Emission of Volatile Organic Compounds in Crumb Rubber Modified Bitumen and Its Inhibition by Using Montmorillonite Nanoclay
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Modified Bitumen Preparation
2.3. Test Methods
2.3.1. VOCs Collection Methods
2.3.2. VOCs Characterization
2.3.3. X-ray Diffraction (XRD) Test
3. Results and Discussion
3.1. VOCs Composition of Base and CRMB Binders
3.2. Inhibition Effect of Mt on the VOCs Emission of CRMB Binder
3.3. VOCs Emission Model of Bitumen
3.3.1. Establishment of Model
3.3.2. The Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Farooq, M.Z.; Sun, B.; Lin, F.; Yan, B.; Rajput, G.; Chawla, M. Pollutants formation, distribution, and reaction mechanism during WT pyrolysis: A review. J. Anal. Appl. Pyrolysis 2021, 157, 105218. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Wu, S.; Zhou, X.; Zhao, G.; Zhao, Y.; Cheng, M. Evaluation of VOCs inhibited effects and rheological properties of asphalt with high-content waste rubber powder. Constr. Build Mater. 2021, 300, 124320. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Z.; Liu, J.; Chen, Z.; Xie, W.; Evrendilek, F.; Buyukada, M. Dynamic pyrolysis behaviors, products, and mechanisms of waste rubber and polyurethane bicycle tires. J. Hazard. Mater. 2021, 402, 123516. [Google Scholar] [CrossRef] [PubMed]
- Ilyin, S.O.; Arinina, M.P.; Mamulat, Y.S.; Malkin, A.Y.; Kulichikhin, V.G. Rheological properties of road bitumens modified with polymer and solid nanosized additives. Colloid J. 2014, 76, 425–434. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Janik, H.; Borzędowska-Labuda, K.; Kucińska-Lipka, J. Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. J. Clean. Prod. 2017, 147, 560–571. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, S.N.; Shen, J.; Putman, B. Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Constr. Build Mater. 2009, 23, 1028–1034. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, G.; Ma, T.; Fan, J.; Li, S. Performances of rubber asphalt with middle/high content of waste tire crumb rubber. Constr. Build Mater. 2022, 335, 127488. [Google Scholar] [CrossRef]
- Chong, D.; Wang, Y.; Guo, H.; Lu, Y. Volatile Organic Compounds Generated in Asphalt Pavement Construction and Their Health Effects on Workers. J. Constr. Eng. Manag. 2014, 140, 04013051. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Perram, D.; Hand, D.; Ahmed, Z.; Wei, W.; Luo, S. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef]
- Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne emissions of asphalt/wax blends for warm mix asphalt production. J. Clean. Prod. 2017, 164, 749–756. [Google Scholar] [CrossRef]
- Celebi, U.B.; Vardar, N. Investigation of VOC emissions from indoor and outdoor painting processes in shipyards. Atmos. Environ. 2008, 42, 5685–5695. [Google Scholar] [CrossRef]
- Gągol, M.; Boczkaj, G.; Haponiuk, J.; Formela, K. Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber. Polym. Degrad. Stab. 2015, 119, 113–120. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Li, Q.; Zhang, W.; Yan, C. The Investigation of Volatile Organic Compounds (VOCs) Emissions in Environmentally Friendly Modified Asphalt. Polymers 2022, 14, 3459. [Google Scholar] [CrossRef]
- Fostinelli, J.; Madeo, E.; Toraldo, E.; Sarnico, M.; Luzzana, G.; Tomasi, C.; De Palma, G. Environmental and biological monitoring of occupational exposure to polynuclear aromatic hydrocarbons during highway pavement construction in Italy. Toxicol. Lett. 2018, 298, 134–140. [Google Scholar] [CrossRef]
- Schreiner, C.A. Review of mechanistic studies relevant to the potential carcinogenicity of asphalts. Regul. Toxicol. Pharm. 2011, 59, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Gasthauer, E.; Mazé, M.; Marchand, J.P.; Amouroux, J. Characterization of asphalt fume composition by GC/MS and effect of temperature. Fuel 2008, 87, 1428–1434. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Xiu, M.; Wang, X.; Morawska, L.; Pass, D.; Beecroft, A.; Mueller, J.F.; Thai, P. Emissions of particulate matters, volatile organic compounds and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. J. Clean. Prod. 2020, 275, 123094. [Google Scholar] [CrossRef]
- Cheraghian, G.; Cannone Falchetto, A.; You, Z.; Chen, S.; Kim, Y.S.; Westerhoff, J.; Moon, K.H.; Wistuba, M.P. Warm mix asphalt technology: An up to date review. J. Clean. Prod. 2020, 268, 122128. [Google Scholar] [CrossRef]
- Yang, X.; Peng, X.; Zhang, X.; Qian, S. Experiments on the asphalt fume suppression agents and properties of asphalt concrete with fume suppression agent. J. Chongqing Univ. (Nat. Sci. Ed.) 2013, 36, 70–78. [Google Scholar]
- Lei, M.; Wu, S.; Liu, G.; Amirkhanian, S. VOCs characteristics and their relation with rheological properties of base and modified bitumens at different temperatures. Constr. Build Mater. 2018, 160, 794–801. [Google Scholar] [CrossRef]
- Liu, G.; Nielsen, E.; Komacka, J.; Greet, L.; van de Ven, M. Rheological and chemical evaluation on the ageing properties of SBS polymer modified bitumen: From the laboratory to the field. Constr. Build Mater. 2014, 51, 244–248. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Wan, M.; Cui, P. Inhibiting effect of Layered Double Hydroxides on the emissions of volatile organic compounds from bituminous materials. J. Clean. Prod. 2015, 108, 987–991. [Google Scholar] [CrossRef]
- Huang, G.; He, Z.; Zhou, C.; Huang, T. Mechanism of fume suppression and performance on asphalt of expanded graphite for pavement under high temperature condition. J. Wuhan Univ. Technol. Mater. Sci. 2014, 6, 1229–1236. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, B.K. A novel nanocomposite of Ca(OH)(2)-incorporated zeolite as an additive to reduce atmospheric emissions of PM and VOCs during asphalt production. Environ. Sci.-Nano 2017, 4, 613–624. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Chapter 2 Structures and Mineralogy of Clay Minerals. In Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 19–86. [Google Scholar]
- de Paiva, L.B.; Morales, A.R.; Valenzuela Díaz, F.R. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Bitumen improvement with bio-oil and natural or organomodified montmorillonite: Structure, rheology, and adhesion of composite asphalt binders. Constr. Build Mater. 2023, 364, 129919. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, J.; Shi, Z. Laboratory investigation on effects of organic montmorillonite on performance of crumb rubber modified asphalt. J. Cent. South Univ. 2020, 27, 3888–3898. [Google Scholar] [CrossRef]
- Fox, J.B.; Ambuken, P.V.; Stretz, H.A.; Peascoe, R.A.; Payzant, E.A. Organo-montmorillonite barrier layers formed by combustion: Nanostructure and permeability. Appl. Clay Sci. 2010, 49, 213–223. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Liu, G.; Cao, T.; Amirkhanian, S. Effect of organo-montmorillonite nanoclay on VOCs inhibition of bitumen. Constr. Build Mater. 2017, 146, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Shen, A.; Jiang, Y.; Meng, Y.; Wu, H. Properties and mechanism of flame retardance and smoke suppression in asphalt binder containing organic montmorillonite. Constr. Build Mater. 2021, 302, 124148. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Q.; Wang, F.; Cui, P.; Xie, J.; Li, J.; Wu, S.; Barbieri, D.M. Comparative Assessment of Asphalt Volatile Organic Compounds Emission from field to laboratory. J. Clean. Prod. 2021, 278, 123479. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Q.; Wang, F.; Xie, J.; Li, Y.; Li, J.; Wu, S. Emission behavior, environmental impact and priority-controlled pollutants assessment of volatile organic compounds (VOCs) during asphalt pavement construction based on laboratory experiment. J. Hazard. Mater. 2020, 398, 122904. [Google Scholar] [CrossRef]
- Boczkaj, G.; Przyjazny, A.; Kamiński, M. Characteristics of volatile organic compounds emission profiles from hot road bitumens. Chemosphere 2014, 107, 23–30. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Li, F.; Xiao, Y.; Zhang, H. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials. Materials 2014, 7, 6130–6143. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Chang, X.; Dong, Q.; You, Z. Fingerprint Components and Quantitative Analysis of Volatile Organic Compounds of Asphalt Materials. China J. Highw. Transp. 2020, 33, 276–287. [Google Scholar]
- Liu, G.; Wu, S.; Ven, M.; Yu, J.; Molenaar, A.J.A.C.S. Influence of sodium and organo-montmorillonites on the properties of bitumen. Appl. Clay Sci. 2010, 49, 69–73. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Yan, Y.; Liu, T.; Lv, T.; Chen, Y.; Yang, J.; Die, Q.; Zhao, Y.; Huang, Q. Characterizing the emission behaviors of cumulative VOCs from automotive solvent-based paint sludge. J. Environ. Manag. 2022, 317, 115369. [Google Scholar] [CrossRef]
Properties | Values | Standard |
---|---|---|
Penetration at 25 °C (0.1 mm) | 66 | ASTM D5 |
Softening point (°C) | 48 | ASTM D36 |
Ductility at 15 °C (cm) | 181 | ASTM D113 |
Viscosity at 60 °C (Pa·s) | 166 | ASTM D4402 |
Viscosity at 135 °C (Pa·s) | 0.54 | ASTM D4402 |
Properties | Values |
---|---|
Basal spacing (nm) | 1.3 |
Density (g/cm3) | 1.7538 |
Appearance | White powder |
Weight content of surfactant (%) | 9 |
Area Code | No. | Retention Time (min) | Compounds | Standard Curve |
---|---|---|---|---|
1 | 1 | 3.743 | Pentane | y = 6443x |
2 | 4.499 | Acetone | y = 34,348x | |
4 | 5.807 | n-Hexane | y = 32,620x | |
5 | 5.924 | Methacrolein | y = 43,341x | |
8 | 7.451 | 3-methyl-hexane | y = 57,274x | |
9 | 7.632 | Benzene | y = 116,197x | |
10 | 7.958 | Heptane | y = 82,427x | |
11 | 9.326 | 2-methyl-heptane | y = 58,003x | |
13 | 9.854 | Toluene | y = 137,374x | |
14 | 10.006 | Octane | y = 160,012x | |
16 | 11.680 | m-Xylene | y = 74,470x | |
17 | 11.825 | p-Xylene | y = 137,036x | |
2 | 3 | 5.143 | 2-methyl-pentane | y = 41,944x |
7 | 6.453 | Butanal | y = 33,394x | |
19 | 14.016 | Mesitylene | y = 138,233x | |
21 | 15.115 | Undecane | y = 124,317x | |
22 | 17.369 | Naphthalene | y = 466,879x | |
3 | 6 | 6.288 | 2-methyl-furan | y = 58,003x |
12 | 9.656 | Methyl Isobutyl Ketone | y = 146,885x | |
15 | 10.974 | 4-ethenyl-cyclohexene | y = 70,311x | |
18 | 12.331 | Styrene | y = 92,293x | |
20 | 14.367 | D-Limonene | y = 121,411x | |
23 | 18.080 | Benzothiazole | y = 24,376x |
No. | Emission Rate (μg/m2/min) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sampling Time for CRMB Binder | Sampling Time for Mt-CRMB Binder | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
1 | 117.00 | 160.73 | 99.80 | 63.50 | 45.32 | 46.52 | 111.93 | 44.42 | 35.73 | 33.12 |
2 | 92.65 | 142.55 | 129.52 | 111.15 | 72.33 | 53.28 | 139.05 | 88.20 | 75.12 | 53.47 |
3 | 33.50 | 44.68 | 27.95 | 17.85 | 12.03 | 13.85 | 43.35 | 15.48 | 8.27 | 5.10 |
4 | 54.98 | 79.20 | 45.92 | 29.37 | 21.05 | 20.52 | 52.52 | 21.47 | 15.63 | 11.23 |
5 | 12.22 | 18.32 | 15.58 | 12.38 | 10.80 | 8.72 | 16.17 | 10.40 | 8.68 | 7.23 |
6 | 4.78 | 9.32 | 8.23 | 6.72 | 5.93 | 3.08 | 8.73 | 4.68 | 4.05 | 2.95 |
7 | 26.68 | 46.28 | 38.48 | 29.18 | 27.80 | 21.62 | 44.07 | 26.00 | 20.27 | 19.37 |
8 | 8.75 | 14.13 | 8.77 | 5.78 | 4.12 | 3.85 | 11.00 | 4.37 | 3.02 | 1.70 |
9 | 64.10 | 98.18 | 64.57 | 45.12 | 35.60 | 34.90 | 83.05 | 28.52 | 19.17 | 10.42 |
10 | 28.97 | 39.13 | 23.53 | 15.65 | 12.27 | 13.60 | 28.93 | 12.50 | 9.17 | 6.93 |
11 | 13.32 | 23.43 | 14.48 | 9.28 | 6.30 | 4.52 | 13.05 | 5.32 | 3.40 | 1.88 |
12 | 29.72 | 52.68 | 38.22 | 27.48 | 21.58 | 26.30 | 72.45 | 33.83 | 23.50 | 14.33 |
13 | 26.67 | 43.55 | 27.17 | 16.47 | 10.82 | 16.42 | 39.88 | 15.24 | 8.85 | 4.08 |
14 | 7.73 | 13.32 | 8.43 | 5.48 | 3.93 | 3.28 | 8.88 | 3.92 | 2.72 | 1.83 |
15 | 48.85 | 83.82 | 56.92 | 37.22 | 25.50 | 24.37 | 64.00 | 27.27 | 17.98 | 8.83 |
16 | 22.37 | 37.70 | 24.22 | 14.97 | 9.92 | 10.92 | 26.78 | 10.33 | 6.83 | 3.35 |
17 | 21.93 | 37.07 | 24.28 | 15.47 | 10.50 | 9.48 | 22.83 | 9.25 | 6.32 | 3.27 |
18 | 18.38 | 30.13 | 18.88 | 11.17 | 7.05 | 8.00 | 18.42 | 6.93 | 4.47 | 2.08 |
19 | 13.30 | 23.73 | 15.60 | 10.08 | 6.88 | 6.08 | 13.60 | 6.32 | 4.52 | 2.52 |
20 | 14.37 | 29.52 | 18.43 | 12.68 | 8.70 | 7.38 | 19.47 | 9.02 | 6.47 | 3.52 |
21 | 5.28 | 10.48 | 6.65 | 4.23 | 2.97 | 7.60 | 18.62 | 8.65 | 6.03 | 3.18 |
22 | 0.37 | 0.67 | 0.48 | 0.30 | 0.22 | 0.25 | 0.50 | 0.30 | 0.23 | 0.15 |
23 | 5.77 | 9.18 | 6.60 | 4.50 | 3.47 | 2.07 | 3.65 | 3.28 | 3.53 | 2.07 |
Total SD | 121.53 | 198.75 | 162.88 | 155.47 | 99.21 | 171.54 | 160.15 | 122.34 | 142.78 | 104.12 |
No. | CRMB Binder | Mt-CRMB Binder | ||||
---|---|---|---|---|---|---|
C0 (μg/m3) | Dm (m2/s) | R2 | C0 (μg/m3) | Dm (m2/s) | R2 | |
1 | 1.355 × 106 | 2.163 × 10−8 | 0.9914 | 1.001 × 106 | 7.439 × 10−9 | 0.6893 |
2 | 2.033 × 106 | 1.607 × 10−8 | 0.8316 | 1.479 × 106 | 1.086 × 10−8 | 0.9538 |
3 | 3.780 × 105 | 3.182 × 10−8 | 0.9978 | 2.135 × 105 | 2.229 × 10−8 | 0.9540 |
4 | 6.198 × 105 | 2.266 × 10−8 | 0.9829 | 3.144 × 105 | 1.673 × 10−8 | 0.8896 |
5 | 3.058 × 105 | 1.302 × 10−8 | 0.9865 | 1.801 × 105 | 8.930 × 10−9 | 0.9151 |
6 | 1.734 × 105 | 1.592 × 10−8 | 0.9849 | 8.160 × 104 | 7.839 × 10−9 | 0.8928 |
7 | 7.445 × 105 | 1.247 × 10−8 | 0.9155 | 4.265 × 105 | 9.344 × 10−9 | 0.7946 |
8 | 1.198 × 105 | 2.919 × 10−8 | 0.9917 | 7.308 × 104 | 2.089 × 10−8 | 0.9513 |
9 | 9.257 × 105 | 2.718 × 10−8 | 0.9784 | 4.840 × 105 | 3.094 × 10−8 | 0.9399 |
10 | 3.250 × 105 | 1.974 × 10−8 | 0.9657 | 1.888 × 105 | 1.490 × 10−8 | 0.8808 |
11 | 1.959 × 105 | 2.978 × 10−8 | 0.9966 | 8.314 × 104 | 2.230 × 10−8 | 0.9693 |
12 | 5.721 × 105 | 2.509 × 10−8 | 0.9932 | 5.173 × 105 | 1.524 × 10−8 | 0.9660 |
13 | 3.651 × 105 | 3.385 × 10−8 | 0.9983 | 2.769 × 105 | 3.849 × 10−8 | 0.9711 |
14 | 1.144 × 105 | 2.194 × 10−8 | 0.9925 | 5.576 × 104 | 2.024 × 10−8 | 0.9378 |
15 | 7.753 × 105 | 3.009 × 10−8 | 0.9993 | 4.629 × 105 | 3.344 × 10−8 | 0.9767 |
16 | 3.260 × 105 | 3.513 × 10−8 | 0.9988 | 1.906 × 105 | 2.255 × 10−8 | 0.9672 |
17 | 3.305 × 105 | 3.288 × 10−8 | 0.9988 | 1.661 × 105 | 2.125 × 10−8 | 0.9648 |
18 | 2.492 × 105 | 3.679 × 10−8 | 0.9991 | 1.293 × 105 | 2.453 × 10−8 | 0.9708 |
19 | 2.125 × 105 | 2.848 × 10−8 | 0.9990 | 1.047 × 105 | 2.114 × 10−8 | 0.9680 |
20 | 2.579 × 105 | 2.888 × 10−8 | 0.9950 | 1.489 × 105 | 1.946 × 10−8 | 0.9687 |
21 | 9.030 × 104 | 2.148 × 10−8 | 0.9949 | 1.406 × 105 | 2.981 × 10−8 | 0.9746 |
22 | 6.363 × 103 | 2.087 × 10−8 | 0.9948 | 4.483 × 103 | 1.874 × 10−8 | 0.9700 |
23 | 9.552 × 104 | 1.669 × 10−8 | 0.9929 | 5.750 × 104 | 9.606 × 10−9 | 0.4464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Fang, S.; Wang, Y.; Liu, J.; Liang, Y.; Cao, T.; Liu, Q. Emission of Volatile Organic Compounds in Crumb Rubber Modified Bitumen and Its Inhibition by Using Montmorillonite Nanoclay. Polymers 2023, 15, 1513. https://doi.org/10.3390/polym15061513
Liu G, Fang S, Wang Y, Liu J, Liang Y, Cao T, Liu Q. Emission of Volatile Organic Compounds in Crumb Rubber Modified Bitumen and Its Inhibition by Using Montmorillonite Nanoclay. Polymers. 2023; 15(6):1513. https://doi.org/10.3390/polym15061513
Chicago/Turabian StyleLiu, Gang, Shuaiyin Fang, Yong Wang, Jinjun Liu, Yangshi Liang, Tingwei Cao, and Quantao Liu. 2023. "Emission of Volatile Organic Compounds in Crumb Rubber Modified Bitumen and Its Inhibition by Using Montmorillonite Nanoclay" Polymers 15, no. 6: 1513. https://doi.org/10.3390/polym15061513
APA StyleLiu, G., Fang, S., Wang, Y., Liu, J., Liang, Y., Cao, T., & Liu, Q. (2023). Emission of Volatile Organic Compounds in Crumb Rubber Modified Bitumen and Its Inhibition by Using Montmorillonite Nanoclay. Polymers, 15(6), 1513. https://doi.org/10.3390/polym15061513