3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanocellulose Preparation
2.3. Parameter for Liquid Printing
2.4. Adsorption Study
2.5. Characterization
3. Results
3.1. Characterization
3.2. Batch Adsorption Study
3.3. Column Adsorption Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Pearce, C.I.; Lloyd, J.R.; Guthrie, J.T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dye. Pigment. 2003, 3, 179–196. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Piaskowski, K.; Swiderska-Dabrowska, R.; Zarzycki, P.K. Dye Remowal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes. J. AOAC Int. 2018, 5, 1371–1384. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.M.; Camparotto, N.G.; Neves, T.F.; Mastelaro, V.R.; Nunes, B.; Picone, C.S.F.; Prediger, P. Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: Batch, fixed-bed experiments and mechanism. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100584. [Google Scholar] [CrossRef]
- Tang, J.; Sisler, J.; Grishkewich, N.; Tam, K.C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 2017, 494, 397–409. [Google Scholar] [CrossRef]
- Ammala, A.; Sirvio, J.A.; Liimatainen, H. Pine sawdust modification using Fenton oxidation for enhanced production of high-yield lignin-containing microfibrillated cellulose. Ind. Crops Prod. 2022, 186, 115196. [Google Scholar] [CrossRef]
- Mohan, D.; Teong, Z.K.; Bakir, A.N.; Sajab, M.S.; Kaco, H. Extending cellulose-based polymers application in additive manufacturing technology: A review of recent approaches. Polymers 2020, 12, 1876. [Google Scholar] [CrossRef]
- Li, V.C.F.; Dunn, C.K.; Zhang, Z.; Deng, Y.; Qi, H.J. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures. Sci. Rep. 2017, 7, 8018. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, F.; Zhai, W.; Cheng, S.; Li, J.; Wang, Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers 2022, 14, 566. [Google Scholar] [CrossRef] [PubMed]
- Aarstad, O.; Heggset, E.B.; Pedersen, I.S.; Bjørnøy, S.H.; Syverud, K.; Strand, B.L. Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils. Polymers 2017, 9, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, D.; Teong, Z.K.; Sajab, M.S.; Hidayatul, N.; Kamarudin, N.; Kaco, H. Intact Fibrillated 3D-Printed Cellulose Macrofibrils/CaCO3 for Controlled Drug Delivery. Polymers 2021, 13, 1912. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.H.M.; Chong, C.H.; Wan, Y.K.; Cheah, K.H.; Wong, V.L. Optimization strategies and emerging application of functionalized 3D-printed materials in water treatment: A review. J. Water Process. Eng. 2023, 51, 103410. [Google Scholar] [CrossRef]
- Yuan, J.; Yi, C.; Jiang, H.; Liu, F.; Cheng, G.J. Direct Ink Writing of Hierarchically Porous Cellulose/Alginate Monolithic Hydrogel as a Highly Effective Adsorbent for Environmental Applications. ACS Appl. Polym. Mater. 2021, 2, 699–709. [Google Scholar] [CrossRef]
- Sajab, M.S.; Mohan, D.; Santanaraj, J.; Chia, C.H.; Kaco, H.; Harun, S.; Kamarudin, N.H.N. Telescopic Synthesis of Cellulose Nanofibrils with a Stable Dispersion of Fe(0) Nanoparticles for Synergistic Removal of 5-Fluorouracil. Sci. Rep. 2019, 9, 11703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arris, F.A.; Mohan, D.; Sajab, M.S. Facile Synthesis of 3D Printed Tailored Electrode for 3-Monochloropropane-1, 2-Diol (3-MCPD) Sensing. Micromachines 2022, 13, 383. [Google Scholar] [CrossRef]
- Chan, C.H.; Chia, C.H.; Zakaria, S.; Sajab, M.S.; Chin, S.X. Cellulose nanofibrils: A rapid adsorbent for the removal of methylene blue. RSC Adv. 2015, 5, 18204–18212. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chakraborty, S.; Saha, P. Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: Equilibrium, kinetics and thermodynamics. Sep. Sci. Technol. 2012, 48, 1339–1348. [Google Scholar] [CrossRef]
- Hamdaoui, O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J. Hazard. Mater. 2006, 135, 264–273. [Google Scholar] [CrossRef]
- Vadivelan, V.; Kumar, K.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Batzias, F.A.; Sidiras, D.K. Simulation of dye adsorption by beech sawdust as affected by pH. J. Hazard. Mater. 2007, 141, 668–679. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. Prot. 1998, 76, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Lagergren, S. About the theory of so-called adsorption of soluble substance. K. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Engrs. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Dural, M.U.; Cavas, L.; Papageorgiou, S.K.; Katsaros, F.K. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J. 2011, 168, 77–85. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part. I: Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Han, R.; Wang, Y.; Yu, W.; Zou, W.; Shi, J.; Liu, H. Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. J. Hazard. Mater. 2007, 141, 713–718. [Google Scholar] [CrossRef]
- Rahaman, M.; Das, A.; Bose, S. Development of copper—Iron bimetallic nanoparticle impregnated activated carbon derived from coconut husk and its efficacy as a novel adsorbent toward the removal of chromium (VI) from aqueous solution. Water Environ. Res. 2021, 93, 1417–1427. [Google Scholar] [CrossRef]
- Yin, C.Y.; Aroua, M.K.; Daud, W.M.A.W. Fixed-bed adsorption of metal ions from aqueous solution on polyethyleneimine-impregnated palm shell activated carbon. Chem. Eng. J. 2009, 148, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Acheampong, M.A.; Pakshirajan, K.; Annachhatre, A.P.; Lens, P.N.L. Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. J. Ind. Eng. Chem. 2013, 19, 841–848. [Google Scholar] [CrossRef]
- Thomas, H.C. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Kumar, G.V.A.; Mishra, I.M. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 175–187. [Google Scholar] [CrossRef]
Initial MB Concentration (mg/L) | Pseudo-First Order | Pseudo-Second Order | Intraparticle Diffusion | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qe exp (mg/g) | qe cal (mg/g) | k1 (h−1) | r2 | qe cal (mg/g) | k2 (g/mg·min) | r2 | qe cal (mg/g) | ki (mg/g·h1/2) | r2 | |
50 | 44.11 | 42.76 | 0.254 | 0.962 | 43.45 | 0.0221 | 0.994 | 41.05 | 0.228 | 0.733 |
100 | 89.87 | 86.33 | 0.149 | 0.879 | 89.88 | 0.0135 | 0.976 | 60.60 | 2.203 | 0.747 |
150 | 108.70 | 132.43 | 0.285 | 0.935 | 134.01 | 0.0099 | 0.951 | 68.68 | 2.667 | 0.908 |
200 | 117.80 | 130.28 | 0.223 | 0.800 | 133.93 | 0.00043 | 0.892 | 72.59 | 2.935 | 0.967 |
250 | 130.33 | 149.41 | 0.119 | 0.927 | 156.79 | 0.00015 | 0.956 | 61.43 | 4.891 | 0.948 |
300 | 155.43 | 158.61 | 0.100 | 0.944 | 167.58 | 0.00011 | 0.990 | 86.86 | 4.989 | 0.726 |
Temperature | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
(°C) | Q0 | b | RL | r2 | KF | n | r2 |
20 | 76.90 | 0.211 | 0.013 | 0.996 | 35.5 | 4.65 | 0.973 |
40 | 89.87 | 0.228 | 0.034 | 0.995 | 36.7 | 4.72 | 0.930 |
60 | 101.70 | 0.233 | 0.019 | 0.993 | 36.9 | 3.89 | 0.923 |
Ct/C0 | kB (L/mg·min) | N0 (mg/L) | r2 |
---|---|---|---|
0.1 | 259.93 | 374.94 | 0.988 |
0.2 | 90.63 | 384.87 | 0.980 |
0.4 | 42.81 | 388.89 | 0.980 |
F (L/min) | z (cm) | C0 (mg/L) | kTh (L/mg·min) | q0 Th (mg/g) | r2 |
---|---|---|---|---|---|
0.005 | 4 | 300 | 0.86 × 10−4 | 128.04 | 0.965 |
0.010 | 4 | 300 | 2.14 × 10−4 | 102.08 | 0.950 |
0.015 | 4 | 300 | 5.29 × 10−4 | 62.50 | 0.950 |
0.010 | 2 | 300 | 4.37 × 10−4 | 66.19 | 0.964 |
0.010 | 4 | 300 | 2.14 × 10−4 | 102.08 | 0.950 |
0.010 | 6 | 300 | 1.43 × 10−4 | 113.88 | 0.908 |
0.010 | 4 | 200 | 1.89 × 10−4 | 108.39 | 0.901 |
0.010 | 4 | 300 | 2.14 × 10−4 | 102.08 | 0.950 |
0.010 | 4 | 400 | 1.51 × 10−4 | 119.33 | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajab, M.S.; Wan Jusoh, W.N.L.; Mohan, D.; Kaco, H.; Baini, R. 3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems. Polymers 2023, 15, 969. https://doi.org/10.3390/polym15040969
Sajab MS, Wan Jusoh WNL, Mohan D, Kaco H, Baini R. 3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems. Polymers. 2023; 15(4):969. https://doi.org/10.3390/polym15040969
Chicago/Turabian StyleSajab, Mohd Shaiful, Wan Nazihah Liyana Wan Jusoh, Denesh Mohan, Hatika Kaco, and Rubiyah Baini. 2023. "3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems" Polymers 15, no. 4: 969. https://doi.org/10.3390/polym15040969
APA StyleSajab, M. S., Wan Jusoh, W. N. L., Mohan, D., Kaco, H., & Baini, R. (2023). 3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems. Polymers, 15(4), 969. https://doi.org/10.3390/polym15040969