Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Cellulose
2.3. Preparation of Cellulose Nanofibers and CNF and CMC
2.4. Liquid Deposition Modelling
2.5. Characterization
2.6. Adsorption and Release of Bovine Serum Albumin
3. Results
3.1. Characterization
3.2. Nanocellulose-Based 3D Printing Parameter
3.3. Swelling and Water Absorptivity of Hydrogel
3.4. Capability Uptake and Release of Protein
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dumanli, A.G. Nanocellulose and Its Composites for Biomedical Applications. Curr. Med. Chem. 2017, 24, 512–528. [Google Scholar] [CrossRef] [PubMed]
- Durand, H.; Smyth, M.; Bras, J. Nanocellulose: A New Biopolymer for Biomedical Application. In Biopolymers for Biomedical and Biotechnological Applications, 1st ed.; Rehm, B.H.A., Moradali, M.F., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 129–179. [Google Scholar]
- Alam, A.S.A.F.; Er, A.C.; Begum, H. Malaysian Oil Palm Industry: Prospect and Problem. J. Food Agric. Environ. 2015, 1313, 143–148. [Google Scholar]
- Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A. An Outlook of Malaysian Energ, Oil Palm Industry and Its Utilization of Wastes as Useful Resources. Biomass Bioenergy 2011, 35, 3775–3786. [Google Scholar]
- Dungani, R.; Abdul Khalil, H.P.S.; Aprilia, N.A.S.; Sumardi, I.; Aditiawati, P.; Darwis, A.; Karliati, T.; Sulaeman, A.; Rosamah, E.; Riza, M. Bionanomaterial from Agricultural Waste and Its Application. In Cellulose-Reinforced Nanofibre Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–88. [Google Scholar]
- Dufresne, A. Nanocellulose: A New Ageless Bionanomaterial. In Materials Today; Elsevier: Amsterdam, The Netherlands, 2013; Volume 16, pp. 220–227. [Google Scholar]
- Al Rashid, A.; Khan, S.A.; Al-Ghamdi, S.G.; Koç, M. Additive Manufacturing of Polymer Nanocomposites: Needs and Challenges in Materials, Processes, and Applications. J. Mater. Res. Technol. 2021, 14, 910–941. [Google Scholar]
- Cheng, Y.; Shi, X.; Jiang, X.; Wang, X.; Qin, H. Printability of a Cellulose Derivative for Extrusion-Based 3D Printing: The Application on a Biodegradable Support Material. Front. Mater. 2020, 7, 1–6. [Google Scholar]
- Mukherjee, P.; Rani, A.; Saravanan, P. Polymeric Materials for 3D Bioprinting. In 3D Printing Technology in Nanomedicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–81. [Google Scholar]
- Cheng, Q.; Wang, S.; Rials, T.G. Poly(Vinyl Alcohol) Nanocomposites Reinforced with Cellulose Fibrils Isolated by High Intensity Ultrasonication. Compos. Part A Appl. Sci. Manuf. 2009, 40, 218–224. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef]
- Siro, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 2010, 17, 459–494. [Google Scholar]
- Goyanes, A.; Allahham, N.; Trenfield, S.J.; Stoyanov, E.; Gaisford, S.; Basit, A.W. Direct Powder Extrusion 3D Printing: Fabrication of Drug Products Using a Novel Single-Step Process. Int. J. Pharm. 2019, 567, 118471. [Google Scholar]
- Hu, X.; Yang, Z.; Kang, S.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D.; He, J. Cellulose Hydrogel Skeleton by Extrusion 3D Printing of Solution. Nanotechnol. Rev. 2020, 9, 345–353. [Google Scholar] [CrossRef]
- Larraza, I.; Vadillo, J.; Calvo-correas, T.; Tejado, A.; Olza, S.; Peña-Rodriguez, C.; Arbelaiz, A.; Eceiza, A. Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability. Polymers 2021, 13, 1–19. [Google Scholar]
- Maturavongsadit, P.; Narayanan, L.K.; Chansoria, P.; Shirwaiker, R.; Benhabbour, S.R. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS Appl. Bio Mater. 2021, 4, 2342–2353. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Sajab, M.S.; Kaco, H.; Bakarudin, S.B.; Noor, A.M. 3D Printing of Uv-Curable Polyurethane Incorporated With Surface-Grafted Nanocellulose. Nanomaterials 2019, 9, 1–15. [Google Scholar]
- Caliari, S.R.; Burdick, J.A. A Practical Guide to Hydrogels for Cell Culture. Nat. Methods 2016, 13, 405–414. [Google Scholar] [CrossRef]
- Mohan, D.; Khairullah, N.F.; How, Y.P.; Sajab, M.S.; Kaco, H. 3D Printed Laminated CaCO3 -Nanocellulose Films as Controlled-Release 5-Fluorouracil. Polymers 2020, 12, 986. [Google Scholar]
- Sajab, M.S.; Mohan, D.; Santanaraj, J.; Chia, C.H.; Kaco, H.; Harun, S.; Kamarudin, N.H.N. Telescopic Synthesis of Cellulose Nanofibrils with a Stable Dispersion of Fe (0) Nanoparticles for Synergistic Removal of 5-Fluorouracil. Nat. Res. 2019, 9, 1–11. [Google Scholar]
- Costa, M.L.; Rezende, M.C.; de Almeida, S.F.M. Effect of Void Content on the Moisture Absorption in Polymeric Composites. Polym.-Plast. Technol. Eng. 2006, 45, 691–698. [Google Scholar]
- Gagauz, I.; Kawashita, L.F.; Hallett, S.R. Understanding the Effect of Void Morphology and Characteristics on Laminate Mechanical Properties. ICCM Int. Conf. Compos. Mater. 2017, 2017, 1–8. [Google Scholar]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in Fibre-Reinforced Polymer Composites: A Review on Their Formation, Characteristic, and Effects on Mechanical Performace. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar]
- Gorgieva, S.; Vogrinčič, R.; Kokol, V. The Effect of Membrane Structure Prepared from Carboxymethyl Cellulose and Cellulose Nanofibrils for Cationic Dye Removal. J. Polym. Environ. 2018, 27, 318–332. [Google Scholar] [CrossRef]
- Soni, B.; Hassan, E.B.; Mahmoud, B. Chemical Isolation and Characterization of Different Cellulose Nanofibers from Cotton Stalks. Carbohydr. Polym. 2015, 134, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [PubMed]
- Baghbadorani, N.B.; Behzad, T.; Darvanjooghi, M.H.K.; Etesami, N. Modelling of Water Absorption Kinetics and Biocompatibility Study of Synthesized Cellulose Nanofiber-Assisted Starch-Graft-Poly(Acrylic Acid) Hydrogel Nanocomposites. Cellulose 2020, 27, 9927–9945. [Google Scholar]
- Kumar, B.; Priyadarshi, R.; Sauraj, S.; Deeba, F.; Kulshreshtha, A.; Gaikwad, K.K.; Kim, J.; Kumar, A.; Negi, Y.S. Nanoporous Sodium Carboxymethyl Cellulose-g-Poly (Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization. Gels 2020, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, L.; Xu, M. Novel Regenerated Cellulose Films Prepared by Coagulating with Water: Structure and Properties. Carbohydr. Polym. 2012, 87, 95–100. [Google Scholar] [CrossRef]
- Lin, F.; Lu, X.; Wang, Z.; Lu, Q.; Lin, G.; Lu, B. In Situ Polymerization Approach to Cellulose—Polyacrylamide Interpenetrating Network Hydrogel with High Strength and pH-Responsive Properties. Cellulose 2018, 26, 1825–1839. [Google Scholar]
- Huang, B.; Liu, M.; Zhou, C. Cellulose—Halloysite Nanotube Composite Hydrogels for Curcumin Delivery. Cellulose 2017, 24, 2861–2875. [Google Scholar]
- Zhang, J.; Wang, Q.; Shan, Y.; Guo, Y.; Mu, W.; Wei, K.; Sun, Y. Effect of Sodium Carboxymethyl Cellulose on Water and Salt Transport Characteristics of Saline-Alkali Soil in Xinjiang, China. Polymers 2022, 14, 2884. [Google Scholar] [CrossRef]
- Arancibia, C.; Navarro-Lisboa, R.; Zuniga, R.N.; Matiacevich, S. Application of CMC as Thickener on Nanoemulsions Based on Olive Oil: Physical Properties and Stability. Int. J. Polym. Sci. 2016, 2016, 6280581. [Google Scholar]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Formation of Hydrogels from Cellulose Nanofibers. Carbohydr. Polym. 2011, 85, 733–737. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Cellulose Nanofiber-Based Hydrogels with High Mechanical Strength. Cellulose 2012, 19, 1907–1912. [Google Scholar]
- Ezati, P.; Priyadarshi, R.; Bang, Y.J.; Rhim, J.W. CMC and CNF-Based Intelligent PH-Responsive Color Indicator Films Integrated with Shikonin to Monitor Fish Freshness. Food Control 2021, 126, 1–9. [Google Scholar]
- Jeong, D.; Joo, S.W.; Hu, Y.; Shinde, V.V.; Cho, E.; Jung, S. Carboxymethyl Cellulose-Based Superabsorbent Hydrogels Containing Carboxymehtyl β-Cyclodextrin for Enhanced Mechanical Strength and Effective Drug Delivery. Eur. Polym. J. 2018, 105, 17–25. [Google Scholar]
- Kim, C.H.; Kim, E.; Hong, B.M.; Park, S.A.; Park, W.H. Photocrosslinked Poly (γ -Glutamic Acid) Hydrogel for 3D Bioprinting. React. Funct. Polym. 2021, 161, 1–18. [Google Scholar] [CrossRef]
- Yang, J.; Medronho, B.; Lindman, B.; Norgen, M. Simple One Pot Preparation of Chemical Hydrogels from Cellulose Dissolved in Cold LiOH/Urea. Polymers 2020, 12, 373. [Google Scholar] [CrossRef]
- Tuan Mohamood, N.F.A.Z.; Abdul Halim, A.H.; Zainuddin, N. Carboxymethyl Cellulose Hydrogel from Biomass Waste of Oil Palm Empty Fruit Bunch Using Calcium Chloride as Crosslinking Agent. Polymers 2021, 13, 1–16. [Google Scholar]
- Nan, N.F.C.; Zainuddin, N.; Ahmad, M. Preparation and Swelling Study of CMC Hydrogel as Potential Superabsorbent. Pertanika J. Sci. Technol. 2019, 27, 489–498. [Google Scholar]
- Borzova, V.A.; Markossian, K.A.; Chebotareva, N.A.; Kleymenov, S.Y.; Poliansky, N.B.; Muranov, K.O.; Stein-Margolina, V.A.; Shubin, V.V.; Markov, D.I.; Kurganov, B.I. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin. PLoS ONE 2016, 11, 1–29. [Google Scholar]
- Jiang, L.L.; Yu, H.T.; Pei, L.F.; Hou, X.G. The Effect of Temperatures on the Synergistic Effect between a Magnetic Field and Functionalized Graphene Oxide-Carbon Nanotube Composite for Pb2+ and Phenol Adsorption. J. Nanomater. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
CNF:CMC:CaCl2 | Swelling Ratio (%) | |
---|---|---|
Wet | Dry | |
50:50:0 | 1.99 | 13.33 |
50:50:1 | 2.08 | 16.00 |
62.5:37.5:0 | 2.72 | 21.43 |
62.5:37.5:1 | 7.14 | 30.00 |
75:25:0 | 2.21 | 16.25 |
75:25:1 | 2.78 | 11.11 |
87.5:12.5:0 | 2.70 | 31.25 |
87.5:12.5:1 | 5.88 | 33.33 |
CNF:CMC:CaCl2 | Uptake (%) | Release (%) |
---|---|---|
50:50:0 | 72.53 | 18.90 |
50:50:1 | 83.55 | 59.06 |
62.5:37.5:0 | 67.43 | 28.39 |
62.5:37.5:1 | 73.96 | 48.19 |
75:25:0 | 49.29 | 22.26 |
75:25:1 | 65.74 | 54.22 |
87.5:12.5:0 | 32.84 | 75.11 |
87.5:12.5:1 | 52.02 | 47.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Jusoh, W.N.L.; Mohan, D.; Sajab, M.S.; Abdul, P.M.; Kaco, H.; Ding, G.; Baini, R. Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin. Polymers 2023, 15, 837. https://doi.org/10.3390/polym15040837
Wan Jusoh WNL, Mohan D, Sajab MS, Abdul PM, Kaco H, Ding G, Baini R. Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin. Polymers. 2023; 15(4):837. https://doi.org/10.3390/polym15040837
Chicago/Turabian StyleWan Jusoh, Wan Nazihah Liyana, Denesh Mohan, Mohd Shaiful Sajab, Peer Mohamed Abdul, Hatika Kaco, Gongtao Ding, and Rubiyah Baini. 2023. "Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin" Polymers 15, no. 4: 837. https://doi.org/10.3390/polym15040837
APA StyleWan Jusoh, W. N. L., Mohan, D., Sajab, M. S., Abdul, P. M., Kaco, H., Ding, G., & Baini, R. (2023). Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin. Polymers, 15(4), 837. https://doi.org/10.3390/polym15040837