Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review
Abstract
:1. Introduction
2. Physical, Mechanical, and Thermal Properties of Fibers
3. Biodegradability of Natural Fibers
4. Methodology
5. Results and Analysis
5.1. Annual Publications
5.2. Applications of Synthetic Fibers in Asphalt Mixes
5.2.1. Polypropylene Fibers
5.2.2. Polyester Fibers
5.2.3. Basalt Fibers
5.2.4. Glass Fibers
5.2.5. Steel Fibers
5.2.6. Carbon Fibers
5.2.7. Aramid Fibers
5.2.8. Polyacrylonitrile (PAN) Fibers
5.2.9. Ceramic Fibers
5.3. Applications of Natural Fibers in Asphalt Mixes
5.3.1. Cellulose Fibers
5.3.2. Bamboo Fibers
5.3.3. Palm Fibers
5.3.4. Lignin Fibers
5.3.5. Coconut Fibers
5.3.6. Sisal Fibers
5.3.7. Kenaf Fibers
5.3.8. Jute Fibers
5.3.9. Banana Fibers
5.4. Applications of Waste Fibers in Asphalt Mixes
5.4.1. Polyethylene Terephthalate (PET) Fibers
5.4.2. Tire Textile Fibers
5.4.3. Metallic Fibers
5.5. Effect of Adding Fibers on the Volumetric Properties of Asphalt Mix
6. Research Gaps and Recommendations
- The performance of fiber-reinforced asphalt mixes subjected to long-term aging should be evaluated.
- The decomposition period of natural fibers in asphalt mixtures should be identified.
- The influence of load type stress/strain on the performance of reinforced asphalt mixes should be assessed.
- The low-temperature performance of fiber-modified SMA/porous asphalt mix should be highlighted.
- The gradation impact on the performance of asphalt mixes incorporated with fibers should be investigated.
- The integration of natural and synthetic fibers in asphalt mixtures should be evaluated.
- Effect of short-term aging and long-term aging on the thermal degradation of fiber-modified bitumen should be studied.
- Performance of asphalt mix incorporated natural fibers with treated surface should be highlighted.
- The addition of natural/synthetic fibers to polymer-modified bitumen should be assessed.
7. Conclusions
- Based on the annual publications, there is a growing interest in the incorporation of natural and waste fibers in asphalt mixes.
- Modifying bitumen with basalt, carbon, polyester, cellulose, lignin, PAN, polypropylene, palm, and coconut significantly enhanced the physical and rheological properties of the base binder.
- The most used dosage and length of fibers in asphalt mixes are 0.3% by aggregates/ mix weight and 6 mm, while a proportion of 5% by bitumen weight is used for modifying bitumen.
- The incorporation of fibers in asphalt mixes remarkably improved the low-temperature and high-temperature performance of asphalt mixes.
- Introducing carbon and steel fibers enhances the conductive property of asphalt mixes.
- Utilizing natural fibers in SMA and porous asphalt mixes notably reduces drain down and improves the mechanical performance of asphalt mixes. However, adding fibers to porous asphalt mixes decreases the air void content and permeability.
- Adding fibers into asphalt mixes incorporated with reclaimed asphalt pavement significantly improves the performance of asphalt mixes.
- Introducing fibers to asphalt mixes has a significant impact on the volumetric properties of the mixes in terms of bitumen content, density, VMA, and VFA.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Lee, D.Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design and Construction; NAPA Educational Foundation: St, Napa, CA, USA, 1991. [Google Scholar]
- Read, J.; Whiteoak, D.; Hunter, R.N. The Shell Bitumen Handbook; Thomas Telford: London, UK, 2003. [Google Scholar]
- Rebbechi, J. Guide to Pavement Technology: Part 4B: Asphalt; Austroads: Sydney, Australia, 2007; Available online: https://trid.trb.org/view/840820 (accessed on 5 December 2022).
- Watson, D.E. Updated review of stone matrix asphalt and Superpave® projects. Transp. Res. Rec. 2003, 1832, 217–223. [Google Scholar] [CrossRef]
- Moore, L.M.; Hicks, R.G.; Rogge, D.F. Design, construction, and maintenance guidelines for porous asphalt pavements. Transp. Res. Rec. 2001, 1778, 91–99. [Google Scholar] [CrossRef]
- Hall, K.D.; Schwartz, C.W. Development of structural design guidelines for porous asphalt pavement. Transp. Res. Rec. 2018, 2672, 197–206. [Google Scholar] [CrossRef]
- Kakar, M.R.; Hamzah, M.O.; Valentin, J. A review on moisture damages of hot and warm mix asphalt and related investigations. J. Clean. Prod. 2015, 99, 39–58. [Google Scholar] [CrossRef]
- Alamnie, M.M.; Taddesse, E.; Hoff, I. Advances in Permanent Deformation Modeling of Asphalt Concrete—A Review. Materials 2022, 15, 3480. [Google Scholar] [CrossRef] [PubMed]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Characteristics of warm mix asphalt incorporating coarse steel slag aggregates. Appl. Sci. 2021, 11, 3708. [Google Scholar] [CrossRef]
- Hajj, R.; Bhasin, A. The search for a measure of fatigue cracking in asphalt binders–a review of different approaches. Int. J. Pavement Eng. 2018, 19, 205–219. [Google Scholar] [CrossRef]
- Mun, S.; Guddati, M.N.; Kim, Y.R. Fatigue cracking mechanisms in asphalt pavements with viscoelastic continuum damage finite-element program. Transp. Res. Rec. 2004, 1896, 96–106. [Google Scholar] [CrossRef]
- Caro, S.; Masad, E.; Bhasin, A.; Little, D.N. Moisture susceptibility of asphalt mixtures, Part 1: Mechanisms. Int. J. Pavement Eng. 2008, 9, 81–98. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Kakar, M.R.; Hainin, M.R. An overview of moisture damage in asphalt mixtures. J. Teknol. 2015, 73. [Google Scholar] [CrossRef] [Green Version]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Pascual-Muñoz, P.; Castro-Fresno, D. Mechanical performance of fibers in hot mix asphalt: A review. Constr. Build. Mater. 2019, 200, 756–769. [Google Scholar] [CrossRef]
- Taher, B.M.; Mohamed, R.K.; Mahrez, A. A review on fatigue and rutting performance of asphalt mixes. Sci. Res. Essays 2011, 6, 670–682. [Google Scholar]
- Xie, T.; Zhao, K.; Wang, L. Reinforcement Effect of Different Fibers on Asphalt Mastic. Materials 2022, 15, 8304. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Xian, C.; Tsau, J.S.; Zuo, X.; Jia, W. Status and Outlook of Oil Field Chemistry-Assisted Analysis during the Energy Transition Period. Energy Fuels 2022, 36, 12917–12945. [Google Scholar] [CrossRef]
- Morón, A.; Ferrández, D.; Saiz, P.; Vega, G.; Morón, C. Influence of Recycled Aggregates on the Mechanical Properties of Synthetic Fibers-Reinforced Masonry Mortars. Infrastructures 2021, 6, 84. [Google Scholar] [CrossRef]
- Ota, A.; Beyer, R.; Hageroth, U.; Müller, A.; Tomasic, P.; Hermanutz, F.; Buchmeiser, M.R. Chitin/cellulose blend fibers prepared by wet and dry-wet spinning. Polym. Adv. Technol. 2021, 32, 335–342. [Google Scholar] [CrossRef]
- Bellatrache, Y.; Ziyani, L.; Dony, A.; Taki, M.; Haddadi, S. Effects of the addition of date palm fibers on the physical, rheological and thermal properties of bitumen. Constr. Build. Mater. 2020, 239, 117808. [Google Scholar] [CrossRef]
- Chen, J.S.; Lin, K.Y. Mechanism and behavior of bitumen strength reinforcement using fibers. J. Mater. Sci. 2005, 40, 87–95. [Google Scholar] [CrossRef]
- Apostolidis, P.; Liu, X.; Daniel, G.C.; Erkens, S.; Scarpas, T. Effect of synthetic fibres on fracture performance of asphalt mortar. Road Mater. Pavement Des. 2020, 21, 1918–1931. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.A.; Wu, W.H.; Chan, R.A.; Lim, L.L. Effect of mercerization and acetylation on properties of coconut fiber and its influence on modified bitumen. J. Civ. Eng. Sci. Technol. 2014, 5, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xu, Q.; Chen, S.; Zhang, Z. Evaluation and design of fiber-reinforced asphalt mixtures. Mater. Des. 2009, 30, 2595–2603. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Thom, N.; Grenfell, J. Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Constr. Build. Mater. 2020, 240, 117932. [Google Scholar] [CrossRef]
- Shanbara, H.K.; Ruddock, F.; Atherton, W. Improving the mechanical properties of cold mix asphalt mixtures reinforced by natural and synthetic fibers. In Airfield and Highway Pavements; ASCE Library: Reston, VL, USA, 2017; pp. 102–111. [Google Scholar]
- Lee, S.J.; Rust, J.P.; Hamouda, H.; Kim, Y.R.; Borden, R.H. Fatigue cracking resistance of fiber-reinforced asphalt concrete. Text. Res. J. 2005, 75, 123–128. [Google Scholar] [CrossRef]
- Stempihar, J.J.; Souliman, M.I.; Kaloush, K.E. Fiber-Reinforced Asphalt Concrete as Sustainable Paving Material for Airfields. Transp. Res. Rec. J. Transp. Res. Board 2012, 2266, 60–68. [Google Scholar] [CrossRef]
- Vale, A.C.D.; Casagrande, M.D.T.; Soares, J.B. Behavior of natural fiber in stone matrix asphalt mixtures using two design methods. J. Mater. Civ. Eng. 2014, 26, 457–465. [Google Scholar] [CrossRef]
- Jain, S.; Singh, H.; Chopra, T. Laboratory investigations and performance evaluation of stone matrix asphalt as a wearing course using three different fibers. Int. J. Appl. Sci. Eng. 2020, 17, 411–418. [Google Scholar]
- Awanti, S.S.; Habbal, A.; Hiremath, P.N.; Tadibidi, S.; Hallale, S.N. Characterization of stone matrix asphalt with cellulose and coconut fiber. In Advance in Civil Engineering and Building Materials; Chang, S., al Bahar, S.K., Zhao, J., Eds.; Taylor & Francis Group: London, UK, 2012; pp. 639–642. [Google Scholar]
- Andrew, B.; Buyondo, K.A.; Kasedde, H.; Kirabira, J.B.; Olupot, P.W.; Yusuf, A.A. Investigation on the use of reclaimed asphalt pavement along with steel fibers in concrete. Case Stud. Constr. Mater. 2022, 17, e01356. [Google Scholar] [CrossRef]
- Li, N.; Zhan, H.; Yu, X.; Tang, W.; Xue, Q. Investigation of the aging behavior of cellulose fiber in reclaimed asphalt pavement. Constr. Build. Mater. 2020, 271, 121559. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Sheikhzadeh, M.; Hejazi, S.M. Fiber-reinforced asphalt-concrete—A review. Constr. Build. Mater. 2010, 24, 871–877. [Google Scholar] [CrossRef]
- Mokhtari, A.; Nejad, F.M. Mechanistic approach for fiber and polymer modified SMA mixtures. Constr. Build. Mater. 2012, 36, 381–390. [Google Scholar] [CrossRef]
- Elanchezhian, C.; Ramnath, B.V.; Ramakrishnan, G.; Rajendrakumar, M.; Naveenkumar, V.; Saravanakumar, M.K. Review on mechanical properties of natural fiber composites. Mater. Today Proc. 2018, 5, 1785–1790. [Google Scholar] [CrossRef]
- Zeronian, S.H.; Xie, Q.; Buschle-Diller, G.; Holmes, S.; Inglesby, M.K. Relationships between the mechanical properties of synthetic fibers. J. Text. Inst. 1994, 85, 293–300. [Google Scholar] [CrossRef]
- Kumar Kesharwani, A.; Yadav, R. A Short review on synthesis and applications of zinc based metal organic frameworks. Int. J. Eng. Appl. Sci. Technol. 2022, 6, 120–131. [Google Scholar] [CrossRef]
- Nassar, M.M.A.; Arunachalam, R.; Alzebdeh, K.I. Machinability of natural fiber reinforced composites: A review. Int. J. Adv. Manuf. Technol. 2016, 88, 2985–3004. [Google Scholar] [CrossRef]
- Lotfi, A.; Li, H.; Dao, D.V.; Prusty, G. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2019, 34, 238–284. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Dittenber, D.B.; GangaRao, H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Reddy, B.B.K.; Tejaswini, K. Strength Properties of Polypropylene Fibre Reinforced Concrete. Int. J. Eng. Res. Adv. Technol. 2018. [Google Scholar] [CrossRef]
- Dashtizadeh, Z.; Abdan, K.; Jawaid, M.; Khan, M.A.; Behmanesh, M.; Dashtizadeh, M.; Cardona, F.; Ishak, M. Mechanical and thermal properties of natural fibre based hybrid composites: A review. Pertanika J. Sci. Technol. 2017, 25, 1103–1122. [Google Scholar]
- Fred-Ahmadu, O.H.; Bhagwat, G.; Oluyoye, I.; Benson, N.U.; Ayejuyo, O.O.; Palanisami, T. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total. Environ. 2019, 706, 135978. [Google Scholar] [CrossRef]
- Patil, A.Y.; Banapurmath, N.R.; Sunal, S. Review on Period of Biodegradability for Natural Fibers Embedded Polylactic Acid Biocomposites. In Biodegradation, Pollutants and Bioremediation Principles; CRC Press: Boca Raton, FL, USA, 2021; pp. 234–271. [Google Scholar]
- Jaffe, M.; Menczel, J. (Eds.) Thermal Analysis of Textiles and Fibers; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar]
- Zhu, K.; Tu, H.; Yang, P.; Qiu, C.; Zhang, D.; Lu, A.; Luo, L.; Chen, F.; Liu, X.; Chen, L.; et al. Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chem. Mater. 2019, 31, 2078–2087. [Google Scholar] [CrossRef]
- Su, S.-K.; Wu, C.-S. Polyester biocomposites from recycled natural fibers: Characterization and biodegradability. J. Appl. Polym. Sci. 2010, 119, 1211–1219. [Google Scholar] [CrossRef]
- Nicolaisen, J. Citation analysis. Annu. Rev. Inf. Sci. Technol. 2007, 41, 609–641. [Google Scholar] [CrossRef]
- MacDonald, K.I.; Dressler, V. Using citation analysis to identify research fronts: A case study with the Internet of Things. Sci. Technol. Libr. 2018, 37, 171–186. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Thelwall, M. Dimensions: A competitor to Scopus and the Web of Science? J. Informetr. 2018, 12, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Park, K.S.; Shoukat, T.; Yoo, P.J.; Lee, S.H. Strengthening of hybrid glass fiber reinforced recycled hot-mix asphalt mixtures. Constr. Build. Mater. 2020, 258, 118947. [Google Scholar] [CrossRef]
- Mohammed, S.F.; Ismael, M.Q. Effect of Polypropylene Fibers on moisture Susceptibility of Warm Mix Asphalt. Civ. Eng. J. 2021, 7, 988–997. [Google Scholar] [CrossRef]
- Omranian, S.R.; Van den bergh, W.; He, L.; Manthos, E. Incorporating 3D image analysis and response surface method to evaluate the effects of moisture damage on reinforced asphalt mixtures using glass and polypropylene fibers. Constr. Build. Mater. 2022, 353, 129177. [Google Scholar] [CrossRef]
- Al-Bdairi, A.; Al-Taweel, H.M.; Noor, H.M. Improving the properties of asphalt mixture using fiber materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012092. [Google Scholar] [CrossRef]
- Qin, X.; Shen, A.; Guo, Y.; Li, Z.; Lv, Z. Characterization of asphalt mastics reinforced with basalt fibers. Constr. Build. Mater. 2018, 159, 508–516. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, S.; Yoo, D.-Y.; Shin, H.-O. Enhancing mechanical properties of asphalt concrete using synthetic fibers. Constr. Build. Mater. 2018, 178, 233–243. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Zhang, Y.; Lv, Q.; Yan, C. Evaluating four typical fibers used for OGFC mixture modification regarding drainage, raveling, rutting and fatigue resistance. Constr. Build. Mater. 2020, 253, 119131. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, J.; Hong, R.; Ye, S.; Jin, A. Research on low-temperature performance of steel slag/polyester fiber permeable asphalt mixture. Constr. Build. Mater. 2022, 334, 127214. [Google Scholar] [CrossRef]
- Zarei, M.; Kordani, A.A.; Zahedi, M. Evaluation of fracture behavior of modified Warm Mix Asphalt (WMA) under modes I and II at low and intermediate temperatures. Theor. Appl. Fract. Mech. 2021, 114, 103015. [Google Scholar] [CrossRef]
- Zarei, M.; Kordani, A.A.; Ghamarimajd, Z.; Khajehzadeh, M.; Khanjari, M.; Zahedi, M. Evaluation of fracture resistance of asphalt concrete involving Calcium Lignosulfonate and Polyester fiber under freeze–thaw damage. Theor. Appl. Fract. Mech. 2022, 117, 103168. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Laboratory Evaluation of Fiber-Modified Asphalt Mixtures Incorporating Steel Slag Aggregates. Comput. Mater. Contin. 2021, 70, 5967–5990. [Google Scholar]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Influence of the Long-Term Oven Aging on the Performance of the Reinforced Asphalt Mixtures. Coatings 2020, 10, 953. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Laboratory assessment of the performance and elastic behavior of asphalt mixtures containing steel slag aggregate and synthetic fibers. Int. J. Pavement Res. Technol. 2020, 14, 473–481. [Google Scholar] [CrossRef]
- Hong, R.-B.; Wu, J.-R.; Cai, H.-B. Low-temperature crack resistance of coal gangue powder and polyester fibre asphalt mixture. Constr. Build. Mater. 2020, 238, 117678. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Si, C.; Shi, X.; Qiao, Y.; Li, H. Laboratory Evaluation on Performance of Fiber-Modified Asphalt Mixtures Containing High Percentage of RAP. Adv. Civ. Eng. 2020, 2020, 5713869. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Xu, Z.; Qin, X.; Liao, M. Fiber-Reinforcing Effect in the Mechanical and Road Performance of Cement-Emulsified Asphalt Mixtures. Materials 2021, 14, 2779. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Han, Z.; Cai, Y.; Liu, L.; Sun, L. Study on Low-Temperature Index and Improvement Measures of Emulsified Asphalt Cold Recycled Mixture. Materials 2022, 15, 7867. [Google Scholar] [CrossRef] [PubMed]
- Tanzadeh, R.; Tanzadeh, J.; Honarmand, M.; Tahami, S.A. Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Constr. Build. Mater. 2019, 212, 467–475. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, H.; Gao, Y.; Jiao, Y.; Liu, F.; Dong, Z. Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Eng. Fract. Mech. 2020, 229, 106951. [Google Scholar] [CrossRef]
- Guo, S.; Cheng, P.; Yi, J.; Chang, L. Performance Evaluation of SMA Mixture Reinforced by Basalt Fiber and Composite Fiber. CICTP 2022, 2022, 2232–2241. [Google Scholar]
- Wang, W.; Cheng, Y.; Chen, H.; Tan, G.; Lv, Z.; Bai, Y. Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber. Sustainability 2019, 11, 5282. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shen, A.; Jin, X.; Yang, J. Optimization and Performance Evaluation of Steel Slag Asphalt Mixture Modified with Fibers under Freeze–Thaw Cycles. J. Mater. Civ. Eng. 2022, 35, 04022419. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Tan, G. Design Optimization of SBS-Modified Asphalt Mixture Reinforced with Eco-Friendly Basalt Fiber Based on Response Surface Methodology. Materials 2018, 11, 1311. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Kang, A.; Xiao, P.; Li, B.; Fu, W. Investigating the Effects of Chopped Basalt Fiber on the Performance of Porous Asphalt Mixture. Adv. Mater. Sci. Eng. 2019, 2019, 2323761. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Xie, Y.; Long, G. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism. Constr. Build. Mater. 2018, 179, 107–116. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J. Viscoelastic creep properties and mesostructure modeling of basalt fiber-reinforced asphalt concrete. Constr. Build. Mater. 2020, 259, 119680. [Google Scholar] [CrossRef]
- Gong, Y.; Song, J.; Bi, H.; Tian, Z. Optimization Design of the Mix Ratio of a Nano-TiO2/CaCO3-Basalt Fiber Composite Modified Asphalt Mixture Based on Response Surface Methodology. Appl. Sci. 2020, 10, 4596. [Google Scholar] [CrossRef]
- Cheng, Y.; Chai, C.; Zhang, Y.; Chen, Y.; Zhu, B. A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber. Sustainability 2019, 11, 5754. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Shen, A.; Wang, H.; Guo, Y.; Wu, H. Effect of basalt fiber on the low-temperature performance of an asphalt mixture in a heavily frozen area. Constr. Build. Mater. 2020, 253, 119080. [Google Scholar] [CrossRef]
- Kong, L.; Lu, Z.; He, Z.; Shen, Z.; Xu, H.; Yang, K.; Yu, L. Characterization of crack resistance mechanism of fiber modified emulsified asphalt cold recycling mixture based on acoustic emission parameters. Constr. Build. Mater. 2022, 327, 126939. [Google Scholar] [CrossRef]
- Alfalah, A.; Offenbacker, D.; Ali, A.; Mehta, Y.; Elshaer, M.; Decarlo, C. Evaluating the impact of fiber type and dosage rate on laboratory performance of Fiber-Reinforced asphalt mixtures. Constr. Build. Mater. 2021, 310, 125217. [Google Scholar] [CrossRef]
- Ziari, H.; Aliha MR, M.; Moniri, A.; Saghafi, Y. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber. Constr. Build. Mater. 2020, 230, 117015. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Tan, L.; Xu, Y.; Wang, C.; Liu, P.; Yu, H.; Oeser, M. Laboratory evaluation of emulsified asphalt reinforced with glass fiber treated with different methods. J. Clean. Prod. 2020, 274, 123116. [Google Scholar] [CrossRef]
- Shanbara, H.K.; Ruddock, F.; Atherton, W. A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres. Constr. Build. Mater. 2018, 172, 166–175. [Google Scholar] [CrossRef]
- Gupta, A.; Castro-Fresno, D.; Lastra-Gonzalez, P.; Rodriguez-Hernandez, J. Selection of fibers to improve porous asphalt mixtures using multi-criteria analysis. Constr. Build. Mater. 2021, 266, 121198. [Google Scholar] [CrossRef]
- Khater, A.; Luo, D.; Abdelsalam, M.; Yue, Y.; Hou, Y.; Ghazy, M. Laboratory Evaluation of Asphalt Mixture Performance Using Composite Admixtures of Lignin and Glass Fibers. Appl. Sci. 2021, 11, 364. [Google Scholar] [CrossRef]
- Ramesh, A.; Ramayya, V.V.; Reddy, G.S.; Ram, V.V. Investigations on fracture response of warm mix asphalt mixtures with Nano glass fibres and partially replaced RAP material. Constr. Build. Mater. 2022, 317, 126121. [Google Scholar] [CrossRef]
- Enieb, M.; Diab, A.; Yang, X. Short- and long-term properties of glass fiber reinforced asphalt mixtures. Int. J. Pavement Eng. 2019, 22, 64–76. [Google Scholar] [CrossRef]
- Morea, F.; Zerbino, R. Improvement of asphalt mixture performance with glass macro-fibers. Constr. Build. Mater. 2018, 164, 113–120. [Google Scholar] [CrossRef]
- Khanghahi, S.H.; Tortum, A. Determination of the Optimum Conditions for Gilsonite and Glass Fiber in HMA under Mixed Mode I/III Loading in Fracture Tests. J. Mater. Civ. Eng. 2018, 30, 04018130. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Grenfell, J. Influence of fibres on rheological properties and toughness of bituminous binder. Constr. Build. Mater. 2018, 163, 901–911. [Google Scholar] [CrossRef]
- Fu, L.; Jiao, Y.; Chen, X. Reinforcement evaluation of different fibers on fracture resistance of asphalt mixture based on acoustic emission technique. Constr. Build. Mater. 2022, 314, 125606. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, S.; Wang, Y.; Chen, H. Induction Heating and Fatigue-Damage Induction Healing of Steel Fiber–Reinforced Asphalt Mixture. J. Mater. Civ. Eng. 2019, 31, 04019180. [Google Scholar] [CrossRef]
- Phan, T.M.; Park, D.-W.; Le, T.H.M. Crack healing performance of hot mix asphalt containing steel slag by microwaves heating. Constr. Build. Mater. 2018, 180, 503–511. [Google Scholar] [CrossRef]
- Gao, J.; Guo, H.; Wang, X.; Wang, P.; Wei, Y.; Wang, Z.; Huang, Y.; Yang, B. Microwave deicing for asphalt mixture containing steel wool fibers. J. Clean. Prod. 2019, 206, 1110–1122. [Google Scholar] [CrossRef]
- Tabaković, A.; O’Prey, D.; McKenna, D.; Woodward, D. Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system. Case Stud. Constr. Mater. 2019, 10, e00233. [Google Scholar] [CrossRef]
- González, A.; Valderrama, J.; Norambuena-Contreras, J. Microwave crack healing on conventional and modified asphalt mixtures with different additives: An experimental approach. Road Mater. Pavement Des. 2019, 20, S149–S162. [Google Scholar] [CrossRef]
- Yang, H.; Ouyang, J.; Jiang, Z.; Ou, J. Effect of fiber reinforcement on self-healing ability of asphalt mixture induced by microwave heating. Constr. Build. Mater. 2023, 362, 129701. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, L.; Guo, Q.; Guo, M.; Zhang, Y. Acoustic Emission-Based Reinforcement Evaluation of Basalt and Steel Fibers on Low-Temperature Fracture Resistance of Asphalt Concrete. J. Mater. Civ. Eng. 2020, 32, 04020104. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Wu, S.; Liu, Q.; Wu, Y.; Xu, H.; Li, Y. Effect of moisture conditioning on mechanical and healing properties of inductive asphalt concrete. Constr. Build. Mater. 2020, 241, 118139. [Google Scholar] [CrossRef]
- Dinh, B.H.; Park, D.-W.; Phan, T.M. Healing Performance of Granite and Steel Slag Asphalt Mixtures Modified with Steel Wool Fibers. KSCE J. Civ. Eng. 2018, 22, 2064–2072. [Google Scholar] [CrossRef]
- Dinh, B.H.; Park, D.-W.; Le, T.H.M. Effect of rejuvenators on the crack healing performance of recycled asphalt pavement by induction heating. Constr. Build. Mater. 2018, 164, 246–254. [Google Scholar] [CrossRef]
- Hosseinian, S.M.; Najafi Moghaddam Gilani, V.; Mehraban Joobani, P.; Arabani, M. Investigation of Moisture Sensitivity and Conductivity Properties of Inductive Asphalt Mixtures Containing Steel Wool Fiber. Adv. Civ. Eng. 2020, 2020, 8890814. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Gonzalez, A.; Concha, J.L.; Gonzalez-Torre, I.; Schlangen, E. Effect of metallic waste addition on the electrical, thermophysical and microwave crack-healing properties of asphalt mixtures. Constr. Build. Mater. 2018, 187, 1039–1050. [Google Scholar] [CrossRef] [Green Version]
- Arabzadeh, A.; Notani, M.A.; Zadeh, A.K.; Nahvi, A.; Sassani, A.; Ceylan, H. Electrically conductive asphalt concrete: An alternative for automating the winter maintenance operations of transportation infrastructure. Compos. Part B Eng. 2019, 173, 106985. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Shokorlou, Y.M.; Amani, B. Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers. Eng. Fract. Mech. 2020, 226, 106875. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kim, S.; Kim, M.-J.; Kim, D.; Shin, H.-O. Self-healing capability of asphalt concrete with carbon-based materials. J. Mater. Res. Technol. 2019, 8, 827–839. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Nassiri, S.; Li, H.; Englund, K. Performance evaluation of porous asphalt mixture enhanced with high dosages of cured carbon fiber composite materials. Constr. Build. Mater. 2021, 274, 122066. [Google Scholar] [CrossRef]
- Zhang, K.; Lim, J.; Nassiri, S.; Englund, K.; Li, H. Reuse of Carbon Fiber Composite Materials in Porous Hot Mix Asphalt to Enhance Strength and Durability. Case Stud. Constr. Mater. 2019, 11, e00260. [Google Scholar] [CrossRef]
- Ismael, M.; Fattah, M.Y.; Jasim, A.F. Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers. J. Eng. 2022, 28, 99–116. [Google Scholar] [CrossRef]
- Gürer, C.; Gürgöze, H. Investigation the CF Based Conductive Asphalt Mixtures for Anti-icing. J. Eng. Res. 2022. [Google Scholar] [CrossRef]
- Gürer, C.; Akbulut, H.; Elmaci, A.; Korkmaz, B.E.; Düzağaç, S. An Investigation of the Electrical Conductivity of Different Stone Mastic Asphalt Mixtures. Proc. Inst. Civ. Eng. Transp. 2022, 10, 1–25. [Google Scholar] [CrossRef]
- Schuster, L.; de Melo, J.V.S.; Del Carpio, J.A.V. Effects of the associated incorporation of steel wool and carbon nanotube on the healing capacity and mechanical performance of an asphalt mixture. Int. J. Fatigue 2023, 168, 107440. [Google Scholar] [CrossRef]
- Ullah, S.; Yang, C.; Cao, L.; Wang, P.; Chai, Q.; Li, Y.; Wang, L.; Dong, Z.; Lushinga, N.; Zhang, B. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings. Constr. Build. Mater. 2021, 303, 124446. [Google Scholar] [CrossRef]
- Takaikaew, T.; Tepsriha, P.; Horpibulsuk, S.; Hoy, M.; Kaloush, K.E.; Arulrajah, A. Performance of Fiber-Reinforced Asphalt Concretes with Various Asphalt Binders in Thailand. J. Mater. Civ. Eng. 2018, 30, 04018193. [Google Scholar] [CrossRef]
- Klinsky, L.M.G.; Kaloush, K.E.; Faria, V.C.; Bardini, V.S.S. Performance characteristics of fiber modified hot mix asphalt. Constr. Build. Mater. 2018, 176, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Castro-Fresno, D.; Bueno, M. An experimental laboratory study of fiber-reinforced asphalt mortars with polyolefin-aramid and polyacrylonitrile fibers. Constr. Build. Mater. 2020, 248, 118622. [Google Scholar] [CrossRef]
- Callomamani, L.A.P.; Hashemian, L.; Sha, K. Laboratory Investigation of the Performance Evaluation of Fiber-Modified Asphalt Mixes in Cold Regions. Transp. Res. Rec. 2020, 2674, 323–335. [Google Scholar] [CrossRef]
- Hajiloo, H.R.; Karimi, H.R.; Aliha, M.R.M.; Farahani, H.Z.; Salehi, S.M.; Hajiloo, M.; Haghighatpour, P.J. Crack resistance of fiber-reinforced asphalt mixtures: Effect of test specimen and test condition. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 921–937. [Google Scholar] [CrossRef]
- Gupta, A.; Lastra-Gonzalez, P.; Castro-Fresno, D.; Rodriguez-Hernandez, J. Laboratory Characterization of Porous Asphalt Mixtures with Aramid Fibers. Materials 2021, 14, 1935. [Google Scholar] [CrossRef]
- Xing, X.; Pei, J.; Shen, C.; Li, R.; Zhang, J.; Huang, J.; Hu, D. Performance and Reinforcement Mechanism of Modified Asphalt Binders with Nano-Particles, Whiskers, and Fibers. Appl. Sci. 2019, 9, 2995. [Google Scholar] [CrossRef] [Green Version]
- Noorvand, H.; Brockman, S.C.; Mamlouk, M.; Kaloush, K. Effect of Aramid Fibers on Balanced Mix Design of Asphalt Concrete. CivilEng 2021, 3, 21–34. [Google Scholar] [CrossRef]
- Daniel, C.G. Analysis of The Effect of Using Fiber Aramid-Polyolefin on The Strength, Stiffness, and Durability of Warm Mix Asphalt. J. Tek. Sipil 2020, 27, 9–16. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Calzada-Pérez, M.A.; Castro-Fresno, D. Effect of Synthetic Fibers and Hydrated Lime in Porous Asphalt Mixture Using Multi-Criteria Decision-Making Techniques. Materials 2020, 13, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Z.; Muhammad, Y.; Sahibzada, M.; Li, J.; Meng, F.; Wei, Y.; Zhao, Z.; Zhang, L. Preparation and properties of aminated graphene fiber incorporated modified asphalt. Constr. Build. Mater. 2019, 229, 116836. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Castro-Fresno, D.; Vega-Zamanillo, Á. Experimental evaluation and recyclability potential of asphalt concrete mixtures with polyacrylonitrile fibers. Constr. Build. Mater. 2022, 317, 125829. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Al-Adham, K.; Wahhab, H.I.A.-A. Multiple Stress–Creep–Recovery Behavior and High-Temperature Performance of Styrene Butadiene Styrene and Polyacrylonitrile Fiber–Modified Asphalt Binders. J. Mater. Civ. Eng. 2019, 31, 04019087. [Google Scholar] [CrossRef]
- Xing, S.; Muhammad, Y.; Chen, Y.; Li, Z.; Ren, D.; Zhao, Z.; Li, J. Preparation and performance evaluation of surface-modified polyacrylonitrile fiber and SBS composite modified asphalt binder based on bionic hierarchy. Constr. Build. Mater. 2022, 326, 126866. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Zhan, S.; Ding, L.; Jin, K. Fatigue Performance and Model of Polyacrylonitrile Fiber Reinforced Asphalt Mixture. Appl. Sci. 2018, 8, 1818. [Google Scholar] [CrossRef] [Green Version]
- Arabani, M.; Shabani, A. Evaluation of the ceramic fiber modified asphalt binder. Constr. Build. Mater. 2019, 205, 377–386. [Google Scholar] [CrossRef]
- Arabani, M.; Shabani, A.; Hamedi, G.H. Experimental Investigation of Effect of Ceramic Fibers on Mechanical Properties of Asphalt Mixtures. J. Mater. Civ. Eng. 2019, 31, 04019203. [Google Scholar] [CrossRef]
- Naseri Yalghouzaghaj, M.; Sarkar, A.; Hamedi, G.H.; Hayati, P. Effect of Ceramic Fibers on the Thermal Cracking of Hot-Mix Asphalt. J. Mater. Civ. Eng. 2020, 32, 04020325. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Hu, X.; Shen, S.; Dong, B. Investigation of the Performance of Ceramic Fiber Modified Asphalt Mixture. Adv. Civ. Eng. 2021, 2021, 8833468. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Sakanlou, F.; Omari, B.; Azarhoosh, A. Laboratory Investigation of the Effect of Ceramic Fiber on Stone Matrix Asphalt Rutting Performance. J. Mater. Civ. Eng. 2021, 33, 04020431. [Google Scholar] [CrossRef]
- Liu, F.; Pan, B.; Bian, J.; Zhou, C. Experimental investigation on the performance of the asphalt mixture with ceramic fiber. J. Clean. Prod. 2023, 384, 135585. [Google Scholar] [CrossRef]
- Landi, D.; Marconi, M.; Bocci, E.; Germani, M. Comparative life cycle assessment of standard, cellulose-reinforced and end of life tires fiber-reinforced hot mix asphalt mixtures. J. Clean. Prod. 2020, 248, 119295. [Google Scholar] [CrossRef]
- Landi, D.; Gigli, S.; Germani, M.; Marconi, M. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres. Waste Manag. 2018, 75, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Ali, Y.; Ahmed, S.; Iqbal, S.; Wang, H. Rutting and Fatigue Properties of Cellulose Fiber-Added Stone Mastic Asphalt Concrete Mixtures. Adv. Mater. Sci. Eng. 2019, 2019, 5604197. [Google Scholar] [CrossRef] [Green Version]
- Fauzi NA, N.M.; Masri, K.A.; Ramadhansyah, P.J.; Samsudin, M.S.; Ismail, A.; Arshad, A.K.; Shaffie, E.; Norhidayah, A.H.; Hainin, M.R. Volumetric Properties and Resilient Modulus of Stone Mastic Asphalt incorporating Cellulose Fiber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 712, 012028. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, B.; Yan, Y.; Li, H.; Chen, Z.; Chen, H. Laboratory Investigation on the Use of Bamboo Fiber in Asphalt Mixtures for Enhanced Performance. Arab. J. Sci. Eng. 2018, 44, 4629–4638. [Google Scholar] [CrossRef]
- Liu, K.; Li, T.; Wu, C.; Jiang, K.; Shi, X. Bamboo fiber has engineering properties and performance suitable as reinforcement for asphalt mixture. Constr. Build. Mater. 2021, 290, 123240. [Google Scholar] [CrossRef]
- Xia, C.; Xu, M.; Li, Q.; Liu, K.; Jiang, K. Study on the Freeze–Thaw Cycle Durability of Bamboo Fiber Asphalt Mixture. Int. J. Pavement Res. Technol. 2022, 11, 1–14. [Google Scholar] [CrossRef]
- Xia, C.; Wu, C.; Liu, K.; Jiang, K. Study on the Durability of Bamboo Fiber Asphalt Mixture. Materials 2021, 14, 1667. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, Y.; Lv, H.; Kim, Y.R.; Zhao, X.; Meng, J.; Xiong, R. Effects of bamboo fiber on the mechanical properties of asphalt mixtures. Constr. Build. Mater. 2021, 289, 123196. [Google Scholar] [CrossRef]
- Meng, Y.; Qin, P.; Yaseen, M.; Chen, J.; Yan, T.; Gan, W.; Lei, J.; Li, J. Effect of tannic acid modified bamboo fiber on the performance of soybean bio-asphalt/styrene-butadiene-styrene modified asphalt. Polym. Compos. 2022, 43, 2288–2302. [Google Scholar] [CrossRef]
- Syammaun, T.; Rani, H.A. Resilient modulus of porous asphalt using oil palm fiber. IOP Conf. Ser. Mater. Sci. Eng. 2018, 403, 012023. [Google Scholar] [CrossRef] [Green Version]
- Yaro, N.S.A.; Bin Napiah, M.; Sutanto, M.H.; Usman, A.; Saeed, S.M. Performance Evaluation of Waste Palm Oil Fiber Reinforced Stone Matrix Asphalt Mixtures Using Traditional and Sequential Mixing Processes. Case Stud. Constr. Mater. 2021, 15, e00783. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Jagaba, A.H.; Al-Sabaeei, A.M. Application and circular economy prospects of palm oil waste for eco-friendly asphalt pavement industry: A review. J. Road Eng. 2022, 2, 309–331. [Google Scholar] [CrossRef]
- Tayh, S.A.; Yousif, R.A.; Banyhussan, Q.S. A comparative study of physical properties using various grades asphalt binder with different type of fibers. J. Eng. Res. 2020, 17, 34–40. [Google Scholar] [CrossRef]
- Chen, Z.; Yi, J.; Chen, Z.; Feng, D. Properties of asphalt binder modified by corn stalk fiber. Constr. Build. Mater. 2019, 212, 225–235. [Google Scholar] [CrossRef]
- Ma, F.; Jin, Y.; Fu, Z.; Dai, J.; Zhang, P.; Zhang, C.; Wen, Y. Influencing factors and evaluation methods of reinforcement effect of fiber-modified asphalt binder. Polym. Compos. 2022, 43, 8986–8999. [Google Scholar] [CrossRef]
- Wu, B.; Meng, W.; Xia, J.; Xiao, P. Influence of Basalt Fibers on the Crack Resistance of Asphalt Mixtures and Mechanism Analysis. Materials 2022, 15, 744. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Xiao, P.; Chen, C.; Xia, J.; Lou, K. Evaluation of the Long-Term Performances of SMA-13 Containing Different Fibers. Appl. Sci. 2021, 11, 5145. [Google Scholar] [CrossRef]
- Kou, C.; Chen, Z.; Kang, A.; Zhang, M.; Wang, R. Rheological behaviors of asphalt binders reinforced by various fibers. Constr. Build. Mater. 2022, 323, 126626. [Google Scholar] [CrossRef]
- Kou, C.; Wu, X.; Xiao, P.; Liu, Y.; Wu, Z. Physical, Rheological, and Morphological Properties of Asphalt Reinforced by Basalt Fiber and Lignin Fiber. Materials 2020, 13, 2520. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, M.A.; Alyaseen, S.K. Analytic methods to evaluate bituminous mixtures enhanced with coir/coconut fiber for highway materials. Mater. Today Proc. 2020, 33, 1752–1757. [Google Scholar] [CrossRef]
- Maharaj, R.; Ali, R.; Ramlochan, D.; Mohamed, N. Utilization of coir fibre as an asphalt modifier. Prog. Rubber Plast. Recycl. Technol. 2019, 35, 59–74. [Google Scholar] [CrossRef]
- Parimita, P. Influence of Natural Fibers as Additive on Characteristics of Stone Mastic Asphalt. IOP Conf. Ser. Mater. Sci. Eng. 2020, 970, 012021. [Google Scholar] [CrossRef]
- Norhidayah, A.H.; Haryati, Y.; Nordiana, M.; Idham, M.S.M.K.; Juraidah, A.; Ramadhansyah, P.J. Permeability coefficient of porous asphalt mixture containing coconut shells and fibres. IOP Conf. Ser. Earth Environ. Sci. 2019, 244, 012037. [Google Scholar] [CrossRef]
- Haryati, Y.; Norhidayah, A.H.; Nordiana, M.; Juraidah, A.; Hayati, A.H.N.; Ramadhansyah, P.J.; Azman, M.K.; Haryati, A. Stability and rutting resistance of porous asphalt mixture incorporating coconut shells and fibres. IOP Conf. Ser. Earth Environ. Sci. 2019, 244, 012043. [Google Scholar] [CrossRef]
- Kar, D.; Giri, J.P.; Panda, M. Performance Evaluation of Bituminous Paving Mixes Containing Sisal Fiber as an Additive. Transp. Infrastruct. Geotechnol. 2019, 6, 189–206. [Google Scholar] [CrossRef]
- Kumar, N.L.N.K.; Ravitheja, A. Characteristics of stone matrix asphalt by using natural fibers as additives. Mater. Today Proc. 2019, 19, 397–402. [Google Scholar] [CrossRef]
- Singh, S.; Khairandish, M.I.; Razahi, M.M.; Kumar, R.; Chohan, J.S.; Tiwary, A.; Sharma, S.; Li, C.; Ilyas, R.A.; Asyraf, M.R.M.; et al. Preference Index of Sustainable Natural Fibers in Stone Matrix Asphalt Mixture Using Waste Marble. Materials 2022, 15, 2729. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Shokorlou, Y.M.; Amani, B. Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Constr. Build. Mater. 2019, 239, 117850. [Google Scholar] [CrossRef]
- Hainin, M.R.; Idham, M.K.; Yaro, N.S.A.; Hussein, S.O.A.E.; Warid, M.N.M.; Mohamed, A.; Naqibah, S.N.; Ramadhansyah, P.J. Performance of Hot Mix Asphalt Mixture Incorporating Kenaf Fibre. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012092. [Google Scholar] [CrossRef]
- Syafiqah, S.M.Z.N.; Masri, K.A.; Jasni, N.E.; Hasan, M. Performance of Stone Mastic Asphalt incorporating Kenaf fiber. IOP Conf. Ser. Earth Environ. Sci. 2021, 641, 012001. [Google Scholar]
- Masri, K.A.; Katini, N.H.; Arshad, A.K.; Shahnewaz, S.; Ferdaus, R. Microstructure analysis of porous asphalt incorporating kenaf fiber in the pavement. Mater. Today Proc. 2022, 57, 1191–1195. [Google Scholar] [CrossRef]
- Selvaraj, S.; Karpurapu, R. Numerical Analysis of Leutner Shear Tests on Interface Between Geosynthetic and Asphalt Layers. Int. J. Geosynth. Ground Eng. 2021, 7, 61. [Google Scholar] [CrossRef]
- Shanbara, H.K.; Ruddock, F.; Atherton, W. Predicting the rutting behaviour of natural fibre-reinforced cold mix asphalt using the finite element method. Constr. Build. Mater. 2018, 167, 907–917. [Google Scholar] [CrossRef]
- Gallo, P.; Valentin, J.; Mondschein, P. Asphalt Concrete for Binder Courses with Different Jute Fibre Content. In IOP Conference Series: Materials Science and Engineering, 1 Nov 2021; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Kumar, G.S.; Shankar, A.U.R.; Teja, B.V.S.R. Laboratory Evaluation of SMA Mixtures Made with Polymer-Modified Bitumen and Stabilizing Additives. J. Mater. Civ. Eng. 2019, 31, 04019026. [Google Scholar] [CrossRef]
- da Costa, L.F.; de Barros, A.G.; de Figueirêdo Lopes Lucena, L.C.; de Figueirêdo Lopes Lucena, A.E. Asphalt mixture reinforced with banana fibres. Road Mater. Pavement Des. 2020, 22, 1881–1893. [Google Scholar] [CrossRef]
- da Costa, L.F.; de Figueirêdo Lopes Lucena, L.C.; de Figueirêdo Lopes Lucena, A.E.; de Barros, A.G. Use of Banana Fibers in SMA Mixtures. J. Mater. Civ. Eng. 2019, 32, 04019341. [Google Scholar] [CrossRef]
- Dehghan, Z.; Modarres, A. Evaluating the fatigue properties of hot mix asphalt reinforced by recycled PET fibers using 4-point bending test. Constr. Build. Mater. 2017, 139, 384–393. [Google Scholar] [CrossRef]
- Usman, N.; Masirin, M.I.M. 20 Performance of asphalt concrete with plastic fibres. In Use of Recycled Plastics in Eco-Efficient Concrete; Woodhead Publishing: Sawston, UK, 2019; pp. 427–440. [Google Scholar]
- Movilla-Quesada, D.; Raposeiras, A.C.; Olavarría, J. Effects of Recycled Polyethylene Terephthalate (PET) on Stiffness of Hot Asphalt Mixtures. Adv. Civ. Eng. 2019, 2019, 6969826. [Google Scholar] [CrossRef]
- Jegatheesan, N.; Rengarasu, T.M.; Bandara, W.M.K.R.T.W. Mechanical properties of modified hot mix asphalt containing polyethylene terephthalate fibers as binder additive and carbonized wood particles as fine aggregate replacement. Asian Transp. Stud. 2020, 6, 100029. [Google Scholar] [CrossRef]
- Jegatheesan, N.; Rengarasu, T.M.; Bandara, W.M.K.R.T.W. Modelling the Properties of Modified Hot Mix Asphalt Containing Polyethylene Terephthalate Fibers and Carbonized Wood Particles. J. East. Asia Soc. Transp. Stud. 2022, 14, 1692–1711. [Google Scholar]
- Babalghaith, A.M.; Koting, S.; Ibrahim, M.R.; Mohd, N.S.; Rozali, S.; Muhamad, M.R.; Zubir MN, M.; El-Shafei, A.; Khairuddin, F.H.; Yusoff, N.I.M. Effect of Black PET Fiber as Additive on the Mechanical Properties of Stone Mastic Asphalt (SMA) Mixtures. In Advances in Civil Engineering Materials; Springer: Singapore, 2021; pp. 249–260. [Google Scholar]
- Bocci, E.; Prosperi, E. Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 678–687. [Google Scholar] [CrossRef]
- Valdés-Vidal, G.; Calabi-Floody, A.; Duarte-Nass, C.; Mignolet, C.; Díaz, C. Development of a New Additive Based on Textile Fibers of End-of-Life Tires (ELT) for Sustainable Asphalt Mixtures with Improved Mechanical Properties. Polymers 2022, 14, 3250. [Google Scholar] [CrossRef]
- Calabi-Floody, A.; Mignolet-Garrido, C.; Valdés-Vidal, G. Evaluation of the effects of textile fibre derived from end-of-life tyres (TFELT) on the rheological behaviour of asphalt binders. Constr. Build. Mater. 2022, 360, 129583. [Google Scholar] [CrossRef]
- González, A.; Norambuena-Contreras, J.; Poulikakos, L.; Varela, M.J.; Valderrama, J.; Flisch, A.; Arraigada, M. Evaluation of Asphalt Mixtures Containing Metallic Fibers from Recycled Tires to Promote Crack-Healing. Materials 2020, 13, 5731. [Google Scholar] [CrossRef]
- González, A.; Norambuena-Contreras, J.; Storey, L.; Schlangen, E. Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating. Constr. Build. Mater. 2018, 159, 164–174. [Google Scholar] [CrossRef]
Physical Properties | Mechanical Properties | Thermal Properties | ||||||
---|---|---|---|---|---|---|---|---|
Fiber | Density (g/cm3) | Moisture Content (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation (%) | Thermal Conductivity (W/m.K) | Glass Transition (Tg) (°C) | Melting Point (Tm) (°C) |
Natural fibers | ||||||||
Bamboo [41] | 0.6–1.1 | 8.9 | 140–230 | 11–17 | - | - | - | - |
Palm [41,44] | 0.7–1.55 | - | 248 | 3.2 | 25 | 0.199 | - | - |
Coconut [40,44] | 1.15–1.46 | 8 | 95–230 | 2.8–6 | 15–51.5 | 0.047 | - | - |
Sisal [40,44] | 1.33–1.5 | 10–22 | 363–700 | 9–38 | 2–7 | 0.042 | - | - |
Kenaf [40] | 1.40 | 9–12 | 223–930 | 14.5–53 | 1.5–2.7 | - | - | - |
Banana [39] | 1.40 | 8.7–12 | 529–914 | 27–32 | 3 | - | - | - |
Jute [41] | 1.30–1.40 | 12.60 | 393–773 | 13–26.50 | 1.2–1.5 | - | - | - |
Synthetic fibers | ||||||||
Polypropylene [43,45] | 0.91 | - | 500–700 | 3.5–6.8 | 21 | 0.12 | −20 to −50 | 165 |
Polyester [43,45] | 1.38 | - | 400–600 | 8.4–16 | 11-30 | 0.13 | 64 | 240 |
Basalt [43] | 2.6–2.7 | - | 3100–4800 | 85–95 | 3.1 | - | - | 1450 |
Carbon [42] | 1.8-1.9 | - | 1700–2600 | 140–200 | 0.8–1.5 | 8–70 | - | 3500 |
Glass [42] | 2.5–2.56 | - | 1700–3500 | 27 | 2.5–3.2 | 0.04 | - | 1540 |
Aramid [41,44] | 1.4 | - | 3000–3150 | 63–67 | 3.3–3.7 | 0.05 | - | 500 |
PAN [45] | 1.17 | - | 200–400 | 20 | 27–48 | - | 97 | 330 |
Steel [43] | 7.85 | - | 400–1200 | 200 | 3.5 | 50 | - | 800 |
Fiber | Period (Days) |
---|---|
Bamboo | 1–120 |
Oil palm | 21–90 |
Sisal | 21–90 |
Banana | 28–90 |
Jute | 21–35 |
Kenaf | 30–180 |
Coconut | 21–60 |
Cotton | 21–28 |
Citations | Fiber | Content (wt%) | Length (mm) | Penetration (%) | Softening Point (%) | Viscosity (%) | Ductility (%) | Rutting (%) | Fatigue (%) | Shear Strength (%) |
---|---|---|---|---|---|---|---|---|---|---|
Fiber-modified bitumen | ||||||||||
[60] | Polyester | 5 | 6 | 393 | 90 | ↑ | ||||
[60] | Basalt | 7 | 6 | 394 | 285 | ↑ | ||||
[160] | Basalt | 3 | 6 | 12 | 11 | 90 | ||||
[96] | Glass | 1 (vl%) | 6 | 89 | 40 | 500 | 20 | |||
[130] | PAN | 3 | 6 | 8 | ||||||
[133] | PAN | 1 | 6 | |||||||
[135] | Ceramic | 3 | 20 | 50 | 20 | 33 | 690 | 55 | 35 | |
[154] | Carbon | 2.75 | 0.15 | 335 | 16 | 400 | 8 | |||
[126] | Aramid | 2 | 2 | 10 | 33 | ≅ | 3 | |||
[154] | Palm | 0.75 | <0.58 | 58 | 8 | 900 | 5 | |||
[60] | Lignin | 3 | <3 | 77 | 329 | 310 | ||||
[160] | Lignin | 3 | <3 | ≅ | 60 | 10 | ||||
[162] | Coconut | 6 | 2.5 | 50 | ||||||
[96] | cellulose | 1 (vl%) | 13 | 31 | 400 | 30 | ||||
Fiber-modified dense asphalt mix | ||||||||||
Citations | Fiber | Content (wt%) | Length (mm) | Stability (%) | TSR (%) | Rutting (%) | Fatigue (%) | Low temperature (%) | Fracture energy (%) | |
[61] | polypropylene | 0.5 (vl%) | 6 | 13 | 50 | 40 | 60 (−10 °C) | |||
[64] | Polyester | 0.25 | 8 | 37 (−18 °C) | 23 (25 °C) | |||||
[94] | Polyester | 0.4 | 25 | 15 | ≅ | |||||
[69] | Polyester | 0.40 | 12 | 28 (0 °C) | ||||||
[61] | Polyester | 1 (vl%) | 6 | 15 | 4 | 30 | 32 (−10 °C) | |||
[70] | Polyester | 0.3 | 6 | 13 | 10 | 28 | ||||
[74] | Basalt | 0.5 | 6 | 300 (−10 °C) | 350 (−10 °C) | |||||
[84] | Basalt | 0.4 | 9 | 40 (−20 °C) | ||||||
[70] | Basalt | 0.3 | 6 | 12 | 23 | 33 | ||||
[74] | Glass | 0.5 | 6 | 60 (−10 °C) | 210 (−10 °C) | |||||
[87] | Glass | 0.12 | 12 | 10 (−15 °C ) | 50 (0 °C) | |||||
[91] | Glass | 0.3 | 12 | 12 | 19 (−10 °C) | |||||
[94] | Glass | 0.4 | 36 | 90 | 20 (10 °C) | |||||
[111] | Carbon | 0.3 | 4 | 20 (−10 °C) | ||||||
[61] | Carbon | 1 (vl%) | 6 | ≅ | 40 | ≅ | 15 (−10 °C) | |||
[74] | Steel | 0.5 | 6 | 40 (−10 °C) | 90 (−10 °C) | |||||
[122] | polypropylene-aramid | 0.3 | 19 | 26 (−15 °C) | 7 (15 °C) | |||||
[122] | PAN | 0.3 | 4 | 22 (−15 °C) | 13 (15 °C) | |||||
[123] | PAN | 0.2 | 6 | ↓ | 79 | |||||
[138] | Ceramic | 0.4 | 2–4 | 18 | 6 | 23 | 10 (−10 °C) | |||
[145] | Bamboo | 0.2 | 6 | 9 | 10 | 30 | 22 (−10 °C) | |||
[146] | Bamboo | 0.35 | <6 | 16 | 9 | 67 | 12 (−10 °C) | |||
[91] | Lignin | 0.3 | 1.1 | 6 | 20 (−10 °C) | |||||
[70] | Lignin | 0.3 | <5 | 320 | 15 | 19 | ||||
[146] | Lignin | 0.4 | <5 | 14 | 7 | 58 | 1.09 (−10 °C) | |||
[161] | Coconut | 0.4 | 10 | 15 | ||||||
[166] | Sisal | 0.3 | 10 | 13 | 12 | |||||
[111,169] | Kenaf | 0.3 | 8 | 1.15 (−15 °C) | ||||||
[170] | Kenaf | 0.3 | 30 | 3 | 13 | 50 | ↑ | |||
[179] | PET | 0.5 | 20 | ↑ | ↑ | |||||
[180] | PET | 0.5 | 10 | |||||||
[185] | Tire textile | 0.3 | 1–2.5 | ↑ | ↑ | |||||
Fiber-modified stone mastic asphalt | ||||||||||
Citations | Fiber | Content (wt%) | Length (mm) | Stability (%) | Stiffness modulus (%) | ITS (%) | TSR (%) | Rutting (%) | Low temperature (%) | Drain down |
[158] | Basalt | 0.4 | 6 | 25 | 10 (−10 °C) | |||||
[147] | Bamboo | 0.4 | <6 | 11 | 6 | 11 (−10 °C) | ||||
[152] | Palm | 0.3 | 5–25 | 18 | 30 | 23 | 12 | ↓ | ||
[167] | Coconut | 0.3 | 0.1–1.5 | 38 | 88 | |||||
[167] | Sisal | 35 | 86 | |||||||
[166] | Sisal | 0.3 | 10 | 16 | 16 | 9 | ↓ | |||
[171] | Kenaf | 0.2 | 10 | 7 | ≅ | ↓ | ||||
[115] | Jute | 0.5 | 7.5 | 19 | 1.5 | ↓ | ||||
[115] | Carbon | 0.5 | 7.5 | 30 | 2.1 | ↓ | ||||
[178] | Banana | 0.3 | 20 | ↓ | 50 | 2.2 | ↑ | ↓ | ||
Fiber-modified porous asphalt mix | ||||||||||
Citations | Fiber | Content (wt%) | Length (mm) | Cantabro (%) | Stiffness modulus (%) | Air voids/permeability | ITS/TSR | Rutting (%) | Fatigue (%) | Drain down |
[62] | Polyester | 0.3 | 6 | 500 | ↓ | 2 | ↑ | ↓ | ||
[73] | Basalt | 0.2 | 24 | 18 | ↓ | 16/0.9 | ||||
[79] | Basalt | 0.3 | 9 | 85 | 30/2 | 52 | 40 | ↓ | ||
[62] | Basalt | 0.15 | 6 | 500 | ≅ | 200 | ↑ | ↓ | ||
[73] | Glass | 0.2 | 12 | 227 | ↓ | 43/5 | ↓ | |||
[62] | PAN | 0.15 | 6 | 490 | ↓ | 60 | ↑ | ↓ | ||
[125] | Aramid | 0.05 | 12 | 7 | ↓ | 5/0.7 | ||||
[62] | Lignin | 0.3 | <6 | 95 | ↓ | 200 | ↑ | ↓ | ||
[164,165] | Coconut | 0.3 | - | ↓ | 12 | ↓ |
Fiber | Fiber Content (%) | Bitumen Content (%) | AV (%) | VMA (%) | VFA (%) | Gmb (g/cm3) |
---|---|---|---|---|---|---|
Control [86] | 0 | 5.6 | 3.3 | 16.80 | 80.35 | 2.593 |
Basalt | 0.15 | 5.80 | 3.70 | 17.60 | 78.98 | 2.573 |
0.30 | 6.20 | 3.80 | 19.20 | 80.20 | 2.537 | |
Glass | 0.15 | 5.60 | 3.70 | 17.10 | 78.36 | 2.584 |
0.30 | 6.20 | 3.40 | 18.50 | 81.62 | 2.560 | |
Carbon | 0.15 | 5.60 | 3.70 | 17.10 | 78.36 | 2.584 |
0.30 | 6.40 | 3.60 | 19.30 | 81.35 | 2.541 | |
Control [145] | 0 | 4.85 | 4.30 | 15.00 | 71.70 | - |
Lignin | 0.30 | 5.10 | 4.30 | 16.00 | 72.70 | - |
Polyester | 0.20 | 4.90 | 4.20 | 15.20 | 72.40 | - |
Bamboo | 0.30 | 5.30 | 4.00 | 15.90 | 74.80 | - |
Control [123] | 0 | 5.50 | 4.00 | 14.90 | 73.80 | 2.337 |
PAN | 0.30 | 5.50 | 6.43 | - | - | 2.270 |
0.30 | 6.00 | 5.25 | - | - | 2.130 | |
PET | 0.30 | 5.50 | 6.81 | - | - | 2.300 |
0.30 | 6.00 | 4.79 | - | - | 2.310 | |
Control [67] | 0 | 4.90 | 4.00 | 16.00 | 75.00 | 2.560 |
PVA | 0.30 | 5.10 | 4.00 | 16.20 | 75.30 | 2.539 |
Acrylic | 0.30 | 5.20 | 4.00 | 16.53 | 75.80 | 2.536 |
Polyester | 0.30 | 5.20 | 4.00 | 16.13 | 75.20 | 2.541 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnadish, A.M.; Singh, N.S.S.; Alawag, A.M. Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review. Polymers 2023, 15, 1004. https://doi.org/10.3390/polym15041004
Alnadish AM, Singh NSS, Alawag AM. Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review. Polymers. 2023; 15(4):1004. https://doi.org/10.3390/polym15041004
Chicago/Turabian StyleAlnadish, Adham Mohammed, Narinderjit Singh Sawaran Singh, and Aawag Mohsen Alawag. 2023. "Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review" Polymers 15, no. 4: 1004. https://doi.org/10.3390/polym15041004
APA StyleAlnadish, A. M., Singh, N. S. S., & Alawag, A. M. (2023). Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review. Polymers, 15(4), 1004. https://doi.org/10.3390/polym15041004