Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Preparation of Dog-Bone Polyamide and SFRN Samples
2.2.1. ME-Printed Dog-Bone Samples
2.2.2. Injection-Moulded Dog-Bone Samples
2.3. Porosity Measurement of Filaments and Fabricated Samples
2.4. Crystallinity of Filaments and Fabricated Samples
2.5. Tensile Properties of Fabricated Polyamide and SFRN
2.6. Shear-Lag Model
2.7. Structure Morphology of Fabricated Polyamide and SFRN
3. Results and Discussion
3.1. Thermal Properties of Filaments and Fabricated Samples
3.2. The Structure of the Fabricated Samples
3.3. The Tensile Properties of the Fabricated Samples
3.3.1. Comparison between the Injection-Moulded Samples and the Printed Samples
3.3.2. Shear-Lag Theory Analysis
3.3.3. The Effect of Interfaces on the Tensile Modulus of the Printed Samples
4. Conclusions
- Firstly, relying on the commercial Markforged printer with limited access to processing parameters except layer thickness, the printed samples exhibit consistent quality including porosity, crystallinity and fibre volume fraction.
- Secondly, printing process-induced interfaces are found in both printed polyamide and SFRN samples. The partial bonded interfaces are distributed at the interface between printed filaments. The interface density increases when layer thickness decreases from 0.2 mm to 0.1 mm. Compared to the printed polyamide, the printed SFRN samples have inferior interfaces with a larger size.
- Consequently, the tensile properties of the printed SFRN are more significantly lower than those of the injection-moulded SFRN. The printed polyamide exhibits a relatively lower yield stress (9–12%) and tensile modulus (17–22%) compared to the injection-moulded sample, whereas the yield stress and the tensile modulus of the printed SFRN are 25–30% and 31–45% lower, respectively.
- Furthermore, the tensile modulus of the printed SFRN decreases as a function of interface density, while the tensile modulus of the printed polyamide is independent of interface density. The tensile modulus of the 3 mm thick [0, 90] SFRN_0.1 is 4.9% and 17.8% lower compared to SFRN_0.125 and SFRN_0.2, respectively. A shear-lag model is found to predict the tensile modulus in good agreement with the experimentally measured modulus of the injection-moulded SFRN. However, the experimental modulus of the printed SFRN is lower than the predicted modulus due to the printing-induced interfaces in SFRN.
- Lastly, the quantitative correlation between the tensile modulus of the SFRN and the interface density is analysed. An empirical model is developed based on data fitting, and the model shows that the tensile modulus of the printed SFRN decreases with interface density following a linear function. This result suggests that the quantitative degradation of the stiffness due to interfaces should be considered when designing 3D printed parts for engineering applications. The microstructure can be improved to achieve a maximum and interface-independent mechanical performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Joshi, S.C.; Sheikh, A.A. 3D Printing in Aerospace and Its Long-Term Sustainability. Virtual Phys. Prototyp. 2015, 10, 175–185. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Yao, X.; Luan, C.; Zhang, D.; Lan, L.; Fu, J. Evaluation of Carbon Fiber-Embedded 3D Printed Structures for Strengthening and Structural-Health Monitoring. Mater. Des. 2017, 114, 424–432. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Yu, N.; Sun, X.; Wang, Z.; Zhang, D.; Li, J. Effects of Auxiliary Heat on the Interlayer Bonds and Mechanical Performance of Polylactide Manufactured through Fused Deposition Modeling. Polym. Test. 2021, 104, 107390. [Google Scholar] [CrossRef]
- Cicala, G.; Giordano, D.; Tosto, C.; Filippone, G.; Recca, A.; Blanco, I. Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials 2018, 11, 1191. [Google Scholar] [CrossRef]
- Tymrak, B.M.; Kreiger, M.; Pearce, J.M. Mechanical Properties of Components Fabricated with Open-Source 3-D Printers under Realistic Environmental Conditions. Mater. Des. 2014, 58, 242–246. [Google Scholar] [CrossRef]
- D’Amico, A.A.; Debaie, A.; Peterson, A.M. Effect of Layer Thickness on Irreversible Thermal Expansion and Interlayer Strength in Fused Deposition Modeling. Rapid Prototyp. J. 2017, 23, 943–953. [Google Scholar] [CrossRef]
- Ziemian, S.; Okwara, M.; Ziemian, C.W. Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene. Rapid Prototyp. J. 2015, 21, 270–278. [Google Scholar] [CrossRef]
- Lee, J.; Huang, A. Fatigue Analysis of FDM Materials. Rapid Prototyp. J. 2013, 19, 291–299. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Zou, J.R.; Wu, H.H.; Xu, B.P. Balance between Bonding and Deposition during Fused Deposition Modeling of Polycarbonate and Acrylonitrile-Butadiene-Styrene Composites. Polym. Compos. 2020, 41, 60–72. [Google Scholar] [CrossRef]
- Salazar-Martín, A.G.; Pérez, M.A.; García-Granada, A.A.; Reyes, G.; Puigoriol-Forcada, J.M. A Study of Creep in Polycarbonate Fused Deposition Modelling Parts. Mater. Des. 2018, 141, 414–425. [Google Scholar] [CrossRef]
- Puigoriol-Forcada, J.M.; Alsina, A.; Salazar-Martín, A.G.; Gomez-Gras, G.; Pérez, M.A. Flexural Fatigue Properties of Polycarbonate Fused-Deposition Modelling Specimens. Mater. Des. 2018, 155, 414–421. [Google Scholar] [CrossRef]
- Toro, E.V.D.; Sobrino, J.C.; Mart, A.; Ayll, J. Investigation of a Short Carbon Fibre-Reinforced Polyamide and Comparison of Two Manufacturing Processes: Fused Deposition Modelling (FDM) and Polymer Injection Moulding (PIM). Materials 2020, 13, 672. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, W.; Liu, T. Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and Its Applications. Compos. Commun. 2020, 21, 100413. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, D.; Wen, X.; Qi, S.; Su, Y.; Dong, X. Fused Deposition Modeling with Polyamide 1012. Rapid Prototyp. J. 2019, 25, 1145–1154. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.Y.; Tagarielli, V.L. Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA. Mater. Des. 2017, 123, 154–164. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The Importance of Carbon Fiber to Polymer Additive Manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef] [Green Version]
- Omuro, R.; Ueda, M.; Matsuzaki, R.; Todoroki, A.; Hirano, Y. Three-Dimensional Printing of Continuous Carbon Fiber Reinforced Thermoplastics By in-Nozzle Impregnation With Compaction Roller. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Tian, X.; Liu, T.; Wang, Q.; Dilmurat, A.; Li, D.; Ziegmann, G. Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. J. Clean. Prod. 2017, 142, 1609–1618. [Google Scholar] [CrossRef]
- Van Der Klift, F.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y.; Matsuzaki, R. 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016, 6, 18–27. [Google Scholar] [CrossRef]
- Cantrell, J.T.; Rohde, S.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Jerez, A.; Steinbach, D.; Kroese, C.; et al. Experimental Characterization of the Mechanical Properties of 3D-Printed ABS and Polycarbonate Parts. Rapid Prototyp. J. 2017, 23, 811–824. [Google Scholar] [CrossRef]
- McLouth, T.D.; Severino, J.V.; Adams, P.M.; Patel, D.N.; Zaldivar, R.J. The Impact of Print Orientation and Raster Pattern on Fracture Toughness in Additively Manufactured ABS. Addit. Manuf. 2017, 18, 103–109. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D Printing of PLA-TPU with Different Component Ratios: Fracture Toughness, Mechanical Properties, and Morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro- and Micro-Structural Properties. Macromol. Mater. Eng. 2022, 307, 2200568. [Google Scholar] [CrossRef]
- Moradi, M.; Aminzadeh, A.; Rahmatabadi, D.; Rasouli, S.A. Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization. J. Mater. Eng. Perform. 2021, 30, 5441–5454. [Google Scholar] [CrossRef]
- Shofner, M.L.; Lozano, K.; Rodrı, F.J. Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090. [Google Scholar] [CrossRef]
- Patanwala, H.S.; Hong, D.; Vora, S.R.; Bognet, B.; Ma, A.W.K. The Microstructure and Mechanical Properties of 3D Printed Carbon Nanotube-Polylactic Acid Composites. Polym. Compos. 2018, 39, E1060–E1071. [Google Scholar] [CrossRef]
- Przekop, R.E.; Kujawa, M.; Pawlak, W.; Dobrosielska, M.; Sztorch, B.; Wieleba, W. Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements. Polymers 2020, 12, 1250. [Google Scholar] [CrossRef]
- Jia, Y.; He, H.; Geng, Y.; Huang, B.; Peng, X. High Through-Plane Thermal Conductivity of Polymer Based Product with Vertical Alignment of Graphite Flakes Achieved via 3D Printing. Compos. Sci. Technol. 2017, 145, 55–61. [Google Scholar] [CrossRef]
- Ferreira, R.T.L.; Amatte, I.C.; Dutra, T.A.; Bürger, D. Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Compos. Part B Eng. 2017, 124, 88–100. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Z.; Chen, H.; Yan, W. 3D Printing of Short Fiber Reinforced Composites via Material Extrusion: Fiber Breakage. Addit. Manuf. 2022, 58, 103067. [Google Scholar] [CrossRef]
- Ma, S.; Yang, H.; Zhao, S.; He, P.; Zhang, Z.; Duan, X.; Yang, Z.; Jia, D.; Zhou, Y. 3D-Printing of Architectured Short Carbon Fiber-Geopolymer Composite. Compos. Part B Eng. 2021, 226, 109348. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short Fiber Reinforced Composites for Fused Deposition Modeling. Mater. Sci. Eng. A 2001, 301, 125–130. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of Polypropylene/Short Glass Fiber Composite as Fused Deposition Modeling (FDM) Filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Ghabezi, P.; Flanagan, T.; Harrison, N. Short Basalt Fibre Reinforced Recycled Polypropylene Filaments for 3D Printing. Mater. Lett. 2022, 326, 132942. [Google Scholar] [CrossRef]
- Sang, L.; Han, S.; Li, Z.; Yang, X.; Hou, W. Development of Short Basalt Fiber Reinforced Polylactide Composites and Their Feasible Evaluation for 3D Printing Applications. Compos. Part B Eng. 2019, 164, 629–639. [Google Scholar] [CrossRef]
- Hao, W.; Liu, Y.; Zhou, H.; Chen, H.; Fang, D. Preparation and Characterization of 3D Printed Continuous Carbon Fiber Reinforced Thermosetting Composites. Polym. Test. 2018, 65, 29–34. [Google Scholar] [CrossRef]
- Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality. Mater. Des. 2016, 96, 106–114. [Google Scholar] [CrossRef]
- Galos, J.; Hu, Y.; Ravindran, A.R.; Ladani, R.B.; Mouritz, A.P. Electrical Properties of 3D Printed Continuous Carbon Fibre Composites Made Using the FDM Process. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106661. [Google Scholar] [CrossRef]
- Hu, Y.; Ladani, R.B.; Brandt, M.; Li, Y.; Mouritz, A.P. Carbon Fibre Damage during 3D Printing of Polymer Matrix Laminates Using the FDM Process. Mater. Des. 2021, 205, 109679. [Google Scholar] [CrossRef]
- Mahajan, C.; Cormier, D. 3D Printing of Carbon Fiber Composites with Preferentially Aligned Fibers. In Proceedings of the 2015 Industrial and Systems Engineering Research Conference, Nashville, Tennessee, 30 May—2 June 2015. [Google Scholar]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly Oriented Carbon Fiber-Polymer Composites via Additive Manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef]
- Hinchcliffe, S.A.; Hess, K.M.; Srubar, W.V. Experimental and Theoretical Investigation of Prestressed Natural Fiber-Reinforced Polylactic Acid (PLA) Composite Materials. Compos. Part B Eng. 2016, 95, 346–354. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-Dimensional Printing of Continuous-Fiber Composites by in-Nozzle Impregnation. Sci. Rep. 2016, 6, 23058. [Google Scholar] [CrossRef]
- Dutra, T.A.; Ferreira, R.T.L.; Resende, H.B.; Guimarães, A. Mechanical Characterization and Asymptotic Homogenization of 3D-Printed Continuous Carbon Fiber-Reinforced Thermoplastic. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 133. [Google Scholar] [CrossRef]
- Caminero, M.A.; Chacón, J.M.; García-Moreno, I.; Rodríguez, G.P. Impact Damage Resistance of 3D Printed Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling. Compos. Part B Eng. 2018, 148, 93–103. [Google Scholar] [CrossRef]
- Naranjo-Lozada, J.; Ahuett-Garza, H.; Orta-Castañón, P.; Verbeeten, W.M.H.; Sáiz-González, D. Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing. Addit. Manuf. 2019, 26, 227–241. [Google Scholar] [CrossRef]
- Dickson, A.N.; Barry, J.N.; McDonnell, K.A.; Dowling, D.P. Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing. Addit. Manuf. 2017, 16, 146–152. [Google Scholar] [CrossRef]
- Zhuo, P.; Li, S.; Ashcroft, I.; Jones, A.; Pu, J.; Science, C.; Division, T. 3D Printing of Continuous Fibre Reinforced Thermoplastic Composite. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Griffini, G.; Invernizzi, M.; Levi, M.; Natale, G.; Postiglione, G.; Turri, S. 3D-Printable CFR Polymer Composites with Dual-Cure Sequential IPNs. Polymer 2016, 91, 174–179. [Google Scholar] [CrossRef]
- Kariz, M.; Sernek, M.; Obućina, M.; Kuzman, M.K. Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts. Mater. Today Commun. 2018, 14, 135–140. [Google Scholar] [CrossRef]
- Compton, B.G.; Lewis, J.A. 3D-Printing of Lightweight Cellular Composites. Adv. Mater. 2014, 26, 5930–5935. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Zhang, W.; Cotton, C.; Sun, J.; Heider, D.; Gu, B.; Sun, B.; Chou, T.W. Interfacial Bonding Strength of Short Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites Fabricated by Fused Deposition Modeling. Compos. Part B Eng. 2018, 137, 51–59. [Google Scholar] [CrossRef]
- Christensen, K.; Davis, B.; Jin, Y.; Huang, Y. Effects of Printing-Induced Interfaces on Localized Strain within 3D Printed Hydrogel Structures. Mater. Sci. Eng. C 2018, 89, 65–74. [Google Scholar] [CrossRef]
- Bellehumeur, C.; Li, L.; Sun, Q.; Gu, P. Modeling of Bond Formation between Polymer Filaments in the Fused Deposition Modeling Process. J. Manuf. Process. 2004, 6, 170–178. [Google Scholar] [CrossRef]
- Gurrala, P.K.; Regalla, S.P. Part Strength Evolution with Bonding between Filaments in Fused Deposition Modelling: This Paper Studies How Coalescence of Filaments Contributes to the Strength of Final FDM Part. Virtual Phys. Prototyp. 2014, 9, 141–149. [Google Scholar] [CrossRef]
- Li, L.; Sun, Q.; Bellehumeur, C.; Gu, P. Investigation of Bond Formation in FDM Process Investigation of Bond Formation in FDM Process. Trans. N. Am. Manuf. Res. Inst. SME 2019, 31, 400–407. [Google Scholar]
- Everett, H. Markforged Merges with One to Go Public as a $2.1 Billion 3D Printing Business. Available online: https://3dprintingindustry.com/news/markforged-merges-with-one-to-go-public-as-a-2-1-billion-3d-printing-business-185077 (accessed on 24 February 2021).
- Sommacal, S.; Matschinski, A.; Drechsler, K.; Compston, P. Characterisation of Void and Fiber Distribution in 3D Printed Carbon-Fiber/PEEK Using X-Ray Computed Tomography. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106487. [Google Scholar] [CrossRef]
- MarkForged FFF Nylon Filament, Safety Data Sheet. Available online: https://markforged.com/materials/plastics/nylon (accessed on 20 January 2022).
- Millot, C.; Fillot, L.A.; Lame, O.; Sotta, P.; Seguela, R. Assessment of Polyamide-6 Crystallinity by DSC: Temperature Dependence of the Melting Enthalpy. J. Therm. Anal. Calorim. 2015, 122, 307–314. [Google Scholar] [CrossRef]
- ASTM International D638-14 Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2015.
- Cox, H.L. The Elasticity and Strength of Paper and Other Fibrous Materials. Br. J. Appl. Phys. 1952, 3, 72. [Google Scholar] [CrossRef]
- Krenchel, H. Fibre Reinforcement; Theoretical and Practical Investigations of the Elasticity and Strength of Fibre-Reinforced Materials; AGRIS: Rome, Italy, 1964. [Google Scholar]
- O’Regan, D.F.; Akay, M.; Meenan, B. A Comparison of Young’s Modulus Predictions in Fibre-Reinforced-Polyamide Injection Mouldings. Compos. Sci. Technol. 1999, 59, 419–427. [Google Scholar] [CrossRef]
- Parodi, E.; Govaert, L.E.; Peters, G.W.M. Glass Transition Temperature versus Structure of Polyamide 6: A Flash-DSC Study. Thermochim. Acta 2017, 657, 110–122. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts. Mater. Des. 2010, 31, 287–295. [Google Scholar] [CrossRef]
- Sauer, M.J. Evaluation of the Mechanical Properties of 3D Printed Carbon Fiber Composites; South Dakota State University: Brookings, SD, USA, 2018; ISBN 035597438X. [Google Scholar]
- Performance Composites Ltd. Mechanical Properties of Carbon Fibre Composite Materials, Fibre/Epoxy Resin (120 °C Cure); Performance Composites Ltd.: Compton, CA, USA, 2009. [Google Scholar]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s Ratio and Modern Materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef]
- Nairn, J.A.; Mendels, D.A. On the Use of Planar Shear-Lag Methods for Stress-Transfer Analysis of Multilayered Composites. Mech. Mater. 2001, 33, 335–362. [Google Scholar] [CrossRef]
- Carraro, P.A.; Quaresimin, M. A Stiffness Degradation Model for Cracked Multidirectional Laminates with Cracks in Multiple Layers. Int. J. Solids Struct. 2015, 58, 34–51. [Google Scholar] [CrossRef]
- Kashtalyan, M.; Soutis, C. Modelling Off-Axis Ply Matrix Cracking in Continuous Fibre-Reinforced Polymer Matrix Composite Laminates. J. Mater. Sci. 2006, 41, 6789–6799. [Google Scholar] [CrossRef]
- McCartney, L.N. Theory of Stress Transfer in a 0°–90°–0° Cross-Ply Laminate Containing a Parallel Array of Transverse Cracks. J. Mech. Phys. Solids 1992, 40, 27–68. [Google Scholar] [CrossRef]
- Gudmundson, P.; Weilin, Z. An Analytic Model for Thermoelastic Properties of Composite Laminates Containing Transverse Matrix Cracks. Int. J. Solids Struct. 1993, 30, 3211–3231. [Google Scholar] [CrossRef]
Authors | Materials | Test Type | Standard | Results * |
---|---|---|---|---|
Song et al. [18] | PLA | Tensile; Compressive | Not reported (NR) | : 55 MPa; : 4.0 GPa; : 98 MPa; : 4.7 GPa |
Yao et al. [4] | PLA | Tensile; Flexural | ISO 527; ISO 14125 | : 46 MPa; : 82 MPa |
Ning et al. [19] | ABS | Tensile | ASTM D638 | : 34 MPa; : 1.9 GPa |
Love et al. [20] | ABS | Tensile | ASTM D638 | : 35 MPa; : 2.2 GPa |
Omuro et al. [21] | PLA | Tensile; Flexural | NR | : 40 MPa; : 4.7 GPa; : 65 MPa;: 2.5 GPa |
Tian et al. [22] | PLA | Tensile; Flexural | GB/T 1447; GB/T 1449 | : 62 MPa; : 4.2 GPa; : 100 MPa;: 4.0 GPa |
Van Der Klift et al. [23] | Polyamide | Tensile | JIS K 7073 | : 0.9 GPa; |
Tymrak et al. [8] | ABS; PLA | Tensile | ASTM D638 | ABS: : 29 MPa; : 1.8 GPa; PLA:: 57 MPa; : 3.4 GPa; |
Cantrell et al. [24] | ABS; PC | Tensile | ASTM D638 | ABS: : 30 MPa; : 2.0 GPa; PC: : 54 MPa; : 1.9 GPa; |
McLouth et al. [25] | ABS | Fracture Toughness | ASTM D5045 | 1.97 MPa m1/2 |
D’Amico et al. [9] | ABS | Tensile; Flexural | ASTM D638; ASTM D790 | : 20 MPa;: 21 MPa; |
Rahmatabadi et al. [26] | PLA-polyurethane | Tensile; Compressive; Flexural | ASTM D638; ISO604:2002; ASTM D790 | MPa; : 43 MPa : 124 MPa; |
Rahmatabadi et al. [27] | Poly vinyl chloride | Tensile; Compressive; Flexural | ASTM D638; ISO604:2002; ASTM D790 | : 77 MPa; : 0.7 GPa : 57 MPa; : 0.8 GPa : 201 MPa; : 1.3 GPa |
Moradi et al. [28] | polyamide | Tensile | ASTM D638 | Elongation: 596% |
Authors | FRPs | Fibre Fraction | Test Type | Standard | Mechanical Improvements * |
---|---|---|---|---|---|
Ning et al. [19] | Short carbon fibre/ABS | 5 wt% | Tensile | ASTM D638 | : 24%; : 32%; |
Love et al. [20] | Short carbon fibre/ABS | 13 wt% | Tensile | ASTM D638 | : 236%; : 427%; |
Mahajan and Cormier [44] | Short carbon fibre/epoxy | 15 wt% | Tensile | ASTM D638 | : 41%; : 45%; |
Omuro et al. [21] | Continuous carbon fibre/PLA | 30 vol% | Tensile; Flexural | NR | : 1389%; : 1356%; : 1012%;: 242% |
Ferreira et al. [33] | Short carbon fibre/PLA | 15 wt% | Tensile; Shear | ASTM D638; ASTM D3518 | : 220%; : 5%; : 116%; |
Tekinalp et al. [45] | Short carbon fibre/ABS | 30 wt% | Tensile | ASTM D638 | : 115%; : 700%; |
Tian et al. [22] | Continuous carbon fibre/PLA | 9 vol% | Tensile; Flexural | GB/T 1447; GB/T 1449 | : 313%; : 390%; : 260%;: 230% |
Hinchcliffe et al. [46] | Continuous flax fibre/PLA | NR | Tensile | ASTM D638 | : 116%; : 62%; : 14%;: 10% |
Matsuzaki et al. [47] | Continuous carbon fibre/PLA | 6 vol% | Tensile | JIS K 7162 | : 363%; : 400% |
Shofner et al. [29] | Nanocarbon fibre/ABS | 10 wt% | Tensile | ASTM D638 | : 39%; : 40% |
Dutra et al. [48] | Continuous carbon fibre/polyamide | 30 vol% | Tensile | ASTM D3039 | : 894% |
Caminero et al. [49] | Continuous carbon fibre/polyamide; Continuous Kevlar fibre/polyamide; Continuous glass fibre/polyamide | 50 wt% | Impact | ASTM D6110 | Impact resistance: Continuous carbon fibre/polyamide: 181%; Continuous Kevlar fibre/polyamide/: 513%; Continuous glass fibre/polyamide: 1225% |
Naranjo-Lozada et al. [50] | Short carbon fibre/polyamide; Continuous carbon fibre/polyamide | NR; 50 wt% | Tensile | ASTM D638 | Short fibre: : 46%; : 115% Continuous fibre: : 2826%; : 3848% |
Dickson et al. [51] | Continuous carbon fibre/polyamide; Continuous Kevlar fibre/polyamide; Continuous glass fibre/polyamide | 8–11 vol% | Tensile; Flexural | ASTM D3039; ASTM D7264 | Continuous carbon fibre/polyamide: : 254%; : 1358%; : 260%;: 1128% Continuous Kevlar fibre/polyamide: : 169%; : 725%; : 200%;: 527% Continuous glass fibre/polyamide: : 238%; : 608%; : 369%;: 297% |
Polyamide | SFRN | |||||
---|---|---|---|---|---|---|
Raster Pattern | Layer Thickness (mm) | Tm (°C) | Crystallinity (%) | Tm (°C) | Crystallinity (%) | |
[0, 90] | 0.1 | 1st heating | 200 | 18 | 199 | 17 |
2nd heating | 202 | 20 | 200 | 18 | ||
0.125 | 1st heating | 200 | 16 | 200 | 17 | |
2nd heating | 201 | 17 | 200 | 17 | ||
0.2 | 1st heating | 199 | 16 | 199 | 17 | |
2nd heating | 200 | 19 | 200 | 18 | ||
[+45, −45] | 0.1 | 1st heating | 199 | 19 | 197 | 17 |
2nd heating | 201 | 20 | 200 | 20 | ||
0.125 | 1st heating | 200 | 17 | 197 | 16 | |
2nd heating | 201 | 18 | 200 | 18 | ||
0.2 | 1st heating | 201 | 18 | 197 | 18 | |
2nd heating | 202 | 19 | 199 | 20 | ||
Filament | 1st heating | 200 | 35 | 199 | 21 | |
2nd heating | 201 | 19 | 201 | 20 | ||
Injection-moulded | 1st heating | 199 | 18 | 199 | 18 | |
2nd heating | 198 | 20 | 199 | 20 |
Polyamide | SFRN | |||||
---|---|---|---|---|---|---|
Thick (mm) | Layer Thickness (mm) | Raster Pattern | Yield Stress (MPa) | Tensile Modulus (GPa) | Yield Stress (MPa) | Tensile Modulus (GPa) |
2 | 0.1 | [0, 90] | 32.5 ± 0.6 | 1.19 ± 0.04 | 51.5 ± 3.6 | 3.25 ± 0.10 |
[+45, −45] | 30.3 ± 0.2 | 1.11 ± 0.05 | 53.7 ± 1.2 | 3.00 ± 0.08 | ||
0.125 | [0, 90] | 32.3 ± 0.7 | 1.17 ± 0.02 | 53.8 ± 1.6 | 3.57 ± 0.19 | |
[+45, −45] | 30.4 ± 0.5 | 1.16 ± 0.10 | 57.3 ± 2.1 | 3.16 ± 0.08 | ||
0.2 | [0, 90] | 33.8 ± 0.4 | 1.21 ± 0.07 | 55.2 ± 1.3 | 4.08 ± 0.21 | |
[+45, −45] | 31.2 ± 0.9 | 1.14 ± 0.07 | 57.5 ± 2.6 | 3.56 ± 0.10 | ||
3 | 0.1 | [0, 90] | 33.5 ± 1.1 | 1.12 ± 0.06 | 54.5 ± 2.6 | 3.88 ± 0.18 |
[+45, −45] | 34.3 ± 0.9 | 1.18 ± 0.11 | 56.8 ± 1.6 | 3.66 ± 0.17 | ||
0.125 | [0, 90] | 33.2 ± 0.8 | 1.13 ± 0.09 | 54.7 ± 1.9 | 4.03 ± 0.22 | |
[+45, −45] | 34.0 ± 0.9 | 1.12 ± 0.09 | 56.7 ± 2.1 | 3.82 ± 0.24 | ||
0.2 | [0, 90] | 33.3 ± 1.5 | 1.17 ± 0.07 | 56.8 ± 2.4 | 4.57 ± 0.27 | |
[+45, −45] | 34.1 ± 0.4 | 1.16 ± 0.11 | 58.5 ± 1.7 | 4.11 ± 0.21 | ||
Injection-moulded | - | 37.6 ± 0.4 | 1.43 ± 0.22 | 78.1 ± 3.5 | 6.67 ± 0.22 | |
4 | 0.1 | [0, 90] | 34.3 ± 0.5 | 1.19 ± 0.05 | 55.7 ± 3.7 | 4.25 ± 0.19 |
[+45, −45] | 32.9 ± 0.4 | 1.19 ± 0.09 | 58.8 ± 1.9 | 4.13 ± 0.30 | ||
0.125 | [0, 90] | 32.9 ± 0.7 | 1.20 ± 0.03 | 56.6 ± 1.7 | 4.48 ± 0.25 | |
[+45, −45] | 32.5 ± 0.4 | 1.11 ± 0.07 | 60.1 ± 2.4 | 4.25 ± 0.24 | ||
0.2 | [0, 90] | 32.9 ± 0.7 | 1.16 ± 0.08 | 59.5 ± 3.7 | 4.90 ± 0.23 | |
[+45, −45] | 34.1 ± 0.4 | 1.21 ± 0.08 | 59.8 ± 4.2 | 4.57 ± 0.21 |
Sample Thick (, mm) | Layer Thickness (, mm) | Number of Interfaces | Interface Density , /mm) | Linear Correlation [0, 90] | Linear Correlation [+45, −45] |
---|---|---|---|---|---|
2 | 0.1 | 20 | 9.50 | 0.999 | |
0.125 | 16 | 7.50 | 0.983 | ||
0.2 | 10 | 4.50 | |||
3 | 0.1 | 30 | 9.67 | 0.960 | |
0.125 | 24 | 7.67 | 0.998 | ||
0.2 | 15 | 4.67 | |||
4 | 0.1 | 40 | 9.75 | 0.997 | |
0.125 | 32 | 7.75 | 0.980 | ||
0.2 | 20 | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Panesar, A. Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites. Polymers 2023, 15, 773. https://doi.org/10.3390/polym15030773
Hou Y, Panesar A. Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites. Polymers. 2023; 15(3):773. https://doi.org/10.3390/polym15030773
Chicago/Turabian StyleHou, Yingwei, and Ajit Panesar. 2023. "Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites" Polymers 15, no. 3: 773. https://doi.org/10.3390/polym15030773
APA StyleHou, Y., & Panesar, A. (2023). Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites. Polymers, 15(3), 773. https://doi.org/10.3390/polym15030773