Durability of Viscoelastic Fibre Prestressing in a Polymeric Composite
Abstract
:1. Introduction
2. Theoretical
2.1. Prestress Equavilence Principle
2.2. Durability Prediction through TTSP
3. Experimental
3.1. Sample Preparation and Durability Evaluation
3.2. Viscoelastic Recovery Force
3.3. Statistical Analysis
4. Results and Discussion
4.1. Short-Term Effectiveness
4.2. Recovery Force Equivalence
4.3. Middle-Term Effectiveness
4.4. Long-Term Effectiveness
4.5. Durability of Viscoelastic Fibre Prestressing
4.6. Towards Full Potential of Viscoelastic Fibre Prestressing
4.7. Viscoelastic Fibre Prestressing Mechanisms
5. Conclusions
- (i)
- The durability of viscoelastic fibre prestressing in a polymeric composite is evaluated through both natural aging (up to 0.5 years) and accelerated aging. It is found that the impact benefits are still active after being accelerated aged to an equivalent of 20,000 years at 20 °C, inferring long-term reliability of VFP-generated fibre recovery within a composite;
- (ii)
- The developed prestress equivalence principle shows a logarithmic relationship between applied creep stress σ and tn, allowing the prediction of the tn value required for a given σ. This is further verified by exploiting various creep stress conditions to obtain the same pre-strain level. It can also be applied to pursue towards achieving the full mechanical potential of the viscoelastic fibre prestressing, indicating further flexibility for VPPMC technology;
- (iii)
- Longer exposure of nylon 6,6 yarns to a higher strain level could increase the viscoelastic prestress-induced mechanical benefits. Compared to the ~3.4% pre-strain level, an 18% increase in viscoelastic creep strain results in a ~34% increase in prestress benefits, and there is no deterioration in prestress benefits up to 0.5 years in real-time;
- (iv)
- The increase in impact energy is a function of creep time at a constant creep stress (590 MPa). There is an optimum pre-strain level to maximise the prestress benefits. Increasing the creep stress (at constant creep time) or the creep time (at constant creep stress) have similar effects on the microstructures of the prestressed fibres; the prestress mechanisms are subsequently proposed.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EEST | Elastic energy storage site |
EFP | Elastic fibre prestressing |
EPPMC | Elastically prestressed polymeric matrix composite |
PMC | Polymeric matrix composite |
SE | Standard error |
TTM | Taut-tie molecule |
TTSP | Time-temperature superposition principle |
VEST | Viscoelastic energy storage site |
VFP | Viscoelastic fibre prestressing |
VPPMC | Viscoelastically prestressed polymeric matrix composite |
WLF | Williams-Landel-Ferry |
References
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-Destructive Testing and Evaluation of Composite Materials/Structures: A State-of-the-Art Review. Adv. Mech. Eng. 2020, 12, 1687814020913761. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Omidifar, N.; Bahrani, S.; Vijayakameswara Rao, N.; Babapoor, A.; Gholami, A.; Chiang, W.-H. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers 2022, 14, 617. [Google Scholar] [CrossRef]
- Hull, D.; Clyne, T.W. An Introduction to Composite Materials; Cambridge University Press: Cambridge, UK, 1996; ISBN 0521388554. [Google Scholar]
- Fancey, K.S. Viscoelastically Prestressed Polymeric Matrix Composites: An Overview. J. Reinf. Plast. Compos. 2016, 35, 1290–1301. [Google Scholar] [CrossRef]
- Daynes, S.; Weaver, P.M. Stiffness Tailoring Using Prestress in Adaptive Composite Structures. Compos. Struct. 2013, 106, 282–287. [Google Scholar] [CrossRef]
- Zhigun, I.G. Experimental Evaluation of the Effect of Prestressing the Fibers in Two Directions on Certain Elastic Characteristic of Woven-Glass Reinforced Plastics. Polym. Mech. 1968, 4, 691–695. [Google Scholar] [CrossRef]
- Tuttle, M.E. A Mechanical/Thermal Analysis of Prestressed Composite Laminates. J. Compos. Mater. 1988, 22, 780–792. [Google Scholar] [CrossRef]
- Zaidi, B.M.; Magniez, K.; Miao, M. Prestressed Natural Fibre Spun Yarn Reinforced Polymer-Matrix Composites. Compos. Part A Appl. Sci. Manuf. 2015, 75, 68–76. [Google Scholar] [CrossRef]
- Fancey, K.S. Investigation into the Feasibility of Viscoelastically Generated Pre-Stress in Polymeric Matrix Composites. Mater. Sci. Eng. A 2000, 279, 36–41. [Google Scholar] [CrossRef]
- Ogunleye, R.O.; Rusnakova, S. A Review of Prestressed Fibre-Reinforced Polymer Matrix Composites. Polymers 2022, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zheng, X.; Fan, W.; Wang, F.; Ahmed, S.; Yan, L. An Alternative Method to Reduce Process-Induced Deformation of CFRP by Introducing Prestresses. Chin. J. Aeronaut. 2022, 35, 314–323. [Google Scholar] [CrossRef]
- Chen, H.; Yu, F.; Wang, B.; Zhao, C.; Chen, X.; Nsengiyumva, W.; Zhong, S. Elastic Fibre Prestressing Mechanics within a Polymeric Matrix Composite. Polymers 2023, 15, 431. [Google Scholar] [CrossRef] [PubMed]
- Jokūbaitis, A.; Valivonis, J. An Analysis of the Transfer Lengths of Different Types of Prestressed Fiber-Reinforced Polymer Reinforcement. Polymers 2022, 14, 3931. [Google Scholar] [CrossRef]
- Mostafa, N.H.; Ismarrubie, Z.N.; Sapuan, S.M.; Sultan, M.T.H. Fibre Prestressed Composites: Theoretical and Numerical Modelling of Unidirectional and Plain-Weave Fibre Reinforcement Forms. Compos. Struct. 2017, 159, 410–423. [Google Scholar] [CrossRef]
- Mohamed, M.; Selim, M.M.; Ning, H.; Pillay, S. Effect of Fiber Prestressing on Mechanical Properties of Glass Fiber Epoxy Composites Manufactured by Vacuum-Assisted Resin Transfer Molding. J. Reinf. Plast. Compos. 2020, 39, 21–30. [Google Scholar] [CrossRef]
- Chillara, V.S.C.; Dapino, M.J. Mechanically-Prestressed Bistable Composite Laminates with Weakly Coupled Equilibrium Shapes. Compos. Part B Eng. 2017, 111, 251–260. [Google Scholar] [CrossRef]
- Mohamed, M.; Brahma, S.; Ning, H.; Pillay, S. Monitoring of Mechanical Properties of Prestressed Glass Fiber Epoxy Composites over 12 Months after Fabrication. J. Compos. Mater. 2021, 55, 3001–3011. [Google Scholar] [CrossRef]
- Mostafa, N.H.; Ismarrubie, Z.N.; Sapuan, S.M.; Sultan, M.T.H. Fibre Prestressed Polymer-Matrix Composites: A Review. J. Compos. Mater. 2016, 51, 39–66. [Google Scholar] [CrossRef]
- Fancey, K.S. Fiber-Reinforced Polymeric Composites with Viscoelastically Induced Prestress. J. Adv. Mater. 2005, 37, 21–29. [Google Scholar]
- Pang, J.W.C.; Fancey, K.S. Analysis of the Tensile Behaviour of Viscoelastically Prestressed Polymeric Matrix Composites. Compos. Sci. Technol. 2008, 68, 1903–1910. [Google Scholar] [CrossRef]
- Krishnamurthy, S. Pre-Stressed Advanced Fibre Reinforced Composites Fabrication and Mechanical Performance. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2006. [Google Scholar]
- Daynes, S.; Diaconu, C.G.; Potter, K.D.; Weaver, P.M. Bistable Prestressed Symmetric Laminates. J. Compos. Mater. 2010, 44, 1119–1137. [Google Scholar] [CrossRef]
- Mostafa, N.H.; Ismarrubie, Z.N.; Sapuan, S.M.; Sultan, M.T.H. Effect of Fabric Biaxial Prestress on the Fatigue of Woven E-Glass/Polyester Composites. Mater. Des. 2016, 92, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Fazal, A.; Fancey, K.S. Viscoelastically Prestressed Polymeric Matrix Composites–Effects of Test Span and Fibre Volume Fraction on Charpy Impact Characteristics. Compos. Part B Eng. 2013, 44, 472–479. [Google Scholar] [CrossRef]
- Qin, Y.; Fancey, K.S. Viscoelastically Prestressed Polymeric Matrix Composites—Effects of Delayed Moulding on Charpy Impact Properties. Compos. Part A Appl. Sci. Manuf. 2019, 121, 169–174. [Google Scholar] [CrossRef]
- Pang, J.W.C.; Fancey, K.S. An Investigation into the Long-Term Viscoelastic Recovery of Nylon 6,6 Fibres through Accelerated Ageing. Mater. Sci. Eng. A 2006, 431, 100–105. [Google Scholar] [CrossRef]
- Mostafa, N.H.; Ismarrubie, Z.N.; Sapuan, S.M.; Sultan, M.T.H. The Influence of Equi-Biaxially Fabric Prestressing on the Flexural Performance of Woven E-Glass/Polyester-Reinforced Composites. J. Compos. Mater. 2016, 50, 3385–3393. [Google Scholar] [CrossRef]
- Fazal, A.; Fancey, K.S. UHMWPE Fibre-Based Composites: Prestress-Induced Enhancement of Impact Properties. Compos. Part B Eng. 2014, 66, 1–6. [Google Scholar] [CrossRef]
- Fancey, K.S. Viscoelastically Prestressed Polymeric Matrix Composites—Potential for Useful Life and Impact Protection. Compos. Part B Eng. 2010, 41, 454–461. [Google Scholar] [CrossRef]
- Wang, B.; Fancey, K.S. Towards Optimisation of Load-Time Conditions for Producing Viscoelastically Prestressed Polymeric Matrix Composites. Compos. Part B Eng. 2016, 87, 336–342. [Google Scholar] [CrossRef]
- Wang, B.; Fancey, K.S. Viscoelastically Prestressed Polymeric Matrix Composites: An Investigation into Fibre Deformation and Prestress Mechanisms. Compos. Part A Appl. Sci. Manuf. 2018, 111, 106–114. [Google Scholar] [CrossRef]
- Pang, J.W.C.; Fancey, K.S. The Flexural Stiffness Characteristics of Viscoelastically Prestressed Polymeric Matrix Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 784–790. [Google Scholar] [CrossRef]
- Wang, B.; Fancey, K.S. A Bistable Morphing Composite Using Viscoelastically Generated Prestress. Mater. Lett. 2015, 158, 108–110. [Google Scholar] [CrossRef]
- Wang, B.; Ge, C.; Fancey, K.S. Snap-through Behaviour of a Bistable Structure Based on Viscoelastically Generated Prestress. Compos. Part B Eng. 2017, 114, 23–33. [Google Scholar] [CrossRef]
- Qin, Y.; Fancey, K.S. Towards “Green” Viscoelastically Prestressed Composites: Cellulose Fibre Reinforcement. Compos. Part B Eng. 2018, 154, 439–448. [Google Scholar] [CrossRef]
- France, L.A.; Fancey, K.S. Viscoelastically Active Sutures—A Stitch in Time? Mater. Sci. Eng. C 2021, 121, 111695. [Google Scholar] [CrossRef]
- Wisnom, M.R.; Gigliotti, M.; Ersoy, N.; Campbell, M.; Potter, K.D. Mechanisms Generating Residual Stresses and Distortion during Manufacture of Polymer–Matrix Composite Structures. Compos. Part A Appl. Sci. Manuf. 2006, 37, 522–529. [Google Scholar] [CrossRef]
- Tuttle, M.E.; Koehler, R.T.; Keren, D. Controlling Thermal Stresses in Composites by Means of Fiber Prestress. J. Compos. Mater. 1996, 30, 486–502. [Google Scholar] [CrossRef]
- Mills, G.J.; Dauksys, R.J. Effects of Prestressing Boron/Epoxy Prepreg on Composite Strength Properties. AIAA J. 1973, 11, 1459–1460. [Google Scholar] [CrossRef]
- Manders, P.W.; Chou, T.W. Enchancement of Strength in Composites Reinforced with Previously Stressed Fibers. J. Compos. Mater. 1983, 17, 26–44. [Google Scholar] [CrossRef]
- Fancey, K.S. A Latch-Based Weibull Model for Polymerie Creep and Recovery. J. Polym. Eng. 2001, 21, 489–510. [Google Scholar] [CrossRef]
- Pang, J.W.C.; Lamin, B.M.; Fancey, K.S. Force Measurement from Viscoelastically Recovering Nylon 6, 6 Fibres. Mater. Lett. 2008, 62, 1693–1696. [Google Scholar] [CrossRef]
- Howard, W.H.; Williams, M.L. The Viscoelastic Properties of Oriented Nylon 66 Fibers: Part I: Creep at Low Loads and Anhydrous Conditions. Text. Res. J. 1963, 33, 689–696. [Google Scholar] [CrossRef]
- Wang, B.; Fancey, K.S. Application of Time-Stress Superposition to Viscoelastic Behavior of Polyamide 6,6 Fiber and Its “true” Elastic Modulus. J. Appl. Polym. Sci. 2017, 134, 1–9. [Google Scholar] [CrossRef]
- Fairhurst, A.; Thommen, M.; Rytka, C. Comparison of Short and Long Term Creep Testing in High Performance Polymers. Polym. Test. 2019, 78, 105979. [Google Scholar] [CrossRef]
- Chevali, V.S.; Dean, D.R.; Janowski, G.M. Flexural Creep Behavior of Discontinuous Thermoplastic Composites: Non-Linear Viscoelastic Modeling and Time–Temperature–Stress Superposition. Compos. Part A Appl. Sci. Manuf. 2009, 40, 870–877. [Google Scholar] [CrossRef]
- Dunell, B.A.; Joanes, A.A.; Rye, R.T.B. Viscoelastic Behavior of Nylon 6-6 Monofilaments below Room Temperature. J. Colloid Sci. 1960, 15, 193–204. [Google Scholar] [CrossRef]
- Murayama, T.; Dumbleton, J.H.; Williams, M.L. The Viscoelastic Properties of Oriented Nylon 66 Fibers. Part III: Stress Relaxation and Dynamic Mechanical Properties. J. Macromol. Sci. Part B Phys. 1967, 1, 1–14. [Google Scholar] [CrossRef]
- Doolittle, A.K. Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-space. J. Appl. Phys. 1951, 22, 1471–1475. [Google Scholar] [CrossRef]
- Starkova, O.; Gagani, A.I.; Karl, C.W.; Rocha, I.B.C.M.; Burlakovs, J.; Krauklis, A.E. Modelling of Environmental Ageing of Polymers and Polymer Composites—Durability Prediction Methods. Polymers 2022, 14, 907. [Google Scholar]
- Fancey, K.S.; Fazal, A. Prestressed Polymeric Matrix Composites: Longevity Aspects. Polym. Compos. 2016, 37, 2092–2097. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980; ISBN 0471048941. [Google Scholar]
- Findley, W.N.; Davis, F.A. Creep and Relaxation of Nonlinear Viscoelastic Materials; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Williams, M.L.; Bender, M.F. Extension of Unoriented Nylon 66 Filaments. III. Superposition of Data. J. Appl. Phys. 1965, 36, 3044–3049. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences; Cengage Learning: Boston, MA, USA, 2011; ISBN 0538733527. [Google Scholar]
- Wang, B. Viscoelastically Prestressed Composites: Towards Process Optimisation and Application to Morphing Structures. Ph.D. Thesis, University of Hull, Hull, UK, 2016. [Google Scholar]
Natural Age (h) | Mean Impact Energy (kJ m−2) | Increase in Energy (%) | ||
---|---|---|---|---|
Batch | Test ± SE | Control ± SE | ||
330 MPa (24 h) | 336 | 33.93 ± 3.14 | 23.78 ± 1.48 | 42.64 |
37.02 ± 1.78 | 20.71 ± 0.63 | 78.76 | ||
35.36 ± 1.71 | 25.03 ± 0.96 | 41.26 | ||
36.71 ± 2.89 | 25.60 ± 1.15 | 43.37 | ||
35.58 ± 1.96 | 21.61 ± 1.13 | 64.69 | ||
Mean ± SE | 35.7 ± 1.0 | 23.4 ± 0.6 | 54.1 ± 7.5 | |
665 MPa (20 min) | 336 | 34.74 ± 1.18 | 22.54 ± 1.16 | 54.14 |
37.32 ± 1.44 | 24.00 ± 0.59 | 55.54 | ||
38.42 ± 1.78 | 22.73 ± 0.45 | 68.99 | ||
38.74 ± 2.46 | 25.03 ± 0.59 | 54.79 | ||
34.00 ± 1.69 | 23.38 ± 0.55 | 45.46 | ||
Mean ± SE | 36.65 ± 0.82 | 23.53 ± 0.35 | 55.78 ± 3.77 |
Creep Condition | Recovery Force | ||||
---|---|---|---|---|---|
σv (MPa) | Δt (h) | η (h) | β | r | |
330 MPa-24 h-01 | 5.2028 | 0.0414 | 9.6148 | 0.3382 | 0.9989 |
330 MPa-24 h-02 | 5.0470 | 0.1632 | 59.778 | 0.3831 | 0.9968 |
590 MPa-37 min-01 | 11.744 | 0.0676 | 4135.6 | 0.1337 | 0.9989 |
590 MPa-37 min-02 | 14.527 | 0.0751 | 116,460 | 0.1548 | 0.9988 |
Natural Age (h) | Mean Impact Energy (kJ m−2) | Increase in Energy (%) | ||
---|---|---|---|---|
Batch | Test ± SE | Control ± SE | ||
330 MPa (24 h) | 4392 | 40.00 ± 2.40 | 25.77 ± 0.64 | 55.21 |
35.50 ± 3.12 | 20.32 ± 0.63 | 74.72 | ||
37.71 ± 1.44 | 23.43 ± 0.81 | 60.96 | ||
34.97 ± 3.71 | 23.13 ± 0.38 | 51.20 | ||
34.31 ± 3.01 | 25.05 ± 1.14 | 36.95 | ||
Mean ± SE | 36.50 ± 1.22 | 23.54 ± 0.47 | 55.81 ± 6.17 | |
590 MPa (37 min) | 4392 | 44.14 ± 1.82 | 25.17 ± 1.27 | 75.33 |
44.26 ± 3.11 | 24.46 ± 0.50 | 80.98 | ||
39.76 ± 2.70 | 25.51 ± 0.69 | 55.85 | ||
35.34 ± 1.74 | 23.96 ± 1.78 | 47.49 | ||
34.06 ± 1.90 | 22.90 ± 0.35 | 48.71 | ||
Mean ± SE | 39.51 ± 1.24 | 24.40 ± 0.50 | 61.67 ± 6.94 |
Exposure to 70 °C | Age Equivalent @ 20 °C | Mean Impact Energy (kJ m−2) | Increase in Energy (%) | ||
---|---|---|---|---|---|
Batch | Test ± SE | Control ± SE | |||
330 MPa (24 h) | 2298 | 20,000 | 34.51 ± 2.07 | 22.30 ± 1.11 | 54.73 |
33.74 ± 1.63 | 22.99 ± 0.77 | 46.76 | |||
34.77 ± 2.32 | 22.15 ± 0.96 | 56.94 | |||
Mean ± SE | 34.34 ± 1.09 | 22.48 ± 0.52 | 52.81 ± 3.09 | ||
590 MPa (37 min) | 2298 | 20,000 | 31.78 ± 0.81 | 22.44 ± 0.84 | 41.64 |
32.65 ± 0.20 | 18.93 ± 0.47 | 72.47 | |||
35.91 ± 1.74 | 21.48 ± 0.33 | 67.18 | |||
Mean ± SE | 33.45 ± 0.76 | 20.95 ± 0.51 | 60.43 ± 9.52 |
Natural Age (h) | Mean Impact Energy (kJ m−2) | Increase in Energy (%) | ||
---|---|---|---|---|
Batch | Test ± SE | Control ± SE | ||
460 MPa (24 h) | 336 | 39.63 ± 2.22 | 24.08 ± 0.74 | 64.60 |
37.30 ± 0.54 | 22.28 ± 0.88 | 67.39 | ||
38.57 ± 1.35 | 19.46 ± 0.15 | 98.21 | ||
39.36 ± 0.95 | 22.59 ± 0.66 | 74.23 | ||
44.81 ± 1.86 | 23.41 ± 0.59 | 91.36 | ||
Mean ± SE | 39.93 ± 0.81 | 22.36 ± 0.42 | 79.16 ± 6.66 | |
590 MPa (134 min) | 336 | 38.73 ± 1.76 | 20.79 ± 0.62 | 86.26 |
39.38 ± 1.19 | 23.18 ± 0.68 | 69.90 | ||
38.35 ± 1.95 | 23.70 ± 0.51 | 61.82 | ||
42.00 ± 3.15 | 23.25 ± 0.74 | 80.69 | ||
41.75 ± 3.39 | 24.06 ± 1.49 | 73.53 | ||
Mean ± SE | 40.04 ± 0.92 | 22.99 ± 0.35 | 74.44 ± 4.24 | |
665 MPa (48 min) | 336 | 42.07 ± 4.99 | 23.91 ± 0.49 | 75.95 |
43.29 ± 1.86 | 23.87 ± 0.66 | 81.23 | ||
37.57 ± 1.53 | 22.81 ± 0.60 | 64.67 | ||
39.29 ± 2.10 | 23.66 ± 0.72 | 66.05 | ||
44.07 ± 2.84 | 25.16 ± 0.09 | 75.17 | ||
Mean ± SE | 41.26 ± 1.30 | 23.89 ± 0.28 | 72.61 ± 3.15 | |
590 MPa (134 min) | 4392 | 37.65 ± 2.09 | 26.05 ± 0.74 | 44.54 |
38.57 ± 2.44 | 25.14 ± 0.63 | 53.38 | ||
36.16 ± 3.16 | 22.82 ± 0.46 | 58.48 | ||
40.19 ± 3.49 | 22.09 ± 0.66 | 81.95 | ||
42.26 ± 4.60 | 23.20 ± 0.28 | 82.17 | ||
Mean ± SE | 38.96 ± 1.21 | 23.86 ± 0.42 | 64.10 ± 7.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Wang, B.; Zhao, C.; Nsengiyumva, W.; Zhong, S.; Chen, H.; Liu, D. Durability of Viscoelastic Fibre Prestressing in a Polymeric Composite. Polymers 2023, 15, 811. https://doi.org/10.3390/polym15040811
Lin X, Wang B, Zhao C, Nsengiyumva W, Zhong S, Chen H, Liu D. Durability of Viscoelastic Fibre Prestressing in a Polymeric Composite. Polymers. 2023; 15(4):811. https://doi.org/10.3390/polym15040811
Chicago/Turabian StyleLin, Xueqi, Bing Wang, Chenmin Zhao, Walter Nsengiyumva, Shuncong Zhong, Hui Chen, and Dianzi Liu. 2023. "Durability of Viscoelastic Fibre Prestressing in a Polymeric Composite" Polymers 15, no. 4: 811. https://doi.org/10.3390/polym15040811
APA StyleLin, X., Wang, B., Zhao, C., Nsengiyumva, W., Zhong, S., Chen, H., & Liu, D. (2023). Durability of Viscoelastic Fibre Prestressing in a Polymeric Composite. Polymers, 15(4), 811. https://doi.org/10.3390/polym15040811