |
VIRGIN 350 kGy | 26.52 | 58.93 | 14.55 |
RECYCLED 0 kGy | 13.43 | 82.10 | 4.47 |
RECYCLED 100 kGy | 16.64 | 70.80 | 12.56 |
RECYCLED 350 kGy | 32.12 | 57.19 | 10.69 |
Virgin PA-6 | Recycled PA-6 | |
---|---|---|
G-value crosslinking (100 eV)−1 | 0.6406 | 0.8470 |
G-value scission (100 eV)−1 | 1.9456 | 3.0760 |
Mn correlation | 1.35 × 10−7 D + 8.29 × 10−5 | 2.31 × 10−7 D + 8.47 × 10−5 |
Mn determination coefficient | 0.9990 | 0.9720 |
PD correlation | 1.90 × 10−2 D + 3.2475 | 1.58 × 10−2 D + 3.8498 |
PD determination coefficient | 0.9993 | 0.9813 |
Mw correlation | −3.20 × 10−8 D + 2.39 × 10−5 | −1.62 × 10−8 D + 2.27 × 10−5 |
Mw determination coefficient | 0.9309 | 0.3997 |
T 10 | T Onset | T Max | Residue % | |
---|---|---|---|---|
VIRGIN 0 kGy | 410.89 | 373.39 | 479.67 | 0.677 |
VIRGIN 100 kGy | 409.30 | 370.98 | 473.20 | 0.645 |
VIRGIN 350 kGy | 408.42 | 370.60 | 479.64 | 0.783 |
VIRGIN 500 kGy | 409.84 | 371.00 | 479.24 | 0.830 |
RECYCLED 0 kGy | 409.10 | 371.40 | 477.19 | 1.131 |
RECYCLED 100 kGy | 411.62 | 372.58 | 477.63 | 1.114 |
RECYCLED 350 kGy | 407.36 | 370.58 | 478.85 | 0.896 |
RECYCLED 500 kGy | 410.55 | 371.40 | 479.69 | 0.981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Niño, C.; Vidal, J.; Del Cerro, M.; Royo-Pascual, L.; Murillo-Ciordia, G.; Castell, P. Effect of Gamma Radiation on the Processability of New and Recycled PA-6 Polymers. Polymers 2023, 15, 613. https://doi.org/10.3390/polym15030613
González Niño C, Vidal J, Del Cerro M, Royo-Pascual L, Murillo-Ciordia G, Castell P. Effect of Gamma Radiation on the Processability of New and Recycled PA-6 Polymers. Polymers. 2023; 15(3):613. https://doi.org/10.3390/polym15030613
Chicago/Turabian StyleGonzález Niño, Carlos, Julio Vidal, Martina Del Cerro, Lucía Royo-Pascual, Gonzalo Murillo-Ciordia, and Pere Castell. 2023. "Effect of Gamma Radiation on the Processability of New and Recycled PA-6 Polymers" Polymers 15, no. 3: 613. https://doi.org/10.3390/polym15030613
APA StyleGonzález Niño, C., Vidal, J., Del Cerro, M., Royo-Pascual, L., Murillo-Ciordia, G., & Castell, P. (2023). Effect of Gamma Radiation on the Processability of New and Recycled PA-6 Polymers. Polymers, 15(3), 613. https://doi.org/10.3390/polym15030613