Enrichment of Starch Desserts with the Addition of Apple Juice and Buckwheat Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Material Characterization
2.2.2. The Fruit Gels (Kissel) Preparations
2.2.3. Pasting Characteristics of Kissel
2.2.4. Texture Parameters of Kissel
2.2.5. Color Measurement of Kissel
2.2.6. Analysis of Total Polyphenol Content and Antioxidant Properties of Kissel
2.2.7. Statistical Analysis
3. Results
3.1. Material Characterization
3.2. Determination of the Pasting Characteristics
3.3. Texture Analysis of Kissel
3.4. Color Measurement of Kissel
3.5. Total Polyphenol Content of Kissel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Varatharajan, V.; Hoover, R.; Li, J.; Vasanthan, T.; Nantanga, K.K.M.; Seetharaman, K.; Liu, Q.; Donner, E.; Jaiswal, S.; Chibbar, R.N. Impact of Structural Changes Due to Heat-Moisture Treatment at Different Temperatures on the Susceptibility of Normal and Waxy Potato Starches towards Hydrolysis by Porcine Pancreatic Alpha Amylase. Food Res. Int. 2011, 44, 2594–2606. [Google Scholar] [CrossRef]
- Leszczyński, W. Skrobia—Surowiec Przemysłowy i Właściwości. Zesz. Probl. Postęp. Nauk Rol. 2004, 500, 69–98. [Google Scholar]
- Cai, L.; Shi, Y.-C. Structure and Digestibility of Crystalline Short-Chain Amylose from Debranched Waxy Wheat, Waxy Maize, and Waxy Potato Starches. Carbohydr. Polym. 2010, 79, 1117–1123. [Google Scholar] [CrossRef]
- Avebe. ElianeTM. The New Waxy Potato Starch of Avebe. Available online: http://www.agfdt.de/loads/st06/semeiabb.pdf (accessed on 1 November 2022).
- Nakamura, T.; Yamamori, M.; Hirano, H.; Hidaka, S.; Nagamine, T. Production of Waxy (Amylose-Free) Wheats. Mol. Gen. Genet. 1995, 248, 253–259. [Google Scholar] [CrossRef]
- Yoo, S.; Jane, J. Structural and Physical Characteristics of Waxy and Other Wheat Starches. Carbohydr. Polym. 2002, 49, 297–305. [Google Scholar] [CrossRef]
- Walkowski, A.; Lewandowicz, G.; Balcerek, W.; Szymanska, G.; Voelkel, E.; Krzyzaniak, W. Właściwości Użytkowe Wysokoamylopektynowej Skrobi Ziemniaczanej Oraz Preparatów z Niej Wytworzonych. Zesz. Probl. Postęp. Nauk Rol. 2004, 500, 513–524. [Google Scholar]
- Luo, F.; Huang, Q.; Fu, X.; Zhang, L.; Yu, S. Preparation and Characterisation of Crosslinked Waxy Potato Starch. Food Chem. 2009, 115, 563–568. [Google Scholar] [CrossRef]
- Mauro, D.J. An Update on Starch. CFW Cereal Foods World 1996, 41, 776–780. [Google Scholar]
- Thomas, D.J.; Atwell, W.A. Starches; Eagan Press Handbook Series; Eagan Press: St. Paul, MN, USA, 1999. [Google Scholar]
- Sukhija, S.; Singh, S.; Riar, C.S. Isolation of Starches from Different Tubers and Study of Their Physicochemical, Thermal, Rheological and Morphological Characteristics. Starch Stärke 2016, 68, 160–168. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Ciesielski, W.; Buksa, K.; Sikora, M. Preparation and Characteristics of Mechanical and Functional Properties of Starch/Plantago Psyllium Seeds Mucilage Films. Starch Stärke 2017, 69, 1700014. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Grabacka, M.; Krzan, M.; Witczak, M.; Grzyb, J.; Woszczak, L. Physicochemical, Bacteriostatic, and Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials. Polymers 2021, 13, 2327. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Konieczna-Molenda, A.; Grzesiakowska, A.; Kuchta-Gładysz, M.; Kawecka, A.; Grzebieniarz, W.; Nowak, N. The Functional and Application Possibilities of Starch/Chitosan Polymer Composites Modified by Graphene Oxide. Int. J. Mol. Sci. 2022, 23, 5956. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Krzan, M.; Ciesielski, W.; Żarska, S.; Szczepankowska, J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers 2022, 14, 948. [Google Scholar] [CrossRef]
- Kaur, L.; Singh, J.; Singh, H.; McCarthy, O.J. Starch—Cassia Gum Interactions: A Microstructure—Rheology Study. Food Chem. 2008, 111, 1–10. [Google Scholar] [CrossRef]
- Gałkowska, D.; Południak, M.; Juszczak, L. Wpływ Zastąpienia Sacharozy Glikozydami Stewiolowymi Na Charakterystykę Reologiczną Deserów Na Bazie Skrobi. Food Sci. Technol. Qual. 2018, 25, 111–126. [Google Scholar] [CrossRef]
- Kołożyn-Krajewska, D.; Sikora, T. Towaroznawstwo Żywności, 7th ed.; Wydawnictwa Szkolne i Pedagogiczne: Warszawa, Poland, 2007. [Google Scholar]
- Konarzewska, M. Technologia Gastronomiczna z Towaroznawstwem: Podręcznik do Nauki Zawodu Kucharz w Technikum i Szkole Policealnej; Wydawnictwa Szkolne i Pedagogiczne: Warszawa, Poland, 2013; Volume 3. [Google Scholar]
- Le Thanh-Blicharz, J.; Lewandowicz, J. Właściwości Reologiczne Oraz Tekstura Kisieli Zagęszczonych Skrobią Woskową Różnego Pochodzenia Botanicznego. In Nowoczesne Technologie Produkcji Żywności; Baranowska, H.M., Piątek, M., Eds.; Uniwersytet Przyrodniczy w Poznaniu: Poznań, Poland, 2016; pp. 100–108. [Google Scholar]
- Sozer, N.; Dalgic, A.C. Modelling of Rheological Characteristics of Various Spaghetti Types. Eur. Food Res. Technol. 2007, 225, 183–190. [Google Scholar] [CrossRef]
- Hager, A.-S.; Axel, C.; Arendt, E.K. Status of Carbohydrates and Dietary Fiber in Gluten-Free Diets. CFW Cereal Foods World 2011, 56, 109–114. [Google Scholar] [CrossRef]
- Krystyjan, M.; Gumul, D.; Adamczyk, G. The Effect of Milk Thistle (Silybum marianum L.) Fortification, Rich in Dietary Fibre and Antioxidants, on Structure and Physicochemical Properties of Biscuits. Appl. Sci. 2022, 12, 12501. [Google Scholar] [CrossRef]
- Korczak, R.; Slavin, J.L. Definitions, Regulations, and New Frontiers for Dietary Fiber and Whole Grains. Nutr. Rev. 2020, 78 (Suppl. S1), 6–12. [Google Scholar] [CrossRef]
- Canalis, M.B.; Leon, A.E.; Ribotta, P.D. Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chem. 2019, 271, 309–317. [Google Scholar] [CrossRef]
- Dias, P.G.I.; Rathnayaka, R.M.U.S.K. Alteration of Quality Attributes in Yogurts as a Function of Natural Fibers Incorporation. Elixir Food Sci. 2019, 31, 53231–53237. [Google Scholar]
- Jia, M.; Yu, Q.; Chen, J.; He, Z.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran. Food Hydrocoll. 2020, 99, 105349. [Google Scholar] [CrossRef]
- Yavuz, Z.; Kutlu, G.; Tornuk, F. Incorporation of oleaster (Elaeagnus angustifolia L.) flour into white bread as a source of dietary fibers. J. Food Process. Preserv. 2022, 46, e17050. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Muy-Rangel, D.; de la Garza, A.L.; Rubio-Carrasco, W.; Pérez-Meza, B.; Araujo-Chapa, A.P.; Gutiérrez-Álvarez, K.A.; Urías-Orona, V. Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties. Molecules 2019, 24, 991. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Ozaki, M.M.; Vidal, V.A.S.; Pollonio, M.A.R.; Penna, A.L.B.; Barretto, A.C.S. Can dietary fiber improve the technological characteristics and sensory acceptance of low-fat Italian type salami? J. Food Sci. Technol. 2019, 57, 1003–1012. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, M.-J.; Lee, J.-W.; Moon, B. Muffins enriched with dietary fiber from kimchi by-product: Baking properties, physical-chemical properties, and consumer acceptance. Food Sci. Nutr. 2019, 7, 1778–1785. [Google Scholar] [CrossRef]
- Beltrán-Medina, E.A.; Guatemala-Morales, G.M.; Padilla-Camberos, E.; Corona-González, R.I.; Mondragón-Cortez, P.M.; Arriola-Guevara, E. Evaluation of the use of a coffee industry by-product in a cereal-based extruded food product. Foods 2020, 9, 1008. [Google Scholar] [CrossRef]
- Znamirowska, A.; Sajnar, K.; Kowalczyk, M.; Kluz, M.; Buniowska, M. Effect of Addition of Spelt and Buckwheat Hull on Selected Properties of Yoghurt. J. Microbiol. Biotechol. Food Sci. 2020, 10, 296–300. [Google Scholar] [CrossRef]
- Liu, D.; Song, S.; Tao, L.; Yu, L.; Wang, J. Effects of Common Buckwheat Bran on Wheat Dough Properties and Noodle Quality Compared with Common Buckwheat Hull. LWT 2022, 155, 112971. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Witczak, M. The Impact of Fiber from Buckwheat Hulls Waste on the Pasting, Rheological and Textural Properties of Normal and Waxy Potato Starch Gels. Polymers 2021, 13, 4148. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Ed.; AOAC International: Gainthersburg, MD, USA, 2006. [Google Scholar]
- Adamczyk, G.; Krystyjan, M.; Jaworska, G. The Effect of the Addition of Dietary Fibers from Apple and Oat on the Rheological and Textural Properties of Waxy Potato Starch. Polymers 2020, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Bączkowicz, M.; Fortuna, T.; Juszczak, L.; Sobolewska-Zielińska, J. Podstawy Analizy i Oceny Jakości Żywności: Skrypt do Ćwiczeń, 3rd ed.; Fortuna, T., Ed.; Wydawnictwo Uniwersytetu Rolniczego: Kraków, Poland, 2018. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- S.A. Numer Dokumentu: D21/P4; Specyfikacja dla Skrobi Ziemniaczanej Superior Standard. Niechlów P.P.Z.: Niechlów, Poland, 2017.
- Chawla, R.; Patil, G.R. Soluble dietary fiber. Compr. Rev. Food Sci. Food Saf. 2010, 9, 178–196. [Google Scholar] [CrossRef]
- Kaur, M.; Oberoi, D.P.S.; Sogi, D.S.; Gill, B.S. Physicochemical, Morphological and Pasting Properties of Acid Treated Starches from Different Botanical Sources. J. Food Sci. Technol. 2011, 48, 460–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-Y.; Mcpherson, A.E.; Radosavljevic, M.; Lee, V.; Wong, K.-S.; Jane, J. Effects of Starch Chemical Structures on Gelatinization and Pasting Properties. Żywność Technol. Jakość 1998, 4, 63–71. [Google Scholar]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Sekine, M. Measurement of Dynamic Viscoelastic Behavior of Starch during Gelatinization in a Xanthan-Gum Solution. J. Jpn. Soc. Food Sci. Technol. 1996, 43, 683–688. [Google Scholar] [CrossRef]
- Krystyjan, M.; Dobosz-Kobędza, A.; Sikora, M.; Baranowska, H.M. Influence of Xanthan Gum Addition on the Short- and Long-Term Retrogradation of Corn Starches of Various Amylose Content. Polymers 2022, 14, 452. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, Y.; Eckhoff, S.R.; Feng, H. Sonication Enhanced Cornstarch Separation. Starch Stärke 2005, 57, 240–245. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.-J. Structures and Physicochemical Properties of Acid-Thinned Corn, Potato and Rice Starches. Starch Stärke 2001, 53, 570–576. [Google Scholar] [CrossRef]
- Debiagi, F.; Mali, S.; Grossmann, M.V.E.; Yamashita, F. Effects of vegetal fibers on properties of cassava starch biodegradable composites produced by extrusion. Ciência Agrotecnol. 2010, 34, 1522–1529. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, Ö.; Yurt, B.; Baştürk, A.; Toker, Ö.S.; Yilmaz, M.T.; Karaman, S.; Dağlıoğlu, O. Pasting properties, texture profile and stress–relaxation behaviour of wheat starch/dietary fibre systems. Food Res. Int. 2013, 53, 278–290. [Google Scholar] [CrossRef]
- Sikora, M.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Walkowiak, K.; Masewicz, Ł.; Kowalczewski, P.; Baranowska, H.M. Molecular Analysis of Retrogradation of Corn Starches. Polymers 2019, 11, 1764. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Zheng, Q.; Hu, N.; Zheng, M.; Liu, J. Effects of Soluble and Insoluble Dietary Fiber from Corn Bran on Pasting, Thermal, and Structural Properties of Corn Starch. Starch Stärke 2022, 74, 2100254. [Google Scholar] [CrossRef]
- Kaur, R.; Gill, B.; Sogi, D. Studies on the Effect of Aqueous Hydrochloric Acid on Properties of Wheat Starch. J. Food Sci. Technol. 2007, 44, 386–390. [Google Scholar]
- Singh, J.; Singh, N. Studies on the Morphological, Thermal and Rheological Properties of Starch Separated from Some Indian Potato Cultivars. Food Chem. 2001, 75, 67–77. [Google Scholar] [CrossRef]
- Karim, A.A.; Norziah, M.H.; Seow, C.C. Methods for the Study of Starch Retrogradation. Food Chem. 2000, 71, 9–36. [Google Scholar] [CrossRef]
- Sikora, M.; Adamczyk, G.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Berski, W.; Lukasiewicz, M.; Izak, P. Thixotropic Properties of Normal Potato Starch Depending on the Degree of the Granules Pasting. Carbohydr. Polym. 2015, 121, 254–264. [Google Scholar] [CrossRef]
- Krystyjan, M.; Sikora, M.; Adamczyk, G.; Dobosz, A.; Tomasik, P.; Berski, W.; Łukasiewicz, M.; Izak, P. Thixotropic Properties of Waxy Potato Starch Depending on the Degree of the Granules Pasting. Carbohydr. Polym. 2016, 141, 126–134. [Google Scholar] [CrossRef]
- Kazimierska, M. Obiektywna Ocena Barwy Wyrobów Użytkowych. Technol. Jakość Wyr. 2014, 59, 44–47. [Google Scholar]
- Huang, J.; Chen, Z.; Xu, Y.; Li, H.; Liu, S.; Yang, D.; Schols, H.A. Comparison of Waxy and Normal Potato Starch Remaining Granules after Chemical Surface Gelatinization: Pasting Behavior and Surface Morphology. Carbohydr. Polym. 2014, 102, 1001–1007. [Google Scholar] [CrossRef]
- Funami, T.; Kataoka, Y.; Omoto, T.; Goto, Y.; Asai, I.; Nishinari, K. Effects of Non-Ionic Polysaccharides on the Gelatinization and Retrogradation Behavior of Wheat Starch. Food Hydrocoll. 2005, 19, 68–78. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Kim, D.-O.; Lee, H.J.; Lee, C.Y. Major Phenolics in Apple and Their Contribution to the Total Antioxidant Capacity. J. Agric. Food Chem. 2003, 51, 6516–6520. [Google Scholar] [CrossRef]
- Du, G.; Zhu, Y.; Wang, X.; Zhang, J.; Tian, C.; Liu, L.; Meng, Y.; Guo, Y. Phenolic Composition of Apple Products and By-Products Based on Cold Pressing Technology. J. Food Sci. Technol. 2019, 56, 1389–1397. [Google Scholar] [CrossRef]
- Hęś, M.; Górecka, D.; Dziedzic, K. Antioxidant Properties of Extracts from Buckwheat By-Products. Acta Sci. Pol. Technol. Aliment. 2012, 11, 167–174. [Google Scholar]
- Lee, L.-S.; Choi, E.-J.; Kim, C.-H.; Sung, J.-M.; Kim, Y.-B.; Seo, D.-H.; Choi, H.-W.; Choi, Y.-S.; Kum, J.-S.; Park, J.-D. Contribution of Flavonoids to the Antioxidant Properties of Common and Tartary Buckwheat. J. Cereal Sci. 2016, 68, 181–186. [Google Scholar] [CrossRef]
- Salejda, A.M.; Olender, K.; Zielińska-Dawidziak, M.; Mazur, M.; Szperlik, J.; Miedzianka, J.; Zawiślak, I.; Kolniak-Ostek, J.; Szmaja, A. Frankfurter-Type Sausage Enriched with Buckwheat By-Product as a Source of Bioactive Compounds. Foods 2022, 11, 674. [Google Scholar] [CrossRef] [PubMed]
Sample | Ingredient [%] | Sum | ||||||
---|---|---|---|---|---|---|---|---|
PS | WPS | CS | WCS | AJ | BH | Water | ||
Normal potato starch | ||||||||
5%PS + 20%AJ | 5.00 | – | – | – | 20.00 | – | 75.00 | 100.00 |
5%PS + 0.05%BH + 20%AJ | 5.00 | – | – | – | 20.00 | 0.05 | 74.95 | 100.00 |
5%PS + 0.10%BH + 20%AJ | 5.00 | – | – | – | 20.00 | 0.10 | 74.90 | 100.00 |
Waxy potato starch | ||||||||
5%WPS + 20%AJ | – | 5.00 | – | – | 20.00 | – | 75.00 | 100.00 |
5%WPS + 0.05%BH+ 20%AJ | – | 5.00 | – | – | 20.00 | 0.05 | 74.95 | 100.00 |
5%WPS + 0.10%BH+ 20%AJ | – | 5.00 | – | – | 20.00 | 0.10 | 74.90 | 100.00 |
Normal corn starch | ||||||||
5%CS + 20%AJ | 5.00 | – | – | – | 20.00 | – | 75.00 | 100.00 |
5%CS + 0.05%BH + 20%AJ | 5.00 | – | – | – | 20.00 | 0.05 | 74.95 | 100.00 |
5%CS + 0.10%BH + 20%AJ | 5.00 | – | – | – | 20.00 | 0.10 | 74.90 | 100.00 |
Waxy corn starch | ||||||||
5%WCS + 20%AJ | – | 5.00 | – | – | 20.00 | – | 75.00 | 100.00 |
5%WCS + 0.05%BH + 20%AJ | – | 5.00 | – | – | 20.00 | 0.05 | 74.95 | 100.00 |
5%WCS + 0.10%BH + 20%AJ | – | 5.00 | – | – | 20.00 | 0.10 | 74.90 | 100.00 |
Sample | T0 [°C] | ηmax [BU] | Tŋmax [°C] | η95 °C [BU] | BD [BU] | SB [BU] | η50 °C [BU] |
---|---|---|---|---|---|---|---|
5%PS (control) | 61.2 ± 0.0 a | 1957.0 ± 10.0 b | 66.7 ± 0.1 a | 787.0 ± 2.0 b | 1325.0 ± 10.0 b | 70.5 ± 13.0 a | 706.0 ± 16.0 b |
5%PS + 20%AJ | 70.1 ± 0.1 b | 507.0 ± 19.1 a | 81.4 ± 1.1 b | 477.5 ± 17.9 a | 66.5 ± 5.0 a | 209.5 ± 7.8 b | 649.5 ± 21.9 a |
5%PS + 0.05%BH + 20%AJ | 70.1 ± 0.1 b | 517.0 ± 4.2 a | 81.1 ± 0.4 b | 486.0 ± 2.8 a | 70.5 ± 2.1 a | 211.5 ± 2.1 b | 658.0 ± 4.2 a |
5%PS + 0.10%BH + 20%AJ | 70.1 ± 0.1 b | 518.5 ± 2.1 a | 80.7 ± 0.1 b | 488.5 ± 2.1 a | 70.5 ± 0.7 a | 209.5 ± 0.7 b | 657.5 ± 3.5 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. | |||||||
5%WPS (control) | 67.6 ± 0.1 b | 1387.0 ± 0.2 b | 72.9 ± 0.0 a | 575.0 ± 5.1 b | 904.0 ± 8.8 a | 7.5 ± 1.0 a | 482.0 ± 11.0 b |
5%WPS + 20%AJ | 70.1 ± 0.0 a | 1330.5 ± 19.1 a | 75.0 ± 0.1 b | 403.5 ± 9.2 a | 1080.0 ± 2.5 b | 34.5 ± 3.5 b | 216.0 ± 9.9 a |
5%WPS + 0.05%BH + 20%AJ | 70.1 ± 0.1 a | 1328.5 ± 0.7 a | 75.0 ± 0.0 b | 407.5 ± 2.1 a | 1079.0 ± 2.1 b | 34.5 ± 0.7 b | 214.5 ± 2.1 a |
5%WPS + 0.10%BH + 20%AJ | 70.0 ± 0.0 a | 1341.5 ± 0.7 a | 75.0 ± 0.1 b | 400.5 ± 7.8 a | 1094.5 ± 2.1 b | 32.5 ± 0.7 b | 214.5 ± 2.1 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. |
Sample | T0 [°C] | ηmax [BU] | Tŋmax [°C] | η95 °C [BU] | BD [BU] | SB [BU] | η50 °C [BU] |
---|---|---|---|---|---|---|---|
5%CS (control) | 86.0 ± 0.3 b | 110.0 ± 4.6 a | 94.2 ± 0.0 b | 110.0 ± 5.6 a | 6.0 ± 0.0 a | 68.0 ± 0.0 a | 190.0 ± 10.0 a |
5%CS + 20%AJ | 84.2 ± 0.1 a | 175.5 ± 3.5 b | 92.4 ± 0.0 a | 169.0 ± 4.0 b | 40.0 ± 1.0 b | 85.0 ± 7.0 b | 220.5 ± 4.5 b |
5%CS + 0.05%BH + 20%AJ | 84.2 ± 0.1 a | 177.5 ± 5.5 b | 92.5 ± 0.2 a | 170.5 ± 4.5 b | 41.0 ± 3.0 b | 75.0 ± 7.0 b | 211.5 ± 9.5 b |
5%CS + 0.10%BH + 20%AJ | 84.1 ± 0.1 a | 181.5 ± 1.5 b | 92.4 ± 0.1 a | 174.0 ± 2.0 b | 42.0 ± 1.0 b | 86.0 ± 5.0 b | 225.5 ± 5.5 b |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. | |||||||
5%WCS (control) | 69.2 ± 0.1 a | 466.0 ± 1.5 a | 74.6 ± 0.8 a | 188.0 ± 1.2 b | 306.0 ± 3.0 a | 35.5 ± 0.5 b | 196.0 ± 10.0 b |
5%WCS + 20%AJ | 71.2 ± 0.1 b | 502.0 ± 1.4 b | 76.3 ± 0.1 b | 137.0 ± 2.8 a | 401.5 ± 0.7 b | 18.0 ± 0.0 b | 118.5 ± 0.7 a |
5%WCS + 0.05%BH + 20%AJ | 71.4 ± 0.2 b | 493.5 ± 17.7 b | 76.3 ± 0.3 b | 133.5 ± 7.8 a | 399.0 ± 11.3 b | 15.5 ± 0.7 a | 110.0 ± 0.7 a |
5%WCS + 0.10%BH + 20%AJ | 71.3 ± 0.1 b | 504.5 ± 9.2 b | 76.2 ± 0.1 b | 135.5 ± 2.1 a | 406.5 ± 7.8 b | 16.5 ± 0.7 ab | 114.5 ± 0.7 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. |
Sample | Hardness of Samples [N] |
---|---|
5%PS (control) | 0.044 ± 0.004 a |
5%PS + 20%AJ | 0.330 ± 0.010 d |
5%PS + 0.05%BH + 20%AJ | 0.180 ± 0.000 c |
5%PS + 0.10%BH + 20%AJ | 0.100 ± 0.020 b |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05 | |
5%WPS (control) | 0.023 ± 0.003 d |
5%WPS + 20%AJ | 0.020 ± 0.002 b |
5%WPS + 0.05%BH + 20%AJ | 0.022 ± 0.001 c |
5%WPS + 0.10%BH + 20%AJ | 0.018 ± 0.002 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05 |
Sample | Hardness of Samples [N] |
---|---|
5%CS (control) | 0.199 ± 0.016 a |
5%CS + 20%AJ | 0.380 ± 0.010 b |
5%CS + 0.05%BH + 20%AJ | 0.390 ± 0.020 b |
5%CS + 0.10%BH + 20%AJ | 0.510 ± 0.040 c |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05 | |
5%WCS (control) | 0.027 ± 0.040 c |
5%WCS + 20%AJ | 0.021 ± 0.001 b |
5%WCS + 0.05%BH + 20%AJ | 0.019 ± 0.001 a |
5%WCS + 0.10%BH + 20%AJ | 0.018 ± 0.002 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05 |
Sample | Color Parameters | ||
---|---|---|---|
L* | a* | b* | |
5%PS (control) | 70.72 ± 0.00 b | −1.38 ± 0.01 a | 4.70 ± 0.01 a |
5%PS + 20%AJ | 32.93 ± 0.78 a | 3.01 ± 1.12 b | 11.80 ± 1.32 c |
5%PS + 0.05%BH + 20%AJ | 30.50 ± 0.97 a | 2.48 ± 0.39 b | 9.67 ± 1.07 b |
5%PS + 0.10%BH + 20%AJ | 32.85 ± 1.30 a | 1.87 ± 0.40 b | 9.43 ± 1.12 b |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. | |||
5%WPS (control) | 76.07 ± 0.17 d | −1.48 ± 0.02 a | 4.14 ± 0.16 a |
5%WPS + 20%AJ | 62.30 ± 0.08 c | 5.90 ± 0.03 b | 42.60 ± 0.04 c |
5%WPS + 0.05%BH + 20%AJ | 58.20 ± 0.17 b | 6.10 ± 0.03 c | 37.70 ± 0.14 c |
5%WPS + 0.10%BH + 20%AJ | 52.50 ± 0.23 a | 6.80 ± 0.03 d | 32.50 ± 0.26 b |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. |
Sample | Color Parameters | ||
---|---|---|---|
L* | a* | b* | |
5%CS (control) | 60.51 ± 0.06 d | −1.82 ± 0.03 a | −4.37 ± 0.12 a |
5%CS + 20%AJ | 50.18 ± 0.14 c | 1.14 ± 0.12 b | 12.20 ± 0.27 d |
5%CS + 0.05%BH + 20%AJ | 46.85 ± 0.28 b | 2.14 ± 0.24 c | 11.27 ± 0.38 c |
5%CS + 0.10%BH + 20%AJ | 44.25 ± 0.13 a | 2.86 ± 0.02 d | 10.51 ± 0.30 b |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. | |||
5%WCS (control) | 70.52 ± 0.09 d | −0.95 ± 0.03 a | 7.45 ± 0.02 a |
5%WCS + 20%AJ | 56.00 ± 0.60 c | 5.65 ± 0.12 b | 33.91 ± 0.68 d |
5%WCS + 0.05%BH + 20%AJ | 51.70 ± 1.15 b | 6.81 ± 0.22 c | 30.59 ± 1.31 c |
5%WCS + 0.10%BH + 20%AJ | 47.20 ± 0.15 a | 7.71 ± 0.03 d | 26.43 ± 0.17 b |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. |
Sample | Total Polyphenols Content [mg GAE/100 g] | ABTS mM TE/100 g | DPPH mM TE/100 g |
---|---|---|---|
5%PS (control) | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.0000 ± 0.0000 b |
5%PS + 20%AJ | 129.36 ± 4.08 a | 0.13 ± 0.01 a | 0.0173 ± 0.0007 a |
5%PS + 0.05%BH + 20%AJ | 133.02 ± 3.80 a | 0.15 ± 0.01 a | 0.0174 ± 0.0005 a |
5%PS + 0.10%BH + 20%AJ | 134.35 ± 1.40 a | 0.15 ± 0.01 a | 0.0176 ± 0.0004 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05 | |||
5%WPS (control) | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.0000 ± 0.0000 b |
5%WPS + 20%AJ | 57.6 ± 0.47 a | 0.12 ± 0.01 a | 0.0172 ± 0.0004 a |
5%WPS + 0.05%BH + 20%AJ | 53.6 ± 0.26 a | 0.13 ± 0.01 a | 0.0173 ± 0.0005 a |
5%WPS + 0.10%BH + 20%AJ | 51.3 ± 0.34 a | 0.14 ± 0.01 a | 0.0173 ± 0.0004 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05 |
Sample | Total polyphenol Content [mg GAE/100 g] | ABTS mM TE/100 g | DPPH mM TE/100 g |
---|---|---|---|
5%CS (control) | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.0000 ± 0.0000 b |
5%CS + 20%AJ | 57.74 ± 4.65 a | 0.13 ± 0.01 a | 0.0170 ± 0.0004 a |
5%CS + 0.05%BH + 20%AJ | 53.63 ± 2.48 a | 0.14 ± 0.01 a | 0.0173 ± 0.0004 a |
5%CS + 0.10%BH + 20%AJ | 51.28 ± 3.31 a | 0.15 ± 0.01 a | 0.0173 ± 0.0004 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. | |||
5%WCS (control) | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.0000 ± 0.0000 b |
5%WCS + 20%AJ | 41.67 ± 1.59 a | 0.12 ± 0.01 a | 0.0171 ± 0.0004 a |
5%WCS + 0.05%BH + 20%AJ | 47.04 ± 6.91 a | 0.13 ± 0.01 a | 0.0172 ± 0.0004 a |
5%WCS + 0.10%BH + 20%AJ | 50.68 ± 3.77 a | 0.14 ± 0.01 a | 0.0173 ± 0.0004 a |
Parameters marked with the same letter in the column do not differ significantly at a confidence level of α = 0.05. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, G.; Hanus, P.; Bobel, I.; Krystyjan, M. Enrichment of Starch Desserts with the Addition of Apple Juice and Buckwheat Fiber. Polymers 2023, 15, 717. https://doi.org/10.3390/polym15030717
Adamczyk G, Hanus P, Bobel I, Krystyjan M. Enrichment of Starch Desserts with the Addition of Apple Juice and Buckwheat Fiber. Polymers. 2023; 15(3):717. https://doi.org/10.3390/polym15030717
Chicago/Turabian StyleAdamczyk, Greta, Paweł Hanus, Inna Bobel, and Magdalena Krystyjan. 2023. "Enrichment of Starch Desserts with the Addition of Apple Juice and Buckwheat Fiber" Polymers 15, no. 3: 717. https://doi.org/10.3390/polym15030717
APA StyleAdamczyk, G., Hanus, P., Bobel, I., & Krystyjan, M. (2023). Enrichment of Starch Desserts with the Addition of Apple Juice and Buckwheat Fiber. Polymers, 15(3), 717. https://doi.org/10.3390/polym15030717