Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of Electrocatalysts
2.3. Material Characterization
2.4. Electrochemical Measurements
2.5. Liquid and Flexible Solid Zn-Air Battery Assembly
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arafat, Y.; Azhar, M.R.; Zhong, Y.J.; Abid, H.R.; Tadé, M.O.; Shao, Z.P. Advances in Zeolite Imidazolate Frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in Zinc–air batteries. Adv. Energy Mater. 2021, 11, 2100514. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, J.W.; Xia, G.M.; Yu, Z.J.; Sun, J.Z.; Ji, X.X. 2D Zinc-Based Metal-Organic Complexes Derived N-Doped Porous Carbon Nanosheets as Durable Air Cathode for Rechargeable Zn-Air Batteries. Polymers 2022, 14, 2581. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, D.; Yang, P.X.; Du, L.; Lu, X.Y.; Li, R.P.; Liu, L.L.; Zhang, J.Q.; An, M.Z. A hierarchically porous Fe-N-C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in Zinc-air battery. Appl. Catal. B Environ. 2022, 305, 121040. [Google Scholar] [CrossRef]
- Geng, Q.; Pu, Y.; Li, Y.j.; Yang, X.; Wu, H.; Dong, S.; Yuan, D.; Ning, X. Multi-component nanofiber composite membrane enabled high PM0.3 removal efficiency and oil/water separation performance in complex environment. J. Hazard. Mater. 2022, 422, 126835. [Google Scholar] [CrossRef]
- You, X.; Qiao, C.D.; Peng, D.; Liu, W.L.; Li, C.; Zhao, H.; Qi, H.; Cai, X.X.; Shao, Y.Q.; Shi, X.H. Preparation of Alkaline Polyelectrolyte Membrane Based on Quaternary Ammonium Salt–Modified Cellulose and Its Application in Zn–Air Flexible Battery. Polymers 2021, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.W.; Ren, J.T.; Yuan, Z.Y. In-situ cobalt-nickel alloy catalyzed nitrogen-doped carbon nanotube arrays as superior freestanding air electrodes for flexible Zinc-air and Aluminum-air batteries. Appl. Catal. B Environ. 2022, 317, 121764. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Qiao, S.S.; Tang, Y.H.; Du, Y.; Zhang, D.Y.; Wang, W.J.; Zhang, H.; Sun, X.H.; Liu, C.B. Double-faced atomic-level engineering of hollow carbon nanofibers as free-standing bifunctional oxygen electrocatalysts for flexible Zn–air battery. ACS Nano 2022, 16, 15273–15285. [Google Scholar] [CrossRef]
- Chang, H.Y.; Cong, S.S.; Wang, L.; Wang, C. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries. Nanomaterials 2022, 12, 3834. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.Y.; Chen, J.X.; Chen, K.; Wen, Z.H.; Huang, A.S. Core–shell carbon-based bifunctional electrocatalysts derived from COF@MOF hybrid for advanced rechargeable Zn–air batteries. Small 2022, 18, 2202018. [Google Scholar] [CrossRef]
- Xie, D.Y.; Yu, D.S.; Hao, Y.N.; Han, S.L.; Li, G.H.; Wu, X.L.; Hu, F.; Li, L.L.; Chen, H.Y.; Liao, Y.F.; et al. Dual-active sites engineering of N-doped hollow carbon nanocubes confining bimetal alloys as bifunctional oxygen electrocatalysts for flexible metal–air batteries. Small 2021, 17, 2007239. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Z.H.; Yu, M.; Sun, H.M.; Liu, F.M.; Zhang, Q.Y.; Cheng, F.Y.; Chen, J. Spinel oxide nanoparticles embedded in nitrogen-doped carbon nanofibers as a robust and self-standing bifunctional oxygen cathode for Zn–air batteries. J. Mater. Chem. A 2019, 7, 24868–24876. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Shi, C.; Guan, D.; Ge, L.; Hu, Z.; Chin, Y.-Y.; Lin, H.-J.; Chen, C.-T.; et al. New Undisputed Evidence and Strategy for Enhanced Lattice-Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation. Adv. Sci. 2022, 9, 2200530. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Su, C.; Shao, Z. Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy Fuels 2021, 35, 13585–13609. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Yao, S.; Hao, C.; Pan, C.; Xiang, X.; Tian, Z.Q.; Shen, P.K.; Shao, Z.; Jiang, S.P. Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen-Doped Carbon through N Coordination Environment Engineering. Small 2022, 18, 2105329. [Google Scholar] [CrossRef]
- Gao, K.; Shen, M.X.; Duan, C.; Xiong, C.Y.; Dai, L.; Zhao, W.; Lu, W.L.; Ding, S.J.; Ni, Y.H. Co-N-doped directional multichannel PAN/CA-based electrospun carbon nanofibers as high-efficiency bifunctional oxygen electrocatalysts for Zn–air batteries. ACS Sustain. Chem. Eng. 2021, 9, 17068–17077. [Google Scholar] [CrossRef]
- Xie, X.Y.; Peng, L.S.; Yang, H.Z.; Waterhouse, G.I.N.; Shang, L.; Zhang, T.R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.H.; Feng, C.; Guo, Y.A.; Hassan, A.; Li, S.; Zhang, Y.; Wang, J.D. Dimethylimidazole and dicyandiamide assisted synthesized rich-defect and highly dispersed CuCo-Nx anchored hollow graphite carbon nanocages as efficient trifunctional electrocatalyst in the same electrolyte. J. Power Sources 2022, 517, 230721. [Google Scholar] [CrossRef]
- Zang, W.J.; Sumboja, A.; Ma, Y.Y.; Zhang, H.; Wu, Y.; Wu, S.S.; Wu, H.J.; Liu, Z.L.; Guan, C.; Wang, J.; et al. Single co atoms anchored in porous N-doped carbon for efficient Zinc−air battery cathodes. ACS Catal. 2018, 8, 8961–8969. [Google Scholar] [CrossRef]
- Guan, C.; Sumboja, A.; Wu, H.J.; Ren, W.N.; Liu, X.M.; Zhang, H.; Liu, Z.L.; Cheng, C.W.; Pennycook, S.J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state Zinc–air batteries. Adv. Mater. 2017, 29, 1704117. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, A.S.; Cheng, C.W. Ultrathin Co(OH)2 nanosheets@nitrogen-doped carbon nanoflake arrays as efficient air cathodes for rechargeable Zn–air batteries. Small 2021, 17, 2101720. [Google Scholar] [CrossRef]
- Wu, M.J.; Zhang, G.X.; Qiao, J.L.; Chen, N.; Chen, W.F.; Sun, S.H. Ultra-long life rechargeable Zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 2019, 61, 86–95. [Google Scholar] [CrossRef]
- Xu, Q.C.; Jiang, H.; Li, Y.H.; Liang, D.; Hu, Y.J.; Li, C.Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 256, 117893. [Google Scholar] [CrossRef]
- Duan, X.D.; Ren, S.S.; Pan, N.; Zhang, M.; Zheng, H.G. MOF-derived Fe, Co@N–C bifunctional oxygen electrocatalysts for Zn–air batteries. J. Mater. Chem. A 2020, 8, 9355–9363. [Google Scholar] [CrossRef]
- Gao, H.X.; Zhu, S.Q.; Kang, Y.; Dinh, D.A.; Hui, K.S.; Bin, F.; Fan, X.; Chen, F.M.; Mahmood, A.; Geng, J.X.; et al. Zeolitic imidazolate framework-derived Co-Fe@NC for rechargeable hybrid Sodium–air battery with a low voltage gap and long cycle life. ACS Appl. Energy Mater. 2022, 5, 1662–1671. [Google Scholar] [CrossRef]
- Liu, L.L.; Hu, Z.P.; Wang, M.H.; Ma, J.L.; Chen, Z.H.; Ning, X.; Yuan, D. Ultrathin NiFe-LDH nanosheets strongly coupled with MOFs-derived hybrid carbon nanoflake arrays as a self-supporting bifunctional electrocatalyst for flexible solid Zn-air batteries. J. Alloys Compd. 2022, 925, 166665. [Google Scholar] [CrossRef]
- Zhang, Y.F.; He, Q.F.; Chen, Z.H.; Chi, Y.Q.; Sun, J.W.; Yuan, D.; Zhang, L. Hierarchically porous Co@N-doped carbon fiber assembled by MOF-derived hollow polyhedrons enables effective electronic/mass transport: An advanced 1D oxygen reduction catalyst for Zn-air battery. J. Energy Chem. 2023, 76, 117–126. [Google Scholar] [CrossRef]
- Bai, Q.; Shen, F.-C.; Li, S.-L.; Liu, J.; Dong, L.Z.; Wang, Z.M.; Lan, Y.Q. Cobalt@nitrogen-doped porous carbon fiber derived from the electrospun fiber of bimetal–organic framework for highly active oxygen reduction. Small Methods 2018, 2, 1800049. [Google Scholar] [CrossRef]
- Li, J.J.; Qian, J.Q.; Chen, X.Y.; Zeng, X.X.; Li, L.; Ouyang, B.; Kan, E.; Zhang, W.M. Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells. Compos. B. Eng. 2022, 231, 109573. [Google Scholar] [CrossRef]
- Guo, J.X.; Gao, M.; Nie, J.; Yin, F.X.; Ma, G.P. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. J. Colloid Interface Sci. 2019, 544, 112–120. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Peng, L.S.; Najam, T.; Cheng, C.; Wu, G.P.; Nie, Y.; Ding, W.; Qi, X.Q.; Chen, S.G.; Wei, Z.D. Monodispersed co in mesoporous polyhedrons: Fine-tuning of ZIF-8 structure with enhanced oxygen reduction activity. Electrochim. Acta 2017, 251, 498–504. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wang, D.; Kou, X.N.; Dong, X.L.; Chi, X.Y.; Ma, H.C.; Wang, G.W. High-performance oxygen reduction electrocatalysts derived from bimetal-organic framework and sulfur-doped precursors for use in microbial fuel cells. J. Power Sources 2022, 521, 230944. [Google Scholar] [CrossRef]
- Ding, P.; Song, H.Q.; Chang, J.W.; Lu, S.Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070. [Google Scholar] [CrossRef]
- Jeghan, S.M.N.; Kim, D.; Lee, Y.; Kim, M.; Lee, G. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Appl. Catal. B Environ. 2022, 308, 121221. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, H.Q.; Sun, J.Y.; Qin, F.; Luo, D.; Xie, L.X.; Yu, F.; Bao, J.M.; Li, Y.; Yu, Y.; et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy 2017, 41, 327–336. [Google Scholar] [CrossRef]
- Ma, P.; Yang, H.D.; Luo, Y.T.; Liu, Y.; Zhu, Y.; Luo, S.; Hu, Y.P.; Zhao, Z.M.; Ma, J.T. Strongly coupled interface structure in CoFe/Co3O4 nanohybrids as efficient oxygen evolution reaction catalysts. ChemSusChem 2019, 12, 4442–4451. [Google Scholar] [CrossRef]
- Tang, R.; Ying, M.H.; Zhang, X.M.; Zheng, R.K.; Huang, J. Interfacial heterojunction-engineered Fe2O3/CoFe-Layered Double Hydroxide catalyst for the electrocatalytic oxygen evolution reaction. Energy Fuels 2022, 36, 11584–11590. [Google Scholar] [CrossRef]
- Tian, L.; Wang, Q.Q.; Li, Y.Y.; Ren, X.; Wei, Q.; Wu, D. A hierarchical CoMoO4@CoFe-LDH heterostructure as a highly effective catalyst to boost electrocatalytic water oxidation. Dalton Trans. 2022, 51, 10552–10557. [Google Scholar] [CrossRef]
- Nie, F.; Li, Z.; Dai, X.P.; Yin, X.L.; Gan, Y.H.; Yang, Z.H.; Wu, B.Q.; Ren, Z.T.; Cao, Y.H.; Song, W.Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080. [Google Scholar] [CrossRef]
- Shen, X.R.; Li, H.J.; Zhang, Y.Y.; Ma, T.T.; Li, Q.; Jiao, Q.Z.; Zhao, Y.; Li, H.S.; Feng, C.H. Construction dual-regulated NiCo2S4 @Mo-doped CoFe-LDH for oxygen evolution reaction at large current density. Appl. Catal. B Environ. 2022, 319, 121917. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; Cui, Z.X.; Li, G.F.; Han, B.; Zhang, Q.; Sui, J.; Dong, H.Z.; Yu, J.H.; Yu, L.Y.; et al. Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 2020, 399, 125718. [Google Scholar] [CrossRef]
- Li, W.M.; Chen, S.H.; Zhong, M.X.; Wang, C.; Lu, X.F. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction. Chem. Eng. J. 2021, 415, 128879. [Google Scholar] [CrossRef]
- Guo, X.L.; Hu, X.L.; Wu, D.; Jing, C.; Liu, W.; Ren, Z.L.; Zhao, Q.N.; Jiang, X.P.; Xu, C.H.; Zhang, Y.X.; et al. Tuning the bifunctional oxygen electrocatalytic properties of core–shell Co3O4@NiFe LDH catalysts for Zn–air batteries: Effects of interfacial cation valences. ACS Appl. Mater. Interfaces 2019, 11, 21506–21514. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Xu, Z.Y.; Liu, X.N.; Mahmood, S.; Shen, J.L.; Ning, J.Q.; Li, S.; Zhong, Y.J.; Hu, Y. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting. Chem. Eng. J. 2022, 446, 137049. [Google Scholar] [CrossRef]
- Fan, J.Y.; Chen, M.Y.; Liu, B.X.; Xu, D.D.; Lin, Y.; Shi, N.E.; Liu, Y.; Dai, Z.H.; Bao, J.C.; Han, M.; et al. Self-supported gold-silk-chrysanthemum-like superstructures arrays derived from Mn-doped CoPS nanowires with superhydrophilic and superaerophobic surface for enhanced oxygen evolution. Adv. Mater. Interfaces 2022, 9, 2200098. [Google Scholar] [CrossRef]
- Wei, B.; Xu, G.C.; Hei, J.C.; Zhang, L.; Huang, T.T. PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. Int. J. Hydrogen Energy 2021, 46, 2225–2235. [Google Scholar] [CrossRef]
- Huang, Y.X.; Chen, X.J.; Ge, S.P.; Zhang, Q.Q.; Zhang, X.R.; Li, W.P.; Cui, Y.M. Hierarchical FeCo2S4@CoFe layered double hydroxide on Ni foam as a bifunctional electrocatalyst for overall water splitting. Catal. Sci. Technol. 2020, 10, 1292–1298. [Google Scholar] [CrossRef]
- Kronka, M.S.; Cordeiro-Junior, P.J.M.; Mira, L.; dos Santos, A.J.; Fortunato, G.V.; Lanza, M.R.V. Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Mater. Chem. Phys. 2021, 267, 124575. [Google Scholar] [CrossRef]
- Ma, Q.; Li, B.; Huang, F.; Pang, Q.; Chen, Y.; Zhang, J.Z. Incorporating iron in nickel cobalt layered double hydroxide nanosheet arrays as efficient oxygen evolution electrocatalyst. Electrochim. Acta 2019, 317, 684–693. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Hu, Y.; Guan, M.; Xu, L.; Li, H.; Bao, J.; Li, H. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B Environ. 2020, 272, 118959. [Google Scholar] [CrossRef]
- Wen, X.D.; Yang, X.Y.; Li, M.; Bai, L.; Guan, J.Q. Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst. Electrochim. Acta 2019, 296, 830–841. [Google Scholar] [CrossRef]
- Li, G.L.; Yang, B.B.; Xu, X.C.; Cao, S.; Shao, X.Y.; Fu, X.D.; Shi, Y.T.; Yan, Y.; Song, X.D.; Hao, C. In-situ synthesis of Co nanoparticles encapsulated in mesoporous Co, N-codoped graphene-like carbon hybrid as an efficient oxygen reduction electrocatalyst. Appl. Surf. Sci. 2021, 543, 148714. [Google Scholar] [CrossRef]
- Jia, Q.Q.; Gao, Y.; Li, Y.; Fan, X.B.; Zhang, F.B.; Zhang, G.L.; Peng, W.C.; Wang, S.B. Cobalt nanoparticles embedded in N-doped carbon on carbon cloth as free-standing electrodes for electrochemically-assisted catalytic oxidation of phenol and overall water splitting. Carbon 2019, 155, 287–297. [Google Scholar] [CrossRef]
- Feng, X.T.; Jiao, Q.Z.; Chen, W.X.; Dang, Y.L.; Dai, Z.; Suib, S.L.; Zhang, J.T.; Zhao, Y.; Li, H.S.; Feng, C.H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869. [Google Scholar] [CrossRef]
- Guo, T.T.; Chen, L.Y.; Li, Y.W.; Shen, K. Controllable synthesis of ultrathin defect-rich LDH nanoarrays coupled with MOF-derived Co-NC microarrays for efficient overall water splitting. Small 2022, 18, 2107739. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Liu, L.; Chen, Z.; Wang, M.; Wu, H.; Wang, H.; Yuan, D.; Ning, X. Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries. Polymers 2023, 15, 734. https://doi.org/10.3390/polym15030734
Ma J, Liu L, Chen Z, Wang M, Wu H, Wang H, Yuan D, Ning X. Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries. Polymers. 2023; 15(3):734. https://doi.org/10.3390/polym15030734
Chicago/Turabian StyleMa, Jinliang, Longlong Liu, Zihao Chen, Minghui Wang, Han Wu, Hongmiao Wang, Ding Yuan, and Xin Ning. 2023. "Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries" Polymers 15, no. 3: 734. https://doi.org/10.3390/polym15030734
APA StyleMa, J., Liu, L., Chen, Z., Wang, M., Wu, H., Wang, H., Yuan, D., & Ning, X. (2023). Interfacial Engineering of Leaf-like Bimetallic MOF-Based Co@NC Nanoarrays Coupled with Ultrathin CoFe-LDH Nanosheets for Rechargeable and Flexible Zn-Air Batteries. Polymers, 15(3), 734. https://doi.org/10.3390/polym15030734