Newfangled Topical Film-Forming Solution for Facilitated Antifungal Therapy: Design, Development, Characterization, and In Vitro Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Topical FFS
2.2.2. Preparation of Alkaline Polymeric Solution for Topical Spray
2.2.3. Design of Experiment (DoE)
2.3. Preformulation Studies
2.3.1. Differential Scanning Calorimetry (DSC)
2.3.2. X-ray Diffractometry (XRD)
2.3.3. Fourier-Transform Infrared (FTIR) Spectroscopy
2.4. Evaluation of Polymeric Spray Solution
2.4.1. Appearance
2.4.2. pH
2.4.3. Viscosity
2.4.4. Rheological Study
2.4.5. In Vitro Diffusion Study
2.4.6. In Vitro Antifungal Activity
2.4.7. Stability Studies
2.5. Evaluation of Polymeric Film
2.5.1. Drying Time
2.5.2. Films Outer Surface Characterization
2.5.3. Determination of Transparency
2.5.4. Uniformity of Film Thickness
2.5.5. Folding Endurance
2.5.6. Tensile Strength
2.5.7. Scanning Electron Microscopy (SEM)
2.6. Container Evaluation
Volume of Solution upon Each Actuation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preformulation Studies
3.1.1. Powder X-ray Diffraction
3.1.2. Differential Scanning Calorimetry (DSC)
3.1.3. Fourier-Transform Infrared (FTIR) Spectroscopy
3.2. Optimization Using Mathematical Model
3.2.1. ANOVA Results
3.2.2. Identification of Optimized Formulation
3.2.3. Graphical Representation
3.3. Evaluation and Characterization of Polymeric Spray Solution
3.3.1. Drying Time
3.3.2. pH
3.3.3. Viscosity
3.3.4. Tensile Strength and Folding Endurance
3.3.5. SEM Study
3.3.6. Rheology Study
3.3.7. Container Evaluation
3.3.8. In Vitro Diffusion Study
3.3.9. In Vitro Antifungal Studies
3.3.10. Stability Studies
4. Summary, Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achkar, J.M.; Fries, B.C. Candida Infections of the Genitourinary Tract. Clin. Microbiol. Rev. 2010, 23, 253–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, B.E.; Wilhelmus, K.R.; Mitchell, B.M. Genetically Regulated Filamentation Contributes to Candida Albicans Virulence during Corneal Infection. Microb. Pathog. 2007, 42, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.T.D.; Tran, P.H.L. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Beck-Broichsitter, M.; Banga, A. Design and Evaluation of a Poly(Lactide-Co-Glycolide)-Based in Situ Film-Forming System for Topical Delivery of Trolamine Salicylate. Pharmaceutics 2019, 11, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederiksen, K.; Guy, R.H.; Petersson, K. The Potential of Polymeric Film-Forming Systems as Sustained Delivery Platforms for Topical Drugs. Expert Opin. Drug Deliv. 2015, 13, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Alvarez, A.F.; Ferreira, M.P.; Vicentini, F.T.M.C.; Pedrazzi, V.; de Freitas, O. A New Approach to Ex Vivo Permeation Studies in In-Situ Film-Forming Systems. AAPS PharmSciTech 2020, 21, 257. [Google Scholar] [CrossRef] [PubMed]
- Felton, L.A. Mechanisms of Polymeric Film Formation. Int. J. Pharm. 2013, 457, 423–427. [Google Scholar] [CrossRef]
- Khanna, D.; Bharti, S. Luliconazole for the Treatment of Fungal Infections: An Evidence-Based Review. Core Evid. 2014, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Niwano, Y.; Ohmi, T.; Seo, A.; Kodama, H.; Koga, H.; Sakai, A. Lanoconazole and Its Related Optically Active Compound NND-502: Novel Antifungal Imidazoles with a Ketene Dithioacetal Structure. Curr. Med. Chem.-Anti-Infect. Agents 2003, 2, 147–160. [Google Scholar] [CrossRef]
- Koga, H.; Nanjoh, Y.; Makimura, K.; Tsuboi, R. In Vitro Antifungal Activities of Luliconazole, a New Topical Imidazole. Med. Mycol. 2009, 47, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Koga, H.; Tsuji, Y.; Inoue, K.; Kanai, K.; Majima, T.; Kasai, T.; Uchida, K.; Yamaguchi, H. In Vitro Antifungal Activity of Luliconazole against Clinical Isolates from Patients with Dermatomycoses. J. Infect. Chemother. 2006, 12, 163–165. [Google Scholar] [CrossRef] [PubMed]
- El-Badry, M.; Fetih, G.; Shakeel, F. Comparative topical delivery of antifungal drug croconazole using liposome and micro-emulsion-based gel formulations. Drug Deliv. 2014, 21, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, K.; Guy, R.H.; Petersson, K. Formulation Considerations in the Design of Topical, Polymeric Film-Forming Systems for Sustained Drug Delivery to the Skin. Eur. J. Pharm. Biopharm. 2015, 91, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranade, S.; Bajaj, A.; Londhe, V.; Babul, N.; Kao, D. Fabrication of Topical Metered Dose Film Forming Sprays for Pain Management. Eur. J. Pharm. Sci. 2017, 100, 132–141. [Google Scholar] [CrossRef]
- Osmani, R.A.M.; Kulkarni, P.K.; Shanmuganathan, S.; Hani, U.; Srivastava, A.; Shinde, C.G.; Bhosale, R.R. A 32 Full Factorial Design for Development and Characterization of a Nanosponge-Based Intravaginal In Situ Gelling System for Vulvovaginal Candidiasis. RSC Adv. 2016, 6, 18737–18750. [Google Scholar] [CrossRef]
- Ravikumar, A.A.; Kulkarni, P.K.; Osmani, R.A.M.; Hani, U.; Ghazwani, M.; Fatease, A.A.; Alamri, A.H.; Gowda, D.V. Carvedilol Precipitation Inhibition by the Incorporation of Polymeric Precipitation Inhibitors Using a Stable Amorphous Solid Dispersion Approach: Formulation, Characterization, and in Vitro in Vivo Evaluation. Polymers 2022, 14, 4977. [Google Scholar] [CrossRef]
- Anter, H.M.; Abu Hashim, I.I.; Awadin, W.; Meshali, M.M. Novel Chitosan Oligosaccharide-Based Nanoparticles for Gastric Mucosal Administration of the Phytochemical “Apocynin”. Int. J. Nanomed. 2019, 14, 4911–4929. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.; Qi, S.; Liu, F.; Brown, M.B.; McAuley, W.J. Rationalising Polymer Selection for Supersaturated Film Forming Systems Produced by an Aerosol Spray for the Transdermal Delivery of Methylphenidate. Eur. J. Pharm. Biopharm. 2017, 114, 164–174. [Google Scholar] [CrossRef]
- Rao, P.R.; Diwan, P.V. Formulation and in Vitro Evaluation of Polymeric Films of Diltiazem Hydrochloride and Indomethacin for Transdermal Administration. Drug Dev. Ind. Pharm. 1998, 24, 327–336. [Google Scholar] [CrossRef]
- Anter, H.; Abu Hashim, I.; Awadin, W.; Meshali, M. Novel Anti-Inflammatory Film as a Delivery System for the External Medication with Bioactive Phytochemical “Apocynin”. Drug Des. Dev. Ther. 2018, 12, 2981–3001. [Google Scholar] [CrossRef] [Green Version]
- Osmani, R.A.M.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Dev, D.J. Microsponges based Novel Drug Delivery System for Augmented Arthritis Therapy. Saudi Pharm. J. 2015, 23, 562–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, K.J.; Parab, B.S.; Shidhaye, S.S. Nano-Transethosomes: A Novel Tool for Drug Delivery through Skin. Indian J. Pharm. Educ. Res. 2021, 55, s1–s10. [Google Scholar] [CrossRef]
- Umar, A.K.; Butarbutar, M.E.T.; Sriwidodo, S.; Wathoni, N. Film-Forming Sprays for Topical Drug Delivery. Drug Des. Dev. Ther. 2020, 14, 2909–2925. [Google Scholar] [CrossRef]
- Padula, C.; Nicoli, S.; Pescina, S.; Santi, P. Thin Polymeric Films for the Topical Delivery of Propranolol. Colloids Surf. B Biointerfaces 2019, 174, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Permana, A.D.; Utami, R.N.; Layadi, P.; Himawan, A.; Juniarti, N.; Anjani, Q.K.; Utomo, E.; Mardikasari, S.A.; Arjuna, A.; Donnelly, R.F. Thermosensitive and Mucoadhesive in Situ Ocular Gel for Effective Local Delivery and Antifungal Activity of Itraconazole Nanocrystal in the Treatment of Fungal Keratitis. Int. J. Pharm. 2021, 602, 120623. [Google Scholar] [CrossRef] [PubMed]
- Geh, K.J.; Stelzl, A.; Gröne, A.; Wagner, L.; Förster, B.; Winter, G. Development of a Sprayable Hydrogel Formulation for the Skin Application of Therapeutic Antibodies. Eur. J. Pharm. Biopharm. 2019, 142, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Zurdo Schroeder, I.; Franke, P.; Schaefer, U.F.; Lehr, C.-M. Development and Characterization of Film Forming Polymeric Solutions for Skin Drug Delivery. Eur. J. Pharm. Biopharm. 2007, 65, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Kathe, K.; Kathpalia, H. Film Forming Systems for Topical and Transdermal Drug Delivery. Asian J. Pharm. Sci. 2017, 12, 487–497. [Google Scholar] [CrossRef]
- Hani, U.; Osmani, R.A.M.; Alqahtani, A.; Ghazwani, M.; Rahamathulla, M.; Almordy, S.A.; Alsaleh, H.A. 23 Full Factorial Design for Formulation and Evaluation of Floating Oral In situ Gelling System of Piroxicam. J. Pharmaceutical Innovation. 2021, 16, 528–536. [Google Scholar] [CrossRef]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin Films as an Emerging Platform for Drug Delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef] [Green Version]
- Leppert, W.; Malec–Milewska, M.; Zajaczkowska, R.; Wordliczek, J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules 2018, 23, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornare, S.S.; Aher, S.S.; Saudagar, R.B. Film forming gel novel drug delivery system. Int. J. Curr. Pharm. Res. 2018, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Foley, K.; Gupta, A.K.; Versteeg, S.; Mays, R.; Villanueva, E.; John, D. Topical and Device-Based Treatments for Fungal Infections of the Toenails. Cochrane Database Syst. Rev. 2020, 1, CD012093. [Google Scholar] [CrossRef] [PubMed]
- Moin, A.; Deb, T.K.; Osmani, R.A.; Bhosale, R.R.; Hani, U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J. Basic Clin. Pharm. 2016, 7, 39. [Google Scholar] [PubMed] [Green Version]
- Shinde, C.G.; Venkatesh, M.P.; Rajesh, K.S.; Srivastava, A.; Osmani, R.A.; Sonawane, Y.H. Intra-articular delivery of a methotrexate loaded nanostructured lipid carrier based smart gel for effective treatment of rheumatic diseases. RSC Adv. 2016, 6, 12913–12924. [Google Scholar] [CrossRef]
- Osmani, R.A.; Aloorkar, N.H.; Thaware, B.U.; Kulkarni, P.K.; Moin, A.; Hani, U.; Srivastava, A.; Bhosale, R.R. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J. Pharm. Sci. 2015, 10, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Iriventi, P.; Gupta, N.V.; Osmani, R.A.; Balamuralidhara, V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. DARU J. Pharm. Sci. 2020, 28, 489–506. [Google Scholar]
- Ahmadian, E.; Eftekhari, A.; Fard, J.K.; Babaei, H.; Nayebi, A.M.; Mohammadnejad, D.; Eghbal, M.A. In vitro and in vivo evaluation of the mechanisms of citalopram-induced hepatotoxicity. Arch. Pharmacal Res. 2017, 40, 1296–1313. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, E.; Babaei, H.; Nayebi, A.M.; Eftekhari, A.; Eghbal, M.A. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes. Drug Res. 2017, 67, 217–222. [Google Scholar] [CrossRef]
- Eftekhari, A.; Hasanzadeh, A.; Khalilov, R.; Hosainzadegan, H.; Ahmadian, E.; Eghbal, M.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat. Environ. Sci. Pollut. Res. 2020, 27, 4969–4975. [Google Scholar] [CrossRef]
Variables | Level | |
---|---|---|
Independent Variables | Low [−1] | High [+1] |
Eudragit RS 100 (%) | 22 | 25 |
PG (%) | 1.5 | 3 |
Luliconazole (%) | 1 | 1 |
Ethanol (%) | 100 | 100 |
Sodium bicarbonate (%) | 0.25 | 0.27 |
Dependent Variables | Constraints | |
Drying time (s) | Minimize | |
pH | Maximize | |
Drug diffusion (%) | Maximize |
Run | Factor 1 ERS 100 (%w/w) | Factor 2 PG (%w/w) | Factor 3 Na2CO3 (%w/w) | Factor 4 LCZ (%w/w) | Factor 5 Ethanol (%w/w) | Response 1 pH | Response 2 DT (s) | Response 3 DD (%) |
---|---|---|---|---|---|---|---|---|
1 | 23.5 | 1.5 | 0.27 | 1 | 100 | 10 ± 0.2 | 65 ± 0.21 | 88.7 ± 0.2 |
2 | 23.5 | 3 | 0.27 | 1 | 100 | 10 ± 0.2 | 67 ± 0.21 | 85.24 ± 0.2 |
3 | 23.5 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.5 | 65 ± 0.21 | 75.23 ± 0.5 |
4 | 23.5 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.5 | 60 ± 0.08 | 85.4 ± 0.5 |
5 | 25 | 1.5 | 0.25 | 1 | 100 | 7.8 ± 0.2 | 75 ± 0.08 | 72.62 ± 0.2 |
6 | 23.5 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.2 | 65 ± 0.06 | 90.45 ± 0.5 |
7 | 23.5 | 1.5 | 0.23 | 1 | 100 | 7 ± 0.5 | 65 ± 0.04 | 86.77 ± 0.2 |
8 | 23.5 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.2 | 70 ± 0.06 | 78.56 ± 0.5 |
9 | 25 | 3 | 0.25 | 1 | 100 | 7.8 ± 0.2 | 75 ± 0.06 | 76.6 ± 0.2 |
10 | 23.5 | 3 | 0.23 | 1 | 100 | 7 ± 0.5 | 65 ± 0.08 | 82.75 ± 0.5 |
11 | 25 | 2.25 | 0.23 | 1 | 100 | 6.7 ± 0.2 | 70 ± 0.06 | 78.23 ± 0.2 |
12 | 22 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.2 | 60 ± 0.04 | 93.45 ± 0.5 |
13 | 25 | 2.25 | 0.27 | 1 | 100 | 9.1 ± 0.2 | 75 ± 0.08 | 70.8 ± 0.2 |
14 | 22 | 1.5 | 0.25 | 1 | 100 | 8.1 ± 0.2 | 60 ± 0.04 | 98.0 ± 0.2 |
15 | 23.5 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.2 | 62 | 85.91 ± 0.5 |
16 | 22 | 2.25 | 0.25 | 1 | 100 | 8 ± 0.2 | 59 ± 0.08 | 93.45 ± 0.5 |
17 | 22 | 3 | 0.25 | 1 | 100 | 8.2 ± 0.2 | 55 ± 0.04 | 95.28 ± 0.2 |
Run | pH | Viscosity (cP) | Drying Time (s) | Upper Surface | Transparency | Thickness (mm) | Folding Endurance | Tensile Strength (kg/cm2) |
---|---|---|---|---|---|---|---|---|
F-1 | 10 ± 0.2 | 14.98 ± 0.12 | 65 ± 0.21 | Smooth | ++ | 0.16 ± 0.02 | 53 ± 2 | 3.16 ± 0.03 |
F-2 | 10 ± 0.2 | 15.01 ± 0.21 | 67 ± 0.21 | Smooth | ++ | 0.16 ± 0.01 | 57 ± 2 | 3.16 ± 0.03 |
F-3 | 8 ± 0.5 | 14.97 ± 0.28 | 65 ± 0.21 | Smooth | ++ | 0.15 ± 0.02 | 50 ± 2 | 3.36 ± 0.03 |
F-4 | 8 ± 0.5 | 14.98 ± 0.31 | 60 ± 0.08 | Smooth/white residue after drying | ++ | 0.15 ± 0.01 | 45 ± 2 | 3.36 ± 0.03 |
F-5 | 7.8 ± 0.2 | 15.20 ± 0.12 | 75 ± 0.08 | Smooth | ++ | 0.18 ± 0.02 | 50 ± 2 | 2.83 ± 0.03 |
F-6 | 8 ± 0.2 | 15.34 ± 0.21 | 65 ± 0.06 | Smooth | ++ | 0.16 ± 0.01 | 53 ± 2 | 3.16 ± 0.03 |
F-7 | 7 ± 0.5 | 15.15 ± 0.28 | 65 ± 0.04 | Smooth | ++ | 0.16 ± 0.02 | 58 ± 2 | 3.16 ± 0.03 |
F-8 | 8 ± 0.2 | 15.37 ± 0.31 | 70 ± 0.06 | Smooth/white residue after drying | ++ | 0.17 ± 0.01 | 51 ± 2 | 3.15 ± 0.03 |
F-9 | 7.8 ± 0.2 | 18.68 ± 0.21 | 75 ± 0.06 | Smooth | ++ | 0.20 ± 0.02 | 48 ± 2 | 2.56 ± 0.03 |
F-10 | 7 ± 0.5 | 19.24 ± 0.28 | 65 ± 0.08 | Smooth | ++ | 0.19 ± 0.01 | 50 ± 2 | 2.67 ± 0.03 |
F-11 | 6.7 ± 0.2 | 19.25 ± 0.21 | 70 ± 0.06 | Smooth | ++ | 0.19 ± 0.01 | 52 ± 2 | 2.76 ± 0.03 |
F-12 | 8 ± 0.2 | 19.20 ± 0.21 | 60 ± 0.04 | Smooth/white residue after drying | ++ | 0.20 ± 0.02 | 54 ± 2 | 2.56 ± 0.03 |
F-13 | 9.1 ± 0.2 | 14.99 ± 0.21 | 75 ± 0.08 | Smooth | ++ | 0.16 ± 0.01 | 53 ± 2 | 3.16 ± 0.03 |
F-14 | 8.1 ± 0.2 | 14.98 ± 0.21 | 60 ± 0.04 | Smooth | ++ | 0.16 ± 0.01 | 57 ± 2 | 3.36 ± 0.03 |
F-15 | 8 ± 0.2 | 14.99 ± 0.28 | 62 ± 0.06 | Smooth | ++ | 0.16 ± 0.01 | 58 ± 2 | 3.16 ± 0.03 |
F-16 | 8 ± 0.2 | 14.97 ± 0.28 | 59 ± 0.08 | Smooth | ++ | 0.15 ± 0.02 | 53 ± 2 | 3.36 ± 0.03 |
F-17 | 8.2 ± 0.2 | 14.98 ± 0.28 | 55 ± 0.04 | Smooth | ++ | 0.15 ± 0.01 | 55 ± 2 | 3.36 ± 0.03 |
Temperature | Flow Type | η (Pa s)/k (Pa sn) # |
---|---|---|
Placebo in situ film | ||
25 °C | Newtonian | 0.5775 |
37 °C | Newtonian | 0.5508 |
Optimized Luliconazole based topical in situ film | ||
25 °C | Newtonian | 0.52779 |
37 °C | Newtonian | 0.51572 |
Parameter 1 | Parameter 2 | ||
---|---|---|---|
SI. No. | Volume of Solution upon Each Actuation (mL) * | SI. No. | Spray Angle * |
1 | 0.25 ± 0.05 mL | 1 | 80 ± 2 |
Sample | Zone of Inhibition (mm) | |
---|---|---|
Disc Method | Well Diffusion | |
Placebo | 7 ± 0.02 | - |
Placebo (alkaline) | 5 ± 0.03 | - |
Formulation | 9 ± 0.02 | 10 ± 0.04 |
Drug | 8 ± 0.04 | 10 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhimmar, B.; Pokale, R.; Rahamathulla, M.; Hani, U.; Alshahrani, M.Y.; Alshehri, S.; Shakeel, F.; Alam, P.; Osmani, R.A.M.; Patil, A.B. Newfangled Topical Film-Forming Solution for Facilitated Antifungal Therapy: Design, Development, Characterization, and In Vitro Evaluation. Polymers 2023, 15, 1003. https://doi.org/10.3390/polym15041003
Dhimmar B, Pokale R, Rahamathulla M, Hani U, Alshahrani MY, Alshehri S, Shakeel F, Alam P, Osmani RAM, Patil AB. Newfangled Topical Film-Forming Solution for Facilitated Antifungal Therapy: Design, Development, Characterization, and In Vitro Evaluation. Polymers. 2023; 15(4):1003. https://doi.org/10.3390/polym15041003
Chicago/Turabian StyleDhimmar, Bhakti, Rahul Pokale, Mohamed Rahamathulla, Umme Hani, Mohammad Y. Alshahrani, Sultan Alshehri, Faiyaz Shakeel, Prawez Alam, Riyaz Ali M. Osmani, and Amit B. Patil. 2023. "Newfangled Topical Film-Forming Solution for Facilitated Antifungal Therapy: Design, Development, Characterization, and In Vitro Evaluation" Polymers 15, no. 4: 1003. https://doi.org/10.3390/polym15041003
APA StyleDhimmar, B., Pokale, R., Rahamathulla, M., Hani, U., Alshahrani, M. Y., Alshehri, S., Shakeel, F., Alam, P., Osmani, R. A. M., & Patil, A. B. (2023). Newfangled Topical Film-Forming Solution for Facilitated Antifungal Therapy: Design, Development, Characterization, and In Vitro Evaluation. Polymers, 15(4), 1003. https://doi.org/10.3390/polym15041003