Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Procedure of Graft Copolymerization
2.3. Preparation of the Cation Exchange Membrane
2.4. Determination of the Membrane Swelling
2.5. Infrared Spectroscopy
2.6. Diffraction of X-rays (XRD)
2.7. Scanning Electron Microscopy
2.8. Thermal Gravimetric Analysis (TGA)
2.9. Applications (Wastewater Treatment)
3. Results and Discussion
3.1. Grafting Results
3.1.1. Effect of the Solvents and Air Atmosphere
3.1.2. Impact of the Inhibitor Concentration
3.1.3. Effect of the Irradiation Dose
3.1.4. Effect of the Comonomer Composition
3.1.5. Monomer Concentration
3.2. Grafted Membrane Characterizations
3.2.1. Swelling Patterns
3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.3. Mechanical Measurements
3.2.4. Thermal Gravimetric Analysis (TGA)
3.2.5. Differential Scanning Calorimeter (DSC)
3.2.6. Scanning Electron Microscopy (Morphology)
3.2.7. X-ray Diffraction (XRD)
3.3. Application in Wastewater Treatment for the Removal of Cd(II)
3.3.1. Effect of the Grafting Degree
3.3.2. Kinetics of Sorption
3.3.3. Effect of pH on Sorption
3.3.4. Effect of the Metal Ion Concentration
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghoochani, M.; Rastkari, N.; Yunesian, M.; Nodehi, R.N.; Mesdaghinia, A.; Houshiarrad, A.; Shamsipour, M.; Dehghani, M.H. What do we know about exposure of Iranians to cadmium? Findings from a systematic review. Environ. Sci. Pollut. Res. 2018, 25, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghani, M.H.; Changani, F. The effect of acoustic cavitation on Chlorophyceae from effluent of wastewater treatment plant. Environ. Technol. 2006, 27, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Kataria, N.; Garg, V.K. Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism. Chemosphere 2018, 208, 818–828. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef]
- Kulkarni, R.; Shetty, K.; Srinikethan, G. Optimization of nickel (II) and cadmium (II) biosorption on brewery sludge using response surface methodology. In Materials, Energy and Environment Engineering; Springer: Berlin/Heidelberg, Germany, 2017; pp. 121–127. [Google Scholar]
- International Agency for Research on Cancer (IARC). Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry. Monographs on the Evaluation of Carcinogenic Risk to Humans; International Agency for Research on Cancer: Lyon, France, 1993; Volume 58, pp. 119–237. [Google Scholar]
- Jain, M.; Garg, V.; Kadirvelu, K. Cadmium (II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium–alginate beads. Bioresour. Technol. 2013, 129, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Ince, M.; Ince, O. An overview of adsorption technique for heavy metal removal from water/wastewater: A critical review. Int. J. Pure Appl. Sci. 2017, 3, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Benkhaya, S.; Lgaz, H.; Chraibi, S.; Al-Rashdi, A.A.; Rafik, M.; Lee, H.-S.; Harfi, A.E. Polysulfone/Polyetherimide Ultrafiltration composite membranes constructed on a three-component Nylon-fiberglass-Nylon support for azo dyes removal: Experimental and molecular dynamics simulations. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126941. [Google Scholar] [CrossRef]
- Masri, M.N.; Abu Bakar, M.B.; Rusli, N.W.; Ismail, M.F.; Amini, M.H.M.; Al-Rashdi, A.A. Review of Manufacturing Process of Natural Fiber Reinforced Polymer Composites. Int. J. Integr. Eng. 2021, 13, 172–179. [Google Scholar] [CrossRef]
- Mathias, U. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar]
- Nasir, A.; Raza, A.; Tahir, M.; Yasin, T. Free-radical graft polymerization of acrylonitrile on gamma irradiated graphene oxide: Synthesis and characterization. Mater. Chem. Phys. 2020, 246, 122807. [Google Scholar] [CrossRef]
- Tahir, M.; Raza, A.; Nasir, A.; Yasin, T. Radiation induced graft polymerization of glycidyl methacrylate onto sepiolite. Radiat. Phys. Chem. 2021, 179, 109259. [Google Scholar] [CrossRef]
- Shaheen, R.; Yasin, T.; Ali, Z.; Taimur, S.; Tahir, M. Synthesis, Characterization and Adsorptiv Characteristics of Radiation Grafted Glycidyl Methacrylate Bamboo Fiber Composite. SSRN 2022. preprint. [Google Scholar]
- Adolphe, C. XIIth international meeting on radiation processing Avignon 25-30 March 2001 (Polymer irradiation: Past–present and future). Radiat. Phys. Chem. 2002, 63, 207–209. [Google Scholar]
- Nasef, M.M.; Hegazy, E.-S.A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 2004, 29, 499–561. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Misra, B.N. Grafting: A versatile means to modify polymers: Techniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. [Google Scholar] [CrossRef]
- Dargaville, T.R.; George, G.A.; Hill, D.J.T.; Whittaker, A.K. High energy radiation grafting of fluoropolymers. Prog. Polym. Sci. 2003, 28, 1355–1376. [Google Scholar] [CrossRef]
- Gupta, B.; Anjum, N. Radiation grafted membranes: Innovative materials for the separation of toxic metal ions from industrial effluent. J. Environ. Health 2002, 44, 154–163. [Google Scholar]
- Gupta, B.; Anjum, N.; Jain, R.; Revagade, N.; Singh, H. Development of membranes by radiation-induced graft polymerization of monomers onto polyethylene films. J. Macromol. Sci. Part C Polym. Rev. 2004, 44, 275–309. [Google Scholar] [CrossRef]
- Kabanov, V.Y.; Kudryavtsev, V.N. Modification of polymers by radiation graft polymerization (state of the art and trends). High Energy Chem. 2003, 37, 1–5. [Google Scholar] [CrossRef]
- Nasef, M.M.; Rohani, R.; Saidi, H.; Dahlan, K.Z.M. Effect of liquid additives on graft copolymerization of styrene onto perirradiated poly(ethylene-co-tetrafluoroethylene) films. Int. J. Appl. Chem. 2008, 4, 187–203. [Google Scholar]
- Alkan Gürsel, S.; Gubler, L.; Gupta, B.; Scherer, G.G. Radiation grafted membranes. Adv. Polym. Sci. 2008, 215, 157–217. [Google Scholar]
- Seko, N.; Tamada, M.; Yoshii, F. Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques. Nucl. Instrum. Methods Phys. Res. Sect. B 2005, 236, 21–29. [Google Scholar] [CrossRef]
- Chong, L.K.; Osman, A.F.; Fauzi, A.A.A.; Alrashdi, A.A.; Halim, K.A.A. The Mechanical and Thermal Properties of Poly (ethylene-co-vinyl acetate) (PECoVA) Composites with Pristine Dolomite and Organophilic Microcrystalline Dolomite (OMCD). Polymers 2021, 13, 3034. [Google Scholar] [CrossRef]
- Gadeer, A.; Mahmoud Husseina, C.; Tariq, S. Nanocomposite containing polyamide and GNS for enhanced properties. Synthesis and characterization. J. Umm Al-Qura Univ. Appl. Sci. 2021, 7, 1–6. [Google Scholar]
- Alsheheri, S. Swelling properties of Ultra-violet Cured Unsaturated Polyester Resin Reinforced with Kenaf Fiber Composites. J. Umm Al-Qura Univ. Appl. Sci. 2021, 7, 7–11. [Google Scholar]
- El-Gammam, Y.A. Effect of Fast Neutron Irradiation on Optical Properties of Lead Borate Glass. J. Umm Al-Qura Univ. Appl. Sci. 2020, 6, 21–24. [Google Scholar]
- Ayuba, S.; Mohammadib, A.A.; Yousefic, M.; Changanic, F. Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. Desalin. Water Treat. 2019, 142, 293–299. [Google Scholar] [CrossRef]
- Khedr, R.F. Synthesis of Amidoxime Adsorbent by Radiation Induced Grafting of Acrylonitrile/Acrylic acid on Polyethylene Film and Its Application in Pb Removal. Polymers 2022, 14, 3136. [Google Scholar] [CrossRef]
- Abdeldaym, A.; Khedr, R.F.; Jassas, R.S. Investigation of structural and physical properties of polypyrrole/natural clay nano composite as adsorbent for Zn removal. Sustain. Chem. Pharm. 2021, 20, 100382. [Google Scholar] [CrossRef]
- Rahman, N.; Dafader, N.C.; Miah, A.R.; Alam, M.F.; Sultana, S. Preparation of Amidoxime Adsorbent by Radiation Induced Grafting of Acrylonitrile on Polyethylene Film and Its Application in Cr(VI) Removal. J. Phys. Sci. 2018, 29, 65–88. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.Y.; Chen, H.Y. Preparation and properties of vinyl acetate-grafted Nylon 6 membrane by using homografting method. J. Membr. Sci. 1992, 66, 169–178. [Google Scholar] [CrossRef]
- Hegazy, E.A.; Abd El-Rehim, H.A.; Khalifa, N.A.; El-Hag, A.A. Preparation and Characterization of Supported Hydrogels Obtained by Radiation Grafting of Binary Monomers. Radiat. Phys. Chem. 1999, 55, 219–229. [Google Scholar] [CrossRef]
- Taher, N.H.; Dessuoki, A.M.; El-Arnaouty, M.B. Radiation initiated graft copolymerization of N-vinylpyrrolidone and acrylamide onto low density polyethylene films by individual and binary system. Radiat. Phys. Chem. 1998, 53, 437–444. [Google Scholar] [CrossRef]
- Shiraishi, T.; Tamada, M.; Saito, K.; Sugo, T. Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graft-polymerization. Radiat. Phys. Chem. 2002, 66, 43–47. [Google Scholar] [CrossRef]
- Lokhande, H.T.; Varadarajan, P.V.; Lyer, V. Water-superabsorbent polymers through gamma radiation-induced graft-copolymerization of acrylonitrile on guargum. J. Polym. Sci. 1992, 45, 2031. [Google Scholar] [CrossRef]
- Lin, H.; Kimura, M.; Hanabusa, K.; Shirai, H.; Ueno, N.; Mori, Y.J. Preparation and adsorption properties of poly(N-vinylformamide/acrylonitrile) chelating fiber for heavy metal ions. Appl. Polym. Sci. 2002, 85, 1378–1386. [Google Scholar] [CrossRef]
- Alswata, A.A.; Ahmad, M.B.; Al-Hada, N.M.; Kamari, H.M.; Hussein, M.Z.B.; Ibrahim, N.A. Preparation of Zeolite/Zinc Oxide Nanocomposites for toxic metals removal from water. Res. Phys. 2017, 7, 723–731. [Google Scholar] [CrossRef]
- Ricou, P.; Lécuyer, I.; Le Cloirec, P. Removal of Cu (II), Zn (II) and Pb (II) by adsorption onto fy ash and fy ash/lime mixing. J. Water Sci. Technol. 1999, 39, 239–247. [Google Scholar] [CrossRef]
- Barakat, M. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Moja, T.N.; Bunekar, N.; Mishra, S.B.; Tsai, T.Y.; Hwang, S.S.; Mishra, A.K. Melt processing of polypropylene grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions. Sci. Rep. 2020, 10, 217. [Google Scholar] [CrossRef] [PubMed]
Solvent | PP G% | Comment |
---|---|---|
H2O | 166 | High homopolymerization |
Mixture of 30% methanol, 70% H2O | 115 | Optimum condition |
Methanol | 22 | |
Benzene | 2 | |
Effect of Air atmosphere | PP G% | |
Air | 38 | |
Nitrogen | 65 | Optimum condition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khedr, R.F. Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption. Polymers 2023, 15, 686. https://doi.org/10.3390/polym15030686
Khedr RF. Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption. Polymers. 2023; 15(3):686. https://doi.org/10.3390/polym15030686
Chicago/Turabian StyleKhedr, Rania F. 2023. "Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption" Polymers 15, no. 3: 686. https://doi.org/10.3390/polym15030686
APA StyleKhedr, R. F. (2023). Radiation-Grafting on Polypropylene Copolymer Membranes for Using in Cadmium Adsorption. Polymers, 15(3), 686. https://doi.org/10.3390/polym15030686