Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extrusion with Degassing and Melt Compounding with Zeolites
2.3. VOCs/Odor Analysis
- Start-up: sensor was turned on and left for calibration for at least 2–3 h in ambient air.
- Contact: the sensor was exposed to the material emitting VOCs, in the same configuration used for the panel tests: each sample with a constant surface area of 680 ± 10 mm2 was placed in a glass jar with a fixed volume (106 mL) and closed by a metallic lid, underneath which the sensor was mounted. This allowed to fix the measurement volume and the distance sensor-sample. Measurements were conducted for a time (20–30 min) long enough for the IAQ to reach a plateau value.
- Regeneration: the sensor was exposed to ambient air, allowing previously adsorbed VOCs to be released from the sensor’s surface. The sensor needed about 20 min to reach the initial condition and, therefore, to be considered as regenerated.
2.4. Characterization Techniques
3. Results and Discussion
3.1. Main Characteristics of the Recycled Plastics and Zeolites
3.2. Extrusion with Degassing: Optimization of the Process Conditions
3.3. Melt Compounding with Zeolites
3.3.1. Preliminary Tests for the Selection of Zeolite Type for Each Recycled Resin
3.3.2. Optimization of the Zeolites’ Concentration
3.4. Combination of Degassing and Compounding with Zeolite
- PW; PW/HRT+4% Z310; LDPE; LDPE+4%Z310;
- Fil-S; Fil-S_H/HRT+4%13X; LDPE; LDPE+4% 13X.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EuPC and Polymer Comply Europe (PCE). The Usage of Recycled Plastics Materials (RPM) by Plastics Converters in Europe. Reinf. Plast. 2019, 62, 159–161. [Google Scholar]
- Riechers, M.; Fanini, L.; Apicella, A.; Galván, C.B.; Blondel, E.; Espiña, B.; Kefer, S.; Keroullé, T.; Klun, K.; Pereira, T.R.; et al. Plastics in Our Ocean as Transdisciplinary Challenge. Mar. Pollut. Bull. 2021, 164, 112051. [Google Scholar] [CrossRef]
- Demets, R.; Roosen, M.; Vandermeersch, L.; Ragaert, K.; Walgraeve, C.; De Meester, S. Development and Application of an Analytical Method to Quantify Odour Removal in Plastic Waste Recycling Processes. Resour. Conserv. Recycl. 2020, 161, 104907. [Google Scholar] [CrossRef]
- Cabanes, A.; Valdés, F.J.; Fullana, A. A Review on VOCs from Recycled Plastics. Sustain. Mater. Technol. 2020, 25, e00179. [Google Scholar] [CrossRef]
- Strangl, M.; Fell, T.; Schlummer, M.; Maeurer, A.; Buettner, A. Characterization of Odorous Contaminants in Post-Consumer Plastic Packaging Waste Using Multidimensional Gas Chromatographic Separation Coupled with Olfactometric Resolution. J. Sep. Sci. 2017, 40, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Strangl, M.; Schlummer, M.; Maeurer, A.; Buettner, A. Comparison of the Odorant Composition of Post-Consumer High-Density Polyethylene Waste with Corresponding Recycled and Virgin Pellets by Combined Instrumental and Sensory Analysis. J. Clean. Prod. 2018, 181, 599–607. [Google Scholar] [CrossRef]
- Strangl, M.; Ortner, E.; Fell, T.; Ginzinger, T.; Buettner, A. Odor Characterization along the Recycling Process of Post-Consumer Plastic Film Fractions. J. Clean. Prod. 2020, 260, 121104. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Strangl, M.; Ortner, E.; Buettner, A. Evaluation of the Efficiency of Odor Removal from Recycled HDPE Using a Modified Recycling Process. Resour. Conserv. Recycl. 2019, 146, 89–97. [Google Scholar] [CrossRef]
- Prado, K.S.; Strangl, M.; Pereira, S.R.; Tiboni, A.R.; Ortner, E.; Spinacé, M.A.S.; Buettner, A. Odor Characterization of Post-Consumer and Recycled Automotive Polypropylene by Different Sensory Evaluation Methods and Instrumental Analysis. Waste Manag. 2020, 115, 36–46. [Google Scholar] [CrossRef]
- Cabanes, A.; Strangl, M.; Ortner, E.; Fullana, A.; Buettner, A. Odorant Composition of Post-Consumer LDPE Bags Originating from Different Collection Systems. Waste Manag. 2020, 104, 228–238. [Google Scholar] [CrossRef]
- Strangl, M.; Lok, B.; Breunig, P.; Ortner, E.; Buettner, A. The Challenge of Deodorizing Post-Consumer Polypropylene Packaging: Screening of the Effect of Washing, Color-Sorting and Heat Exposure. Resour. Conserv. Recycl. 2021, 164, 105143. [Google Scholar] [CrossRef]
- De San Luis, A.; Santini, C.C.; Chalamet, Y.; Dufaud, V. Removal of Volatile Organic Compounds from Bulk and Emulsion Polymers: A Comprehensive Survey of the Existing Techniques. Ind. Eng. Chem. Res. 2019, 58, 11601–11623. [Google Scholar] [CrossRef]
- Cabanes, A.; Fullana, A. New Methods to Remove Volatile Organic Compounds from Post-Consumer Plastic Waste. Sci. Total Environ. 2021, 758, 144066. [Google Scholar] [CrossRef] [PubMed]
- Dany, H.; Dhong, W.W.; Jiat, K.W.; Leong, T.K.; Yuhana, N.Y.; Tan, G. Deodorizing Methods for Recycled High-Density Polyethylene Plastic Wastes. Mater. Plast. 2021, 58, 129–136. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Kessler, A.; Lieser, J. Odour Reduction on Plastics and Its Measurement. Polym. Test. 1999, 18, 63–71. [Google Scholar] [CrossRef]
- Roosen, M.; De Somer, T.; Demets, R.; Ügdüler, S.; Meesseman, V.; Van Gorp, B.; Ragaert, K.; Van Geem, K.M.; Walgraeve, C.; Dumoulin, A.; et al. Towards a Better Understanding of Odor Removal from Post-Consumer Plastic Film Waste: A Kinetic Study on Deodorization Efficiencies with Different Washing Media. Waste Manag. 2021, 120, 564–575. [Google Scholar] [CrossRef]
- Removal of Hazardous Substances in Polyethylene Packages Using Supercritical Carbon Dioxide (SC-CO2) in Recycling Process. Available online: https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=4927 (accessed on 30 January 2023).
- Zhu, L.; Shen, D.; Luo, K.H. A Critical Review on VOCs Adsorption by Different Porous Materials: Species, Mechanisms and Modification Methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef]
- Fuss, V.L.B.; Bruj, G.; Dordai, L.; Roman, M.; Cadar, O.; Becze, A. Evaluation of the Impact of Different Natural Zeolite Treatments on the Capacity of Eliminating/Reducing Odors and Toxic Compounds. Materials 2021, 14, 3724. [Google Scholar] [CrossRef]
- Yu, Y.; Zheng, L.; Wang, J. Adsorption Behavior of Toluene on Modified 1X Molecular Sieves. J. Air Waste Manag. Assoc. 2012, 62, 1227–1232. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, J.W.; Kim, S.; Kang, Y.T. CO2 Adsorption on Zeolite 13X Modified with Hydrophobic Octadecyltrimethoxysilane for Indoor Application. J. Clean. Prod. 2022, 337, 130597. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Y.; Qin, Q.; Liu, H.; Zhu, J. Development on Hydrophobic Modification of Aluminosilicate and Titanosilicate Zeolite Molecular Sieves. Appl. Catal. A Gen. 2021, 611, 117952. [Google Scholar] [CrossRef]
- Shen, X.; Du, X.; Yang, D.; Ran, J.; Yang, Z.; Chen, Y. Influence of Physical Structures and Chemical Modification on VOCs Adsorption Characteristics of Molecular Sieves. J. Environ. Chem. Eng. 2021, 9, 106729. [Google Scholar] [CrossRef]
- Kim, K.J.; Ahn, H.G. The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating. Microporous Mesoporous Mater. 2012, 152, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Keshavarzi, N.; Mashayekhy Rad, F.; Mace, A.; Ansari, F.; Akhtar, F.; Nilsson, U.; Berglund, L.; Bergström, L. Nanocellulose-Zeolite Composite Films for Odor Elimination. ACS Appl. Mater. Interfaces 2015, 7, 14254–14262. [Google Scholar] [CrossRef]
- Söylemez, C.; Türkmen, İ.; Özen, İ. Achieving Dual-Functionality by Surface Coating of Zeolite with Stearic Acid: Combining Breathability and Odor Control Properties in Polyethylene/Zeolite Composite Films. Macromol. Res. 2020, 28, 1149–1159. [Google Scholar] [CrossRef]
- Cohen, S.; Chejanovsky, I.; Suckeveriene, R.Y. Grafting of Poly(Ethylene Imine) to Silica Nanoparticles for Odor Removal from Recycled Materials. Nanomaterials 2022, 12, 2237. [Google Scholar] [CrossRef]
- Chandak, M.V.; Lin, Y.S. Hydrophobic Zeolites as Adsorbents for Removal of Volatile Organic Compounds from Air. Environ. Technol. UK 1998, 19, 941–948. [Google Scholar] [CrossRef]
- Garofalo, E.; Scarfato, P.; Di Maio, L.; Protopapa, A.; Incarnato, L. Zeolites as Effective Desiccants to Solve Hygroscopicity Issue of Post-Consumer Mixed Recycled Polyolefins. J. Clean. Prod. 2021, 295, 126379. [Google Scholar] [CrossRef]
- Hee-Soo Kim, H.-J.K. Influence of the Zeolite Type on the Mechanical–Thermal Properties and Volatile Organic Compound Emissions of Natural-Flour-Filled Polypropylene Hybrid Composites. J. Appl. Polym. Sci. 2008, 110, 3247–3255. [Google Scholar] [CrossRef]
- Garofalo, E.; Di Maio, L.; Scarfato, P.; Di Gregorio, F.; Incarnato, L. Nanotechnology-Based Strategy to Upgrade the Performances of Plastic Flexible Film Waste. Polymers 2019, 11, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, E.; Di Maio, L.; Scarfato, P.; Apicella, A.; Protopapa, A.; Incarnato, L. Nanosilicates in Compatibilized Mixed Recycled Polyolefins: Rheological Behavior and Film Production in a Circular Approach. Nanomaterials 2021, 11, 2128. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, E.; Di Maio, L.; Scarfato, P.; Pietrosanto, A.; Protopapa, A.; Incarnato, L. Study on Improving the Processability and Properties of Mixed Polyolefin Post-Consumer Plastics for Piping Applications. Polymers 2021, 13, 71. [Google Scholar] [CrossRef]
- ZEOCHEM, Specialty Zeolites. Available online: https://www.zeochem.com/our-products/specialty-zeolites (accessed on 30 January 2023).
- Gola, A.; Rebours, B.; Milazzo, E.; Lynch, J.; Benazzi, E.; Lacombe, S.; Delevoye, L.; Fernandez, C. Effect of Leaching Agent in the Dealumination of Stabilized Y Zeolites. Microporous Mesoporous Mater. 2000, 40, 73–83. [Google Scholar] [CrossRef]
- Gabruś, E.; Nastaj, J.; Tabero, P.; Aleksandrzak, T. Experimental Studies on 3A and 4A Zeolite Molecular Sieves Regeneration in TSA Process: Aliphatic Alcohols Dewatering-Water Desorption. Chem. Eng. J. 2015, 259, 232–242. [Google Scholar] [CrossRef]
- Shikunov, B.I.; Lafer, L.I.; Yakerson, V.I.; Mishin, I.V.; Rubinshtein, A.M. Infrared Spectra of Synthetic Zeolites. Bull. Acad. Sci. USSR Div. Chem. Sci. 1972, 21, 201–203. [Google Scholar] [CrossRef]
Samples Prior Processing | |
Sample name | ppm H2O |
PW | 2914 ± 115 |
Fil-S | 2265 ± 108 |
PW_Dried | 558 ± 35 |
Fil-S_Dried | 459 ± 44 |
PW_H | 3372 ± 122 |
Fil-S_H | 5701 ± 214 |
Samples after processing in twin-extruder | |
Sample name | Description |
PW/LRT | Low Residence Time = 40 s inside the extruder |
Fil-S/LRT | |
PW/HRT | High Residence Time = 120 s inside the extruder |
Fil-S/HRT | |
PW_H/HRT | Humid samples processed at HRT inside the extruder |
Fil-S_H/HRT |
Odor Intensity | Numerical Rating |
None | 1 |
Very slight | 2 |
Slight | 3 |
Moderate | 4 |
Strong | 5 |
Type of odor | Description |
Chemical | Solvent, alkane, aromatic, petrol, gasoline, plastic and phenolic odors |
Fatty | Fatty, oily smell |
Waxy | Wax-like smell |
Cheesy and sulfur | Onion-like, garlic-like and cheesy smell |
Pungent | Acidic, musk, spicy, fecal, pea-like, malty and rancid odors |
Pleasant food flavor | Caramel-like, chocolate, butter-like, bready, coffee-like and vanilla odors |
Flowery, fruity and soapy | Berry, balsamic, citrus, herbal and minty odors |
Earthy-moldy | Wet earth, mold-like smell |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, E.; Taurino, L.; Di Maio, L.; Neitzert, H.C.; Incarnato, L. Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing. Polymers 2023, 15, 1858. https://doi.org/10.3390/polym15081858
Garofalo E, Taurino L, Di Maio L, Neitzert HC, Incarnato L. Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing. Polymers. 2023; 15(8):1858. https://doi.org/10.3390/polym15081858
Chicago/Turabian StyleGarofalo, Emilia, Leonardo Taurino, Luciano Di Maio, Heinz C. Neitzert, and Loredana Incarnato. 2023. "Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing" Polymers 15, no. 8: 1858. https://doi.org/10.3390/polym15081858
APA StyleGarofalo, E., Taurino, L., Di Maio, L., Neitzert, H. C., & Incarnato, L. (2023). Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing. Polymers, 15(8), 1858. https://doi.org/10.3390/polym15081858