Humic-Based Polyelectrolyte Complexes for Dust Suppression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of HS–ASQ
2.3. FTIR Instrumentation and Measurements
2.4. Scanning Electron Microscopy
2.5. Powder X-ray Diffraction
2.6. Viscosity Measurement
2.7. Sorption of HS–ASQ
2.8. Wind Erosion Resistance Test
3. Results and Discussion
3.1. Preparation of HS–ASQ and its Aging Process
3.2. Viscosity Control of HS–ASQ
3.3. Immobilization of HS–ASQ onto Dust and Morphology Study
3.4. Wind Erosion Resistance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Genève, Switzerland, 2021. [Google Scholar]
- Liu, Q.; Xu, C.; Ji, G.; Liu, H.; Shao, W.; Zhang, C.; Gu, A.; Zhao, P. Effect of Exposure to Ambient PM2.5 Pollution on the Risk of Respiratory Tract Diseases: A Meta-Analysis of Cohort Studies. J. Biomed. Res. 2017, 31, 130. [Google Scholar]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The Impact of PM2.5 on the Human Respiratory System. J. Thorac. Dis. 2016, 8, E69. [Google Scholar]
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The Mechanisms of Air Pollution and Particulate Matter in Cardiovascular Diseases. Heart Fail Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Z.; Lu, Y.; Chang, X.; Chan, C.; Bai, Y.; Zhang, Y.; Cheng, N. PM10 and PM2.5 Particles as Main Air Pollutants Contributing to Rising Risks of Coronary Heart Disease: A Systematic Review. Environ. Technol. Rev. 2017, 6, 174–185. [Google Scholar] [CrossRef]
- Shou, Y.; Huang, Y.; Zhu, X.; Liu, C.; Hu, Y.; Wang, H. A Review of the Possible Associations between Ambient PM2.5 Exposures and the Development of Alzheimer’s Disease. Ecotoxicol. Environ. Saf. 2019, 174, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K. Impacts of Particulate Matter Pollution on Plants: Implications for Environmental Biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). NEI Report Dashboard 2014. Available online: https://edap.epa.gov/public/extensions/nei_report_2014/dashboard.html#trend-db (accessed on 2 February 2023).
- Zhang, X.; Yu, Y.; Cheng, W.; Yang, X.; Cui, W.; Wang, C. Research on Performance of Composite Dust Suppressant for Mining Based on Modified Soybean Protein Isolate. Powder Technol. 2023, 415, 118166. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, Y.; Chen, K.; Niu, K.; Wu, G.; Wei, X.; Wang, H. Preparation and Characterization of a Composite Dust Suppressant for Coal Mines. Polymers 2020, 12, 2942. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Du, Y.; Wang, D.; Qin, B. Recent Progress in Polymer-Containing Soft Matters for Safe Mining of Coal. Polymers 2019, 11, 1706. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Hu, X.; Cheng, W.; Zhao, Y.; Shao, Z.; Xue, D.; Wu, M. Preparation and Evaluation of Humic Acid–Based Composite Dust Suppressant for Coal Storage and Transportation. Environ. Sci. Pollut. Res. 2022, 29, 17072–17086. [Google Scholar] [CrossRef]
- Wu, M.; Hu, X.; Zhang, Q.; Zhao, Y.; Sun, J.; Cheng, W.; Fan, Y.; Zhu, S.; Lu, W.; Song, C. Preparation and Performance Evaluation of Environment-Friendly Biological Dust Suppressant. J. Clean. Prod. 2020, 273, 123162. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, G.; Liu, D.; Jiang, W.; Wei, Z.; Dong, X. Synthesis and Performance of a Novel High-Efficiency Coal Dust Suppressant Based on Self-Healing Gel. Environ. Sci. Technol. 2020, 54, 7992–8000. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Jin, L.; Li, G.; Wang, S.; Wei, Y.; Ou, S.; Wang, Y.; Xu, J.; Lin, M.; et al. Suppression Characteristics and Mechanism of Molasses Solution on Coal Dust: A Low-Cost and Environment-Friendly Suppression Method in Coal Mines. Int. J. Environ. Res. Public Health 2022, 19, 16472. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, G.; Liu, Z.; Wang, N.; Wei, Z.; Liu, W. Synthesis and Performance Characteristics of a New Ecofriendly Crust-Dust Suppressant Extracted from Waste Paper for Surface Mines. J. Clean. Prod. 2020, 258, 120620. [Google Scholar] [CrossRef]
- Li, M.; Wang, R.; Li, G.; Song, X.; Yang, H.; Lai, H. Comprehensive Chemical Dust Suppressant Performance Evaluation and Optimization Method. Int. J. Environ. Res. Public Health 2022, 19, 5617. [Google Scholar] [CrossRef]
- Succarieh, M. Control of Dust Emissions from Unpaved Roads. Available online: https://trid.trb.org/view/679675 (accessed on 2 February 2023).
- Li, M.; Tang, J.; Song, X.; Qiu, L.; Yang, H.; Li, Z. Study on Multi-Factor Optimization and Application for Water Mist of a Wetting Dust Suppressant. ACS Omega 2022, 7, 47861–47868. [Google Scholar] [CrossRef]
- Parvej, S.; Naik, D.L.; Sajid, H.U.; Kiran, R.; Huang, Y.; Thanki, N. Fugitive Dust Suppression in Unpaved Roads: State of the Art Research Review. Sustainability 2021, 13, 2399. [Google Scholar] [CrossRef]
- Saha, P.; Ksaibati, K. Effectiveness of the Two Chemical Treatments (CaCl2 and MgCl2) as Dust Suppressants on Gravel Roads. Int. J. Pavement Eng. 2022, 23, 332–339. [Google Scholar] [CrossRef]
- Amato, F.; Karanasiou, A.; Cordoba, P.; Alastuey, A.; Moreno, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; Querol, X. Effects of Road Dust Suppressants on PM Levels in a Mediterranean Urban Area. Environ. Sci. Technol. 2014, 48, 8069–8077. [Google Scholar] [CrossRef]
- Sanders, T.G.; Addo, J.Q.; Ariniello, A.; Heiden, W.F. Relative Effectiveness of Road Dust Suppressants. J. Transp. Eng. 1997, 123, 393–397. [Google Scholar] [CrossRef]
- Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-Suspension of Road Dust: Contribution, Assessment and Control through Dust Suppressants—A Review. Int. J. Environ. Sci. Technol. 2019, 16, 1717–1728. [Google Scholar] [CrossRef]
- Lee, T.; Park, J.; Knoff, D.S.; Kim, K.; Kim, M. Liquid Amphiphilic Polymer for Effective Airborne Dust Suppression. RSC Adv. 2019, 9, 40146–40151. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.; Prasidhi, A.K.; Im, J.; Shin, H.-D.; Cho, G.-C. Soil Treatment Using Microbial Biopolymers for Anti-Desertification Purposes. Geoderma 2015, 253, 39–47. [Google Scholar] [CrossRef]
- Lo, C.-Y.; Tirkolaei, H.K.; Hua, M.; De Rosa, I.M.; Carlson, L.; Kavazanjian, E., Jr.; He, X. Durable and Ductile Double-Network Material for Dust Control. Geoderma 2020, 361, 114090. [Google Scholar] [CrossRef]
- Dang, X.; Shan, Z.; Chen, H. Usability of Oxidized Corn Starch-Gelatin Blends for Suppression and Prevention of Dust. J. Appl. Polym. Sci. 2017, 134, 44437. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, Y.; Shan, Z.; Dai, R.; Shi, L.; Chen, H. Fabrication and Characterization of a Multi-Functional and Environmentally-Friendly Starch/Organo-Bentonite Composite Liquid Dust Suppressant. Powder Technol. 2021, 391, 532–543. [Google Scholar] [CrossRef]
- MacCarthy, P. An Ecological Rationale for the Heterogeneity of Humic Substances: A Holistic Perspective on Humus. In Scientists on Gaia; MIT Press: Cambridge, MA, USA, 1991; pp. 339–345. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Willey Interscience: New York, NY, USA, 1982. [Google Scholar]
- Gotosa, J.; Nyamadzawo, G.; Mtetwa, T.; Kanda, A.; Dudu, V. Comparative Road Dust Suppression Capacity of Molasses Stillage and Water on Gravel Road in Zimbabwe. Adv. Res. 2015, 3, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Bratskaya, S.; Schwarz, S.; Chervonetsky, D. Comparative Study of Humic Acids Flocculation with Chitosan Hydrochloride and Chitosan Glutamate. Water Res. 2004, 38, 2955–2961. [Google Scholar] [CrossRef]
- Volikov, A.B.; Ponomarenko, S.A.; Gutsche, A.; Nirschl, H.; Hatfield, K.; Perminova, I.V. Targeted Design of Water-Based Humic Substances-Silsesquioxane Soft Materials for Nature-Inspired Remedial Applications. RSC Adv. 2016, 6, 48222–48230. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Dong, Z.; Xu, Y.; Yu, F.; Yin, S.; Zhang, R.; Tang, X. Characterization of PM10 and PM2.5 Source Profiles of Fugitive Dust in Zhengzhou, China. Aerosol Air Qual. Res. 2018, 18, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Volikov, A.B.; Kholodov, V.A.; Kulikova, N.A.; Philippova, O.I.; Ponomarenko, S.A.; Lasareva, E.V.; Parfyonova, A.M.; Hatfield, K.; Perminova, I.V. Silanized Humic Substances Act as Hydrophobic Modifiers of Soil Separates Inducing Formation of Water-Stable Aggregates in Soils. Catena 2016, 137, 229–236. [Google Scholar] [CrossRef]
- Kulikova, N.A.; Volikov, A.B.; Filippova, O.I.; Kholodov, V.A.; Yaroslavtseva, N.V.; Farkhodov, Y.R.; Yudina, A.V.; Roznyatovsky, V.A.; Grishin, Y.K.; Zhilkibayev, O.T.; et al. Modified Humic Substances as Soil Conditioners: Laboratory and Field Trials. Agronomy 2021, 11, 150. [Google Scholar] [CrossRef]
- Lee, T.; Camp, C.P.; Kim, B.; Kim, M. Environmentally Friendly Methylcellulose Blend Binder for Hydrophobic Dust Control. ACS Appl. Polym. Mater. 2022, 4, 1512–1522. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Nie, W.; Jin, H.; Ma, H.; Hua, Y.; Cai, P.; Wei, W. Solidifying Dust Suppressant Based on Modified Chitosan and Experimental Study on Its Dust Suppression Performance. Adsorpt. Sci. Technol. 2018, 36, 640–654. [Google Scholar] [CrossRef]
- Wu, D.; Guillemin, D.; Marshall, A.W. A Modeling Basis for Predicting the Initial Sprinkler Spray. Fire Saf. J. 2007, 42, 283–294. [Google Scholar] [CrossRef]
- Borowski, G.; Smirnov, Y.; Ivanov, A.; Danilov, A. Effectiveness of Carboxymethyl Cellulose Solutions for Dust Suppression in the Mining Industry. Int. J. Coal Prep. Util. 2022, 42, 2345–2356. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volikov, A.; Karpukhina, E.A.; Larionov, K.S.; Kozlov, D.A.; Perminova, I.V. Humic-Based Polyelectrolyte Complexes for Dust Suppression. Polymers 2023, 15, 1514. https://doi.org/10.3390/polym15061514
Volikov A, Karpukhina EA, Larionov KS, Kozlov DA, Perminova IV. Humic-Based Polyelectrolyte Complexes for Dust Suppression. Polymers. 2023; 15(6):1514. https://doi.org/10.3390/polym15061514
Chicago/Turabian StyleVolikov, Alexander, Evgeniya A. Karpukhina, Konstantin S. Larionov, Daniil A. Kozlov, and Irina V. Perminova. 2023. "Humic-Based Polyelectrolyte Complexes for Dust Suppression" Polymers 15, no. 6: 1514. https://doi.org/10.3390/polym15061514
APA StyleVolikov, A., Karpukhina, E. A., Larionov, K. S., Kozlov, D. A., & Perminova, I. V. (2023). Humic-Based Polyelectrolyte Complexes for Dust Suppression. Polymers, 15(6), 1514. https://doi.org/10.3390/polym15061514