Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Culture Medium and Cultivation Conditions
2.3. PHA Recovery from Cell Biomass
2.4. PHA Chemical Composition
2.5. Physicochemical Properties of PHAs
2.6. Statistics
3. Results and Discussion
3.1. Study of 3-Mercaptopropionic Acid as a Precursor for the Synthesis of Sulfur-Containing Copolymers in the Culture of Cupriavidus necator B-10646
3.2. Study of 3,3′-Dithiodipropionic Acid as a Precursor for the Synthesis of Sulfur-Containing Copolymers in Cupriavidus necator B-10646 Culture
3.3. Study of 3,3′-Thiodipropionic Acid as a Precursor for the Synthesis of Sulfur-Containing Copolymers in the Culture of the Wild Strain C. necator B-10646
3.4. Properties of Sulfur-Containing Copolymers P(3HB-co-3MP) Depending on the Ratio of Monomers
3.4.1. Molecular Weight Characteristics of P(3HB-co-3MP) Copolymers
3.4.2. Degree of Crystallinity of P(3HB-co-3MP) Copolymers
3.4.3. Temperature Characteristics of P(3HB-co-3MP) Copolymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.-Q. Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In Plastics from Bacteria; Springer: Berlin, Germany, 2010; pp. 17–37. [Google Scholar] [CrossRef]
- Sudesh, K. Practical Guide to Microbial Polyhydroxyalkanoates; Smitthes: London, UK, 2010; 158p. [Google Scholar]
- Koller, M. Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): The biotechnological escape route of choice out of the plastic predicament? EuroBiotech J. 2019, 3, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Ansari, S.; Sami, N.; Yasin, D.; Ahmad, N.; Fatma, T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int. J. Biol. Macromol. 2021, 183, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Chanprateep, S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 2010, 110, 621–632. [Google Scholar] [CrossRef]
- Kumar, M.; Rathour, R.; Singh, R.; Sun, Y.; Pandey, A.; Gnansounou, E.; Thakur, I.S. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. J. Clean. Prod. 2020, 263, 121500. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoate. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiang, X.R.; Guo, Y. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synth. Syst. Biotechnol. 2016, 1, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Koller, M.; Mukherjee, A. Polyhydroxyalkanoates—Linking properties, applications, and end-of-life options. Chem. Biochem. Eng. Q. 2020, 34, 115–129. [Google Scholar] [CrossRef]
- Volova, T.G. Polyhydroxyalkanoates—Plastic Materials of the 21st Century: Production, Properties, Application; Nova Science Pub.: New York, NY, USA, 2004; 282p. [Google Scholar]
- Volova, T.G.; Zhila, N.O.; Shishatskaya, E.I.; Mironov, P.V.; Vasil’ev, A.D.; Sukovatyi, A.G.; Sinskey, A.J. The physicochemical properties of polyhydroxyalkanoates with different chemical structures. Polym. Sci. Ser. A 2013, 55, 427–437. [Google Scholar] [CrossRef]
- Volova, T.; Sapozhnikova, K.; Zhila, N. Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int. J. Biol. Macromol. 2020, 164, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Senior, P.G. Polyhydroxybutyrate, a speciality polymer of microbial origin. In Continuous Culture; Ellis Horwood: Chichester, UK, 1984; pp. 266–271. [Google Scholar]
- Scandola, M.; Ceccorulli, G.; Pizzoli, M.; Gazzano, M. Study of the crystal phase and crystallization rate of bacterial poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 1992, 25, 1405–1410. [Google Scholar] [CrossRef]
- Saito, Y.; Nakamura, S.; Hiramitsu, M.; Doi, Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Int. 1996, 39, 169–174. [Google Scholar] [CrossRef]
- Steinbüchel, A.; Valentin, H.E. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 1995, 128, 219–228. [Google Scholar] [CrossRef]
- Olivera, E.R.; Arcos, M.; Naharro, G.; Luengo, J.M. Unusual PHA biosynthesis. In Plastics from Bacteria; Chen, G.G.Q., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–186. [Google Scholar]
- Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Microb. Ecol. 2017, 73, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Laycock, B.; Arcos-Hernandez, M.V.; Langford, A.; Buchanan, J.; Halley, P.J.; Werker, A.; Pratt, S. Thermal properties and crystallization behavior of fractionated blocky and random polyhydroxyalkanoate copolymers from mixed microbial cultures. J. Appl. Polym. Sci. 2014, 131, 1–19. [Google Scholar] [CrossRef]
- Lütke-Eversloh, T.; Bergander, K.; Luftmann, H.; Steinbüchel, A. Identification of a new class of biopolymer: Bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 2001, 147, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Lütke-Eversloh, T.; Bergander, K.; Luftmann, H.; Steinbüchel, A. Biosynthesis of poly (3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly (3-hydroxybutyrate) (PHB). Biomacromolecules 2001, 2, 1061–1065. [Google Scholar] [CrossRef]
- Kawada, J.; Lütke-Eversloh, T.; Steinbüchel, A.; Marchessault, R.H. Physical properties of microbial polythioesters: Characterization of poly (3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 2003, 4, 1698–1702. [Google Scholar] [CrossRef]
- Tanaka, S.; Feng, L.; Inoue, Y. Comparative study of effects of thio/oxo ester linkages on thermal properties of bacterial poly [3-hydroxybutyrate-co-3-(mercapto/hydroxy) propionate]s. Polym. J. 2004, 36, 570–573. [Google Scholar] [CrossRef] [Green Version]
- Wübbeler, J.H.; Steinbüchel, A. New pathways for bacterial polythioesters. Curr. Opin. Biotechnol. 2014, 29, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Steinbüchel, A. Non-biodegradable biopolymers from renewable resources: Perspectives and impacts. Curr. Opin. Biotechnol. 2005, 16, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Lütke-Eversloh, T.; Elbanna, K.; Thakor, N.; Steinbüchel, A. Poly (3-mercaptopropionate): A nonbiodegradable biopolymer? Biomacromolecules 2005, 6, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, K.; Lütke-Eversloh, T.; Van Trappen, S.; Mergaert, J.; Swings, J.; Steinbüchel, A. Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly (3-hydroxybutyrate-co-3-mercaptopropionate). Int. J. Syst. Evol. Microbiol. 2003, 53, 1165–1168. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, K.; Lütke-Eversloh, T.; Jendrossek, D.; Luftmann, H.; Steinbüchel, A. Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 2004, 182, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Lütke-Eversloh, T.; Kawada, J.; Marchessault, R.H.; Steinbüchel, A. Characterization of microbial polythioesters: Physical properties of novel copolymers synthesized by Ralstonia eutropha. Biomacromolecules 2002, 3, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lütke-Eversloh, T.; Fischer, A.; Remminghorst, U.; Kawada, J.; Marchessault, R.H.; Bögershausen, A.; Steinbüchel, A. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat. Mater. 2002, 1, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Lütke-Eversloh, T.; Steinbüchel, A. Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS Microbiol. Lett. 2003, 221, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Mouri, K.; Kamei, Y. Biosynthesis of terpolythioesters with 3-mercaptopropionate unit. Polym. J. 2006, 38, 737–741. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Furutate, S.; Mizuno, S.; Tsuge, T. Thermal degradation behavior of bacterial poly (3-hydroxybutyrate-co-3-mercaptopropionate). Polym. Degrad. Stab. 2019, 165, 35–42. [Google Scholar] [CrossRef]
- Doberstein, C.; Grote, J.; Wübbeler, J.H.; Steinbuechel, A. Polythioester synthesis in Ralstonia eutropha H16: Novel insights into 3,3′-thiodipropionic acid and 3,3′-dithiodipropionic acid catabolism. J. Biotechnol. 2014, 184, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Isemori, Y.; Tajima, K.; Tanaka, S.; Yu, F.; Ishida, K.; Inoue, Y. Effects of pH of Fermentation Medium on Biosynthesis of Poly [(3-hydroxybutyrate)-co-(3-mercaptopropionate)] by Wautersia eutropha. Macromol. Biosci. 2006, 6, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Peplinski, K.; Ehrenreich, A.; Döring, C.; Bömeke, M.; Steinbüchel, A. Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays. Appl. Microbiol. Biotechnol. 2010, 88, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Kamei, Y.; Nagai, A.; Nishida, H.; Kimura, H.; Endo, T. Biosynthesis and Biodegradability of Copolythioesters from 3,3′-Thiodipropionic Acid and Plant Oils by Cupriviadus necator. Macromol. Biosci. 2007, 7, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Volova, T.G.; Shishatskaya, E.I. Cupriavidus eutrophus Bacterial Strain VKPM B-10646-A Producer of Polyhydroxyalkanoates and a Method of Their Production (Cupriavidus eutrophus Shtamm Bakterii VKPM B-10646-Produtsent Poligidroksialkanoatov i Sposob Ikh Polucheniya. RU Patent No. 2439143, 10 January 2012. (In Russian). [Google Scholar]
- Schlegel, H.G.; Kaltwasser, H.; Gottschalk, G. A submersion method for culture of hydrogen-oxidizing bacteria: Growth physiological studies. Arch. Microbiol. 1961, 38, 209–222. [Google Scholar]
- Volova, T.G.; Kiselev, E.G.; Shishatskaya, E.I.; Zhila, N.O.; Boyandin, A.N.; Syrvacheva, D.A.; Vinogradova, O.N.; Kalacheva, G.S.; Vasiliev, A.D.; Peterson, I.V. Cell growth and PHA accumulation from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour. Technol. 2013, 146, 215–222. [Google Scholar] [CrossRef]
- Ermakov, A.I.; Arasimovich, V.V.; Smirnova-Ikonnikova, M.I.; Yarosh, N.P.; Lukovnikova, G.A. Metody Biokhimicheskogo Issledovaniya Rastenii (Methods of Biochemical Plant Research); Kolos: Leningrad, Russia, 1972; 456p. (In Russian) [Google Scholar]
- Kiselev, E.G. Technical and Technological Bases of Biosynthesis of Reserve Polyhydroxyalkanoates by Hydrogen Bacteria. Summary of the Candidate of Sciences Thesis. Ph.D. Thesis, Siberian Federal University, Krasnoyarsk, Russia, 2012. [Google Scholar]
- Braunegg, G.; Sonnleitner, B.Y.; Lafferty, R.M. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 1978, 6, 29–37. [Google Scholar] [CrossRef]
- Volova, T.; Kiselev, E.; Nemtsev, I.; Lukyanenko, A.; Sukovatyi, A.; Kuzmin, A.; Ryltseva, G.; Shishatskaya, E. Properties of degradable PHAs with different monomer compositions. Int. Biol. Macromol. 2021, 182, 98–114. [Google Scholar] [CrossRef]
- Munday, R. Toxicity of thiols and disulphides: Involvement of free-radical species. Free Radic. Biol. Med. 1989, 7, 659–673. [Google Scholar] [CrossRef]
- Sabbagh, E.; Cuebas, D.; Schulz, H. 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria. J. Biol. Chem. 1985, 260, 7337–7342. [Google Scholar] [CrossRef]
- Volova, T.G.; Shishatskaya, E.I.; Sinskey, A.J. Degradable Polymers: Production, Properties, Applications; Nova Science Pub. Inc.: Hauppauge, NY, USA, 2013; 380p. [Google Scholar]
- Kiselev, E.G.; Vasiliev, A.D.; Volova, T.G. Synthesis and characterization of multicomponent PHAs. J. Sib. Fed. Univ. Biol. 2021, 14, 97–113. [Google Scholar] [CrossRef]
- Volova, T.; Peterson, I.; Kiselev, E.; Shishatskaya, E.; Menshikova, O.; Vasiliev, A.; Zhila, N.; Thomas, S. Biosynthesis and properties of P(3HB/3HV/3H4MV) produced by using Cupriavidus eutrophus B-10646. J. Chem. Technol. Biotechnol. 2018, 94, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Volova, T.G.; Vinogradova, O.N.; Zhila, N.O.; Peterson, I.V.; Kiselev, E.G.; Vasiliev, A.D.; Sukovatiy, A.G.; Shishatskaya, E.I. Properties of a novel quaterpolymer P(3HB/4HB/3HV/3HHx). Polymer 2016, 101, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Cobntbekt, J.; Mabchessault, R.H. Physical properties of poly-β-hydroxybutyrate: IV. Conformational analysis and crystalline structure. J. Mol. Biol. 1972, 71, 735–756. [Google Scholar] [CrossRef] [PubMed]
Strain, Substrate | X, g/L | PHA, % | 3HB, mol.% | 3MP, mol.% | Mw, kDa | Đ | Tmelt, °C | Tdegr, °C | Tg, °C | Tcryst, °C | Cx, % | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Precursor of 3-mercaptopropionic acid | ||||||||||||
R. eutropha H16, gluconic acid | - | 11.4 | 57.5 | 42.5 | 790 | 7.0 | - | - | - | - | - | [22] |
R. eutropha H16, sodium gluconate | - | - | 59.6 | 40.4 | 190 | 2.9 | 123.4/ 164.9 | - | −1.7 | 71.0 | - | [31] |
- | - | 57.5 | 42.5 | 790 | 7.0 | 111.1/ 159.2 | - | - | 64.4 | - | ||
- | - | 73.1 | 26.9 | 490 | 4.2 | 102.2/ 137.5/ 153.9 | - | −3.3 | 62.6 | - | ||
- | - | 65.1 | 34.9 | 1120 | 1.1 | 111.6/ 132.6/ 168.6 | - | - | 50.3 | - | ||
- | - | 89.7 | 10.3 | 886 | 1.2 | 173.2 | - | - | - | - | ||
- | - | 74.9 | 25.1 | 132 | 2.1 | 150.2/ 163.9 | - | - | - | - | ||
- | - | 84.2 | 15.8 | 470 | 3.5 | 155.0/ 163.2 | - | - | 56.9 | - | ||
- | - | 92.8 | 7.2 | 715 | 1.8 | 151.3/ 163.2 | - | - | 59.1 | - | ||
- | - | 95.4 | 4.6 | 633 | 2.7 | 164.2 | - | - | 52.2 | - | ||
- | - | 91.3 | 8.7 | 749 | 3.6 | 162.9 | - | - | 52.3 | - | ||
Precursor of 3,3′-dithiodipropionic acid | ||||||||||||
R. eutropha H16, gluconate | - | 18.6 | 46.0 | 54.0 | 150 | 3.1 | - | - | - | - | - | [33] |
R. eutropha H16, gluconate | - | 33.1 | 75.5 | 24.5 | - | - | - | - | - | - | - | [36] |
W. eutropha H16, sodium gluconate | 7.45 | 8.1 | 71.9 | 28.1 | 314 | 4.2 | 111.9/ 129.1 | - | −3.0 | - | - | [37] |
6.71 | 2.9 | 61.4 | 38.6 | 498 | 3.69 | 56.3/ 153.0 | - | −3.2 | - | - | ||
6.73 | 9.7 | 52.0 | 48.0 | 251 | 3.3 | 55.1/ 149.1 | - | −10.7 /0.5 | - | - | ||
7.16 | 17.3 | 80.6 | 19.4 | 443 | 4.43 | 144.6 | - | 2.0 | - | - | ||
5.09 | 20.2 | 83.3 | 16.7 | 606 | 2.1 | 144.2 | - | 1.5 | - | - | ||
R. eutropha H16, sodium gluconate | - | 34.0 | 51.0 | 49.0 | - | - | - | - | - | - | - | [38] |
Precursor of 3,3′-thiodipropionic acid | ||||||||||||
R. eutropha H16, fructose | - | 19.2 | 73.1 | 26.9 | 490 | 4.2 | - | - | - | - | - | [22] |
R. eutropha H16, gluconate | - | 9.2 | 65.1 | 34.9 | 1120 | 1.1 | - | - | - | - | - | |
R. eutropha H16, gluconate | - | - | 82.0 | 18.0 | 792 | 2.4 | - | - | - | - | - | [25] |
R. eutropha H16, gluconate | - | 24.8 | 77.0 | 23.0 | 370 | 2.8 | - | - | - | - | - | [33] |
R. eutropha H16, gluconate | - | - | 94.0 | 6.0 | 1132 | 3.7 | 170.0 | 288 | 3.0 | 58.0 | - | [35] |
- | - | 86.0 | 14.0 | 999 | 3.7 | 168.0 | - | −16.3 | 52.0 | - | ||
- | - | 78.0 | 22.0 | 760 | 3.8 | 161.0 | 286 | −17.2 | 64.0 | - | ||
R. eutropha H16, gluconate | - | 38.4 | 84.9 | 15.1 | - | - | - | - | - | - | - | [36] |
R. eutropha H16, sodium gluconate | - | 57.0 | 89.4 | 10.6 | - | - | - | - | - | - | - | [38] |
C. necator H16, castor oil | 6.33 | 28.7 | 83.0 | 17.0 | 282 | 4.1 | - | - | - | - | - | [39] |
- | - | 93.0 | 7.0 | - | - | 137.7/ 154.4 | - | 1.7 | - | - | ||
- | - | 61.0 | 39.0 | - | - | 143.3/ 165.4 | - | −4.7 | - | - | ||
- | - | 78.0 | 22.0 | - | - | 132.3/ 151.7 | - | −0.5 | - | - | ||
- | - | 88.0 | 12.0 | - | - | 136.4/ 156.3 | - | 1.6 | - | - | ||
- | - | 68.0 | 32.0 | - | - | 137.2/ 152.6 | - | −3.1 | - | - | ||
C. necator H16, safflower oil | 6.89 | 35.0 | 88.0 | 12.0 | - | - | - | - | - | - | - | |
C. necator H16, rice oil | 7.30 | 42.5 | 92.0 | 8.0 | - | - | - | - | - | - | - | |
C. necator H16, corn oil | 6.27 | 41.4 | 87.0 | 13.0 | - | - | - | - | - | - | - | |
C. necator H16, soya oil | 6.82 | 46.1 | 96.0 | 4.0 | - | - | - | - | - | - | - | |
C. necator H16, peanut oil | 7.06 | 33.7 | 90.0 | 10.0 | - | - | - | - | - | - | - | |
C. necator H16, olive oil | 6.87 | 46.4 | 92.0 | 8.0 | - | - | - | - | - | - | - | |
C. necator H16, fructose | 4.19 | 20.9 | 84.0 | 16.0 | - | - | - | - | - | - | - | |
C. necator H16, glucose | 4.06 | 17.3 | 75.0 | 25.0 | - | - | - | - | - | - | - |
N | Precursor Concentration, g/L | Composition of Monomers, mol.% | Mn, kDa | Mw, kDa | Ð | Cx, % | Tmelt (°C) | Tdegr (°C) | Tg (°C) | Tc (°C) | |
---|---|---|---|---|---|---|---|---|---|---|---|
3HB | 3MP | ||||||||||
3-mercaptopropionic acid precursor | |||||||||||
1 | 0.7 | 97.96 | 2.04 | 46 | 202 | 4.4 | 50 | 167.9 173.5 | 132.9 279.3 | 9.9 | 69.5 |
2 | 2.0 | 95.50 | 4.50 | 29 | 342 | 11.8 | 48 | 169.2 | 257.1 | 5.3 | 88.5 |
3 | 4.5 (fractionally) | 89.20 | 10.80 | 120 (22%) 12 (78%) | 444 (22%) 35 (78%) | 3.7 (22%) 2.9 (78%) | 45 | 168.0 173.2 | 138.7 281.1 | −14.5 1.6 | 57.7 83.9 37.6 |
4 | 3.5 (fractionally) | 83.96 | 16.04 | 73 | 569 | 7.8 | 47 | 170.7 | 280.9 | 1.4 | 69.8 45.2 |
3,3′-dithiodipropionic acid precursor | |||||||||||
5 | 0.5 | 93.41 | 6.59 | 67 | 308 | 4.6 | 48 | 157.4 168.7 | 277.5 | 0.8 | 60.9 51.0 |
6 | 2.0 | 88.47 | 11.53 | 49 | 299 | 6.1 | 47 | 136.6 169.0 | 270.1 | −0.56 | 61.7 |
3,3′-thiodipropionic acid precursor | |||||||||||
7 | 2.0 | 97.77 | 2.23 | 157 | 471 | 3.0 | 50 | 141.0 159.3 | 271.2 | −0.8 | 55.5 |
8 | 2.0 (fractionally) | 92.02 | 7.98 | 80 | 336 | 4.2 | 54 | 143.3 168.7 | 282.5 | −0.1 | 48.7 |
9 | 4.0 (fractionally) | 85.10 | 14.90 | 37 | 337 | 9.1 | 51 | 171.4 | 280.1 | −0.9 | 61.3 |
10 | 6.0 (fractionally) | 61.00 | 39.00 | 32 | 342 | 10.7 | 42 | 173.1 | 280.6 | −3.3 | 51.2 |
P(3HB) | |||||||||||
11 | 0 | 100 | 0 | 368 | 920 | 2.5 | 74 | 179.3 | 279.4 | 5.3 | 81.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhila, N.O.; Sapozhnikova, K.Y.; Berezovskaya, A.V.; Kiselev, E.G.; Shishatskaya, E.I.; Vasiliev, A.D.; Thomas, S.; Volova, T.G. Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646. Polymers 2023, 15, 1005. https://doi.org/10.3390/polym15041005
Zhila NO, Sapozhnikova KY, Berezovskaya AV, Kiselev EG, Shishatskaya EI, Vasiliev AD, Thomas S, Volova TG. Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646. Polymers. 2023; 15(4):1005. https://doi.org/10.3390/polym15041005
Chicago/Turabian StyleZhila, Natalia O., Kristina Yu. Sapozhnikova, Arina V. Berezovskaya, Evgeniy G. Kiselev, Ekaterina I. Shishatskaya, Aleksander D. Vasiliev, Sabu Thomas, and Tatiana G. Volova. 2023. "Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646" Polymers 15, no. 4: 1005. https://doi.org/10.3390/polym15041005
APA StyleZhila, N. O., Sapozhnikova, K. Y., Berezovskaya, A. V., Kiselev, E. G., Shishatskaya, E. I., Vasiliev, A. D., Thomas, S., & Volova, T. G. (2023). Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646. Polymers, 15(4), 1005. https://doi.org/10.3390/polym15041005