Detection of Leachable Components from Conventional and Dental Bulk-Fill Resin Composites (High and Low Viscosity) Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Analytical Technique
2.3. Statistical Test Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knezevic, A.; Ristic, M.; Demoli, N.; Tarle, Z.; Music, S.; Mandic, V.N. Composite Photopolymerization with Diode Laser. Oper. Dent. 2007, 32, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Cebe, M.A.; Cebe, F.; Cengiz, M.F.; Cetin, A.R.; Arpag, O.F.; Ozturk, B. Elution of monomer from different bulk fill dental composite resins. Dent. Mater. 2015, 31, e141–e149. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.-Y.; Kim, Y.-J.; Choi, N.-S.; Lee, I.-B. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J. Dent. 2015, 43, 430–439. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Hosoda, H.; Yamada, T.; Inokoshi, S. SEM and elemental analysis of resin composites. J. Prosthet. Dent. 1990, 64, 669–676. [Google Scholar] [CrossRef]
- Oysaed, H.; Ruyter, I. Water Sorption and Filler Characteristics of Composites for Use in Posterior Teeth. J. Dent. Res. 1986, 65, 1315–1318. [Google Scholar] [CrossRef] [PubMed]
- Söderholm, K.-J.M. Filler leachability during water storage of six composite materials. Scand J. Dent. Res. 1990, 98, 82–88. [Google Scholar] [CrossRef]
- Schweikl, H.; Spagnuolo, G.; Schmalz, G. Genetic and Cellular Toxicology of Dental Resin Monomers. J. Dent. Res. 2006, 85, 870–877. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Nawrot, T.; Geebelen, B.; De Munck, J.; Snauwaert, J.; Yoshihara, K.; Scheers, H.; Godderis, L.; Hoet, P.; Van Meerbeek, B.; et al. How much do resin-based dental materials release? A meta-analytical approach. Dent. Mater. 2011, 27, 723–747. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Knezevic, A.; Zeljezic, D.; Kopjar, N.; Tarle, Z. Cytotoxicity of Composite Materials Polymerized with LED Curing Units. Oper. Dent. 2008, 33, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knezevic, A.; Zeljezic, D.; Kopjar, N.; Tarle, Z. Influence of curing mode intensities on cell structure cytotoxicity/genotoxicity. Am. J. Dent. 2009, 22, 43–48. [Google Scholar] [PubMed]
- Schulz, S.D.; Laquai, T.; Kümmerer, K.; Bolek, R.; Mersch-Sundermann, V.; Polydorou, O. Elution of Monomers from Provisional Composite Materials. Int. J. Polym. Sci. 2015, 2015, 617407. [Google Scholar] [CrossRef]
- Pongprueksa, P.; De Munck, J.; Duca, R.C.; Poels, K.; Covaci, A.; Hoet, P.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Monomer elution in relation to degree of conversion for different types of composite. J. Dent. 2015, 43, 1448–1455. [Google Scholar] [CrossRef]
- Atkinson, J.C.; Diamond, F.; Eichmiller, F.; Selwitz, R.; Jones, G. Stability of bisphenol A, triethylene-glycol dimethacrylate, and bisphenol A dimethacrylate in whole saliva. Dent. Mater. 2002, 18, 128–135. [Google Scholar] [CrossRef]
- Polydorou, O.; König, A.; Hellwig, E.; Kümmerer, K. Long-term release of monomers from modern dental-composite materials. Eur. J. Oral Sci. 2009, 117, 68–75. [Google Scholar] [CrossRef]
- Manojlovic, D.; Radisic, M.; Lausevic, M.; Zivkovic, S.; Miletic, V. Mathematical modeling of cross-linking monomer elution from resin-based dental composites. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2013, 101B, 61–67. [Google Scholar] [CrossRef]
- Stefova, M.; Ivanova, V.; Muratovska, I. Identification and quantification of Bis-GMA and Teg-DMA released from dental mate-rials by HPLC. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.V.; Wei, B.; Zhu, Y.; Zhang, Y.; Bluth, M.H. Liquid Chromatography–Tandem Mass Spectrometry An Emerging Technology in the Toxicology Laboratory. Clin. Lab. Med. 2016, 36, 635–661. [Google Scholar] [CrossRef] [Green Version]
- Demirel, M.G.; Gönder, H.Y.; Tunçdemir, M.T. Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC. Life 2022, 12, 1713. [Google Scholar] [CrossRef]
- Wu, W.; McKinney, J. Influence of Chemicals on Wear of Dental Composites. J. Dent. Res. 1982, 61, 1180–1183. [Google Scholar] [CrossRef] [PubMed]
- Cokic, S.M.; Duca, R.C.; De Munck, J.; Hoet, P.; Van Meerbeek, B.; Smet, M.; Godderis, L.; Van Landuyt, K.L. Saturation reduces in-vitro leakage of monomers from composites. Dent. Mater. 2018, 34, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Tuna, E.B.; Aktoren, O.; Oshida, Y.; Gencay, K. Elution of residual monomers from dental composite materials. Eur J Paediatr Dent 2010, 11, 110–114. [Google Scholar] [PubMed]
- Ruyter, I.E.; Oysaed, H. Analysis and characterisation of dental polymers. CRC Crit. Rev. Biocompat. 1988, 4, 247–279. [Google Scholar]
- Geurtsen, W.; Leyhausen, G. Chemical-Biological interactions of the resin monomer triethyleneglycol-dimethylacrilate (TEGDMA). J. Dent. Res. 2001, 80, 2046–2050. [Google Scholar] [CrossRef]
- Forsten, L. Short- and long-term fluoride release from glass ionomers and other fluoride-containing filling materials In Vitro. Scand J. Dent. Res. 1990, 98, 179–185. [Google Scholar] [CrossRef]
- Asmussen, E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Eur. J. Oral Sci. 1982, 90, 490–496. [Google Scholar] [CrossRef]
- Ferracane, J. Elution of leachable components from composites. J. Oral Rehabilitation 1994, 21, 441–452. [Google Scholar] [CrossRef]
- Spahl, W.; Budzikiewicz, H.; Geurtsen, W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J. Dent. 1998, 26, 137–145. [Google Scholar] [CrossRef]
- Schwengberg, S.; Bohlen, H.; Kleinsasser, N.; Kehe, K.; Seiss, M.; Walther, U.; Hickel, R.; Reichl, F. In vitro embryotoxicity assessment with dental restorative materials. J. Dent. 2005, 33, 49–55. [Google Scholar] [CrossRef]
- Ruyter, I.E. Physical and Chemical Aspects Related to Substances Released from Polymer Materials in an Aqueous Environment. Adv. Dent. Res. 1995, 9, 344–347. [Google Scholar] [CrossRef]
- Tanaka, K.; Taira, M.; Shintani, H.; Wakasa, K.; Yamaki, M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J. Oral Rehabilitation 1991, 18, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Densply. SDR Scientific Compendium. 2011. Available online:. (accessed on 1 February 2014).
- Gallorini, M.; Cataldi, A.; Di Giacomo, V. HEMA-induced cytotoxicity: Oxidative stress, genotoxicity and apoptosis. Int. Endod. J. 2014, 47, 813–818. [Google Scholar] [CrossRef]
- Kullmann, W. Atlas of Parodontology with Glass Ionomer Cements and Composites. Carl Hanser Verlag: Munich, Germany; Vienna, Austria, 1990. [Google Scholar]
- Chung, K.; Greener, E.H. Degree of conversion of seven visible light-cured posterior composites. J. Oral Rehabilitation 1988, 15, 555–560. [Google Scholar] [CrossRef]
- Pearson, G.J.; Longman, C.M. Water sorption and solubility of resin-based materials following inadequate polymerization by a visible-light curing system. J. Oral Rehabilitation 1989, 16, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Rothmund, L.; Reichl, F.-X.; Hickel, R.; Styllou, P.; Styllou, M.; Kehe, K.; Yang, Y.; Högg, C. Effect of layer thickness on the elution of bulk-fill composite components. Dent. Mater. 2016, 33, 54–62. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration (US FDA). Reccomendations for Chemistry Data for Indirect Food Additives Petitions; US FDA: Silver Spring, MD, USA, 1998.
- Kim, J.-G.; Chung, C.-M. Elution from light-cured dental composites: Comparison of trimethacrylate and dimethacrylate as base monomers. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005, 72, 328–333. [Google Scholar] [CrossRef]
- Altintas, S.H.; Usumez, A. Evaluation of monomer leaching from a dual cured resin cement. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86B, 523–529. [Google Scholar] [CrossRef]
- Duruk, G.; Akküç, S.; Uğur, Y. Evaluation of residual monomer release after polymerization of different restorative materials used in pediatric dentistry. BMC Oral Health 2022, 22, 232. [Google Scholar] [CrossRef]
- De Angelis, F.; Mandatori, D.; Schiavone, V.; Melito, F.P.; Valentinuzzi, S.; Vadini, M.; Di Tomo, P.; Vanini, L.; Pelusi, L.; Pipino, C.; et al. Cytotoxic and Genotoxic Effects of Composite Resins on Cultured Human Gingival Fibroblasts. Materials 2021, 14, 5225. [Google Scholar] [CrossRef]
- Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artifcial saliva and its use in biological experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Alshali, R.Z.; Salim, N.A.; Sung, R.; Satterthwaite, J.D.; Silikas, N. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent. Mater. 2015, 31, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Janani, K.; Teja, K.V.; Sandhya, R.; Alam, M.K.; Al-Qaisi, R.K.; Shrivastava, D.; Alnusayri, M.O.; Alkhalaf, Z.A.; Sghaireen, M.G.; Srivastava, K.C. Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography—An In-Vitro Study. Polymers 2021, 13, 4395. [Google Scholar] [CrossRef]
- Nazar, A.M.; George, L.; Mathew, J. Effect of layer thickness on the elution of monomers from two high viscosity bulk-fill com-posites: A high-performance liquid chromatography analysis. J. Conserv. Dent. 2021, 23, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Yoshihara, K.; Yao, C.; Okazaki, Y.; Van Landuyt, K.; Peumans, M.; Van Meerbeek, B. Multiparameter evaluation of acrylamide HEMA alternative monomers in 2-step adhesives. Dent. Mater. 2020, 37, 30–47. [Google Scholar] [CrossRef]
- Ginzkey, C.; Zinnitsch, S.; Steussloff, G.; Koehler, C.; Hackenberg, S.; Hagen, R.; Kleinsasser, N.H.; Froelich, K. Assessment of HEMA and TEGDMA induced DNA damage by multiple genotoxicological endpoints in human lymphocytes. Dent. Mater. 2015, 31, 865–876. [Google Scholar] [CrossRef]
- Alrahlah, A.; Al-Odayni, A.-B.; Al-Mutairi, H.F.; Almousa, B.M.; Alsubaie, F.S.; Khan, R.; Saeed, W.S. A Low-Viscosity BisGMA Derivative for Resin Composites: Synthesis, Characterization, and Evaluation of Its Rheological Properties. Materials 2021, 14, 338. [Google Scholar] [CrossRef]
- Becher, R.; Wellendorf, H.; Sakhi, A.K.; Samuelsen, J.T.; Thomsen, C.; Bølling, A.K.; Kopperud, H.M. Presence and leaching of bisphenol a (BPA) from dental materials. Acta Biomater. Odontol. Scand. 2018, 4, 56–62. [Google Scholar] [CrossRef]
- Maserejian, N.N.; Trachtenberg, F.L.; Wheaton, O.B.; Calafat, A.M.; Ranganathan, G.; Kim, H.-Y.; Hauser, R. Changes in urinary bisphenol A concentrations associated with placement of dental composite restorations in children and adolescents. J. Am. Dent. Assoc. 2016, 147, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Bezgin, T.; Cimen, C.; Ozalp, N. Evaluation of Residual Monomers Eluted from Pediatric Dental Restorative Materials. BioMed Res. Int. 2021, 2021, 6316171. [Google Scholar] [CrossRef]
- Reichl, F.X.; Esters, M.; Simon, S.; Seiss, M.; Kehe, K.; Kleinsasser, N.; Folwaczny, M.; Glas, J.; Hickel, R. Cell death efects of resin-based dental material compounds and mercurials in human gingival fbroblasts. Arch Toxicol. 2006, 80, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.; Hafez, A.; Windsor, L.; Smith, A.; Cox, C. Comparison of pulp responses following restoration of exposed and non-exposed cavities. J. Dent. 2002, 30, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Modena, K.C.; Casas-Apayco, L.C.; Atta, M.T.; Costa, C.A.; Hebling, J.; Sipert, C.R.; Navarro, M.F.; Santos, C.F. Cytotoxicity and bio-compatibility of direct and indirect pulp capping materials. J. Appl. Oral. Sci. 2009, 17, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Susila, A.V.; Balasubramanian, V. Correlation of elution and sensitivity of cell lines to dental composites. Dent. Mater. 2016, 32, e63–e72. [Google Scholar] [CrossRef] [PubMed]
Name | Producer | Lot | Abbreviation | Matrix Composition Declared by Producer |
---|---|---|---|---|
Tetric Evo Ceram Bulk Fill | Ivoclar Vivadent, (Schaan, Lichtenstein) | 82 O135539 | TeCBf | Bis GMA, Bis-EMA, UDMA |
Tetric EvoFlow Bulk Fill | Ivoclar Vivadent, (Schaan, Lichtenstein) | U34907 | TefBf | Bis GMA, Bis EMA, UDMA |
X-tra Fil | VOCO (Cuxhaven, Germany) | 1438592l | Xf | Bis GMA, TEGDMA, UDMA |
Filtek Bulk Fill | 3M ESPE (St. Paul, MN, USA) | N626709 | Fbf | Bis GMA, Bis EMA, UDMA, Procrylat resin |
Filtek Bulk Fill flow | 3M ESPE (St. Paul, MN, USA) | N732765 | Fbff | Bis GMA, Bis EMA, UDMA, Procrylat resin |
SDR | DENTSPLY (Charlotte, NC, USA) | 1610131 | SDR | Modified UDMA, EBPADMA, TEGDMA |
Gradia | GC (Tokyo, Japan) | 1710312 | G | UDMA, TEGDMA |
Gradia Direct flo | GC (Tokyo, Japan) | 1502041 | GDf | UDMA, TEGDMA |
Filtek Supreme | 3M ESPE (St. Paul, MN, USA) | N763255 | FS | Bis GMA, TEGDMA, UDMA |
Filtek Supreme flow | 3M ESPE (St. Paul, MN, USA) | 6033A2 | Fsf | Bis GMA, TEGDMA, UDMA |
TetricEvo Ceram | Ivoclar Vivadent, (Schaan, Lichtenstein) | V16037 | TeC | Bis GMA, Bis EMA, UDMA, TEGDMA |
TetricEvo flow | Ivoclar Vivadent, (Schaan, Lichtenstein) | V02622 | Tcf | Bis GMA, Bis EMA, UDMA, TEGDMA |
Material | Compound | 24 h | 7 d | 28 d | |||||
---|---|---|---|---|---|---|---|---|---|
Category * | Mean | SD | Mean | SD | Mean | SD | ANOVA ** | ||
Fbf | BHV | TEGDMA | 25.9 | (12.9) | 43.7 | (28.6) | 33.2 | (28.3) | 0.685 |
Bis GMA | 2.2 | (0.5) | 0.0 | (0.0) | 0.0 | (0.0) | <0.001 | ||
DMA BEE | 1.0 | (0.4) | 2.6 | (0.9) | 3.5 | (0.3) | 0.006 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
TecBf | BHV | TEGDMA | 9.9 | (13.9) | 31.0 | (13.7) | 93.3 | (66.5) | 0.097 |
Bis GMA | 3.8 | (0.9) | 6.8 | (0.4) | 7.3 | (0.5) | 0.001 | ||
DMA BEE | 3.8 | (0.0) | 3.8 | (0.0) | 3.8 | (0.0) | 0.124 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
Xf | BHV | TEGDMA | 127.4 | (98.2) | 251.4 | (33.3) | 121.7 | (63.1) | 0.109 |
Bis GMA | 5.0 | (0.6) | 6.8 | (0.5) | 5.7 | (1.1) | 0.082 | ||
DMA BEE | 3.8 | (0.0) | 3.8 | (0.0) | 3.8 | (0.0) | 0.159 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
Fbff | BLV | TEGDMA | 2.2 | (3.4) | 14.8 | (13.4) | 1.4 | (2.4) | 0.154 |
Bis GMA | 0.0 | (0.0) | 4.1 | (0.7) | 6.9 | (2.1) | 0.002 | ||
DMA-BEE | 1.5 | (0.9) | 2.7 | (0.5) | 4.6 | (1.0) | 0.009 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
TefBf | BLV | TEGDMA | 43.6 | (41.1) | 22.9 | (23.5) | 46.6 | (25.3) | 0.619 |
Bis GMA | 7.9 | (1.1) | 12.1 | (4.3) | 14.5 | (11.5) | 0.552 | ||
DMA BEE | 1.9 | (0.3) | 3.2 | (1.2) | 3.8 | (3.2) | 0.533 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
SDR | BLV | TEGDMA | 61.0 | (3.7) | 54.2 | (16.2) | 54.2 | (15.3) | 0.772 |
Bis GMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
DMA BEE | 0.8 | (0.4) | 1.9 | (0.2) | 2.0 | (0.2) | 0.004 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
Fs | CHV | TEGDMA | 191.1 | (86.6) | 239.6 | (27.7) | 128.3 | (34.3) | 0.127 |
Bis GMA | 3.1 | (2.2) | 2.1 | (1.2) | 6.5 | (6.3) | 0.403 | ||
DMA BEE | 3.8 | (0.0) | 3.8 | (0.0) | 3.8 | (0.0) | 0.234 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
TeC | CHV | TEGDMA | 65.9 | (27.8) | 29.7 | (38.8) | 4.5 | (7.7) | 0.091 |
Bis GMA | 7.9 | (0.7) | 13.4 | (1.1) | 16.1 | (1.8) | 0.001 | ||
DMA BEE | 1.3 | (0.2) | 2.5 | (0.2) | 3.4 | (0.5) | 0.001 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
G | CSHV | TEGDMA | 55.3 | (48.9) | 109.2 | (24.1) | 98.9 | (35.9) | 0.255 |
Bis GMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
DMA BEE | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.43 | ||
HEMA | 14.1 | (1.6) | 25.1 | (4.0) | 34.2 | (10.0) | 0.022 | ||
Fsf | CLV | TEGDMA | 93.7 | (99.3) | 64.9 | (4.0) | 51.2 | (6.0) | 0.671 |
Bis GMA | 6.6 | (1.5) | 4.2 | (0.5) | 4.0 | (0.7) | 0.033 | ||
DMA BEE | 3.2 | (0.7) | 2.7 | (0.6) | 3.1 | (0.3) | 0.558 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
Tcf | CLV | TEGDMA | 59.2 | (26.6) | 175.6 | (114.9) | 202.8 | (99.2) | 0.192 |
Bis GMA | 17.1 | (2.7) | 14.4 | (2.7) | 15.8 | (1.6) | 0.428 | ||
DMA BEE | 4.1 | (0.5) | 4.5 | (0.9) | 5.0 | (0.5) | 0.343 | ||
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
GDf | CLV | TEGDMA | 131.8 | (44.1) | 85.6 | (46.5) | 75.1 | (12.2) | 0.227 |
Bis GMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | ||
DMA BEE | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.245 | ||
HEMA | 9.7 | (1.1) | 8.0 | (0.4) | 7.7 | (0.5) | 0.036 |
Manufacturer and Analyte | BHV | BLV | CHV | CLV | t-Test p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | BHV vs. CHV | BLV vs. CLV | BHV vs. BLV | CHV vs. CLV | |
Filtek | ||||||||||||
DMA BEE | 1.0 | (0.4) | 1.5 | (0.9) | 3.8 | (0.0) | 3.2 | (0.7) | 0.006 | 0.056 | 0.449 | 0.294 |
Bis GMA | 2.2 | (0.5) | 0.0 | (0.0) | 3.1 | (2.2) | 6.6 | (1.5) | 0.518 | NA | NA | 0.083 |
TEGDMA | 25.9 | (12.9) | 2.2 | (3.4) | 191.1 | (86.6) | 93.7 | (99.3) | 0.082 | 0.252 | 0.037 | 0.269 |
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | NA | NA |
Tetric | ||||||||||||
DMA BEE | 3.8 | (0.0) | 1.9 | (0.3) | 1.3 | (0.2) | 4.1 | (0.5) | 0.001 | 0.003 | 0.008 | 0.001 |
Bis GMA | 3.8 | (0.9) | 7.9 | (1.1) | 7.9 | (0.7) | 17.1 | (2.7) | 0.003 | 0.005 | 0.007 | 0.004 |
TEGDMA | 9.9 | (13.9) | 43.6 | (41.1) | 65.9 | (27.8) | 59.2 | (26.6) | 0.036 | 0.611 | 0.249 | 0.779 |
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | NA | NA |
Other | ||||||||||||
DMA BEE | 3.8 | (0.0) | 0.8 | (0.4) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | 0.006 | NA |
Bis GMA | 5.0 | (0.6) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | NA | NA |
TEGDMA | 127.4 | (98.2) | 61.0 | (3.7) | 55.3 | (48.9) | 131.8 | (44.1) | 0.318 | 0.109 | 0.362 | 0.114 |
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 14.1 | (1.6) | 9.7 | (1.1) | NA | NA | NA | 0.018 |
Manufacturer and Analyte | BHV | BLV | CHV | CLV | t-Test p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | Mean | (SD) | Mean | (SD) | BHV vs. CHV | BLV vs. CLV | BHV vs. BLV | CHV vs. CLV | |
Filtek | ||||||||||||
DMA BEE | 3.5 | (0.3) | 4.6 | (1.0) | 3.8 | (0.0) | 3.1 | (0.3) | 0.295 | 0.067 | 0.156 | 0.049 |
Bis GMA | 0.0 | (0.0) | 6.9 | (2.1) | 6.5 | (6.3) | 4.0 | (0.7) | NA | 0.084 | NA | 0.567 |
TEGDMA | 33.2 | (28.3) | 1.4 | (2.4) | 128.3 | (34.3) | 51.2 | (6.0) | 0.021 | <0.001 | 0.192 | 0.019 |
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | NA | NA |
Tetric | ||||||||||||
DMA BEE | 3.8 | (0.0) | 3.8 | (3.2) | 3.4 | (0.5) | 5.0 | (0.5) | 0.323 | 0.547 | 0.991 | 0.022 |
Bis GMA | 7.3 | (0.5) | 14.5 | (11.5) | 16.1 | (1.8) | 15.8 | (1.6) | 0.001 | 0.865 | 0.389 | 0.829 |
TEGDMA | 93.3 | (66.5) | 46.6 | (25.3) | 4.5 | (7.7) | 202.8 | (99.2) | 0.149 | 0.057 | 0.319 | 0.075 |
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | NA | NA |
Other | ||||||||||||
DMA BEE | 3.8 | (0.0) | 2.0 | (0.2) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | 0.003 | NA |
Bis GMA | 5.7 | (1.1) | 0.0 | (0.0) | 0.0 | (0.0) | 0.0 | (0.0) | NA | NA | NA | NA |
TEGDMA | 121.7 | (63.1) | 54.2 | (15.3) | 98.9 | (35.9) | 75.1 | (12.2) | 0.615 | 0.137 | 0.146 | 0.339 |
HEMA | 0.0 | (0.0) | 0.0 | (0.0) | 34.2 | (10.0) | 7.7 | (0.5) | NA | NA | NA | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barišić, M.L.; Sarajlija, H.; Klarić, E.; Knežević, A.; Sabol, I.; Pandurić, V. Detection of Leachable Components from Conventional and Dental Bulk-Fill Resin Composites (High and Low Viscosity) Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method. Polymers 2023, 15, 627. https://doi.org/10.3390/polym15030627
Barišić ML, Sarajlija H, Klarić E, Knežević A, Sabol I, Pandurić V. Detection of Leachable Components from Conventional and Dental Bulk-Fill Resin Composites (High and Low Viscosity) Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method. Polymers. 2023; 15(3):627. https://doi.org/10.3390/polym15030627
Chicago/Turabian StyleBarišić, Matea Lapaš, Hrvoje Sarajlija, Eva Klarić, Alena Knežević, Ivan Sabol, and Vlatko Pandurić. 2023. "Detection of Leachable Components from Conventional and Dental Bulk-Fill Resin Composites (High and Low Viscosity) Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method" Polymers 15, no. 3: 627. https://doi.org/10.3390/polym15030627
APA StyleBarišić, M. L., Sarajlija, H., Klarić, E., Knežević, A., Sabol, I., & Pandurić, V. (2023). Detection of Leachable Components from Conventional and Dental Bulk-Fill Resin Composites (High and Low Viscosity) Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Method. Polymers, 15(3), 627. https://doi.org/10.3390/polym15030627