Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Reaction Mechanism of LSBs
3. Challenges of Lithium Batteries
3.1. Poor Electrical Conductivity of the Active Material
3.2. The Polysulfides Shuttle
3.3. Volume Expansion
3.4. Corrosion and Dendrite Growth of Lithium Anode
4. Research Progress in the Engineering Design and Function of Lithium–sulfur Battery Separators Modification
4.1. Improvement of the Adsorption Capacity of Polysulfides of Functionalized Separators
- (1)
- The abundant microporous and mesoporous structures can provide more sites for the electrochemical conversion of polysulfides, improve the efficiency of electrochemical reactions, and play a role in physical sulfur fixation. Polar inorganic compounds have an excellent adsorption capacity for polysulfides, so the introduction of polar materials into the conductive modification layer can more effectively adsorb dissolved polysulfides and play an efficient sulfur fixing effect. However, the conductivity of most inorganic compounds is very poor, and increasing the doping amount of polar materials is bound to reduce the conductivity of the modified layer and sacrifice the electrochemical activity of the modified layer. Therefore, scientific researchers try to achieve the conductive functionalization of polar materials or select polar adsorption materials with excellent conductivity to modify the separator to improve the comprehensive performance of lithium–sulfur batteries. Pengyu Li et al. [32] first reported on the separator (HGSCS) of hollow graphene ball-coated lithium–sulfur batteries. Hollow graphene balls (HGSs) have the effect of adsorbing and fixing lithium polysulfide, effectively blocking lithium polysulfide from shuttling back and forth to the cathode and anode, greatly reducing the shuttle effect. The hollow graphene ball modified lithium–sulfur battery separator exhibits excellent electrochemical properties, discharging at 0.2 times, and its initial specific capacity is as high as 1172.3 mAh g−1, the battery capacity remains at 824.1% after 200 cycles, and the capacity retention rate is as high as 94.41%.
- (2)
- Polar inorganic compounds have an excellent adsorption capacity for polysulfides, so the introduction of polar materials into the conductive modification layer can more effectively adsorb dissolved polysulfides and have an efficient sulfur solidification effect [33]. In the literature, Al2O3 [34,35], SiO2 [36,37], MnO2 [38], V2O5 [39], Mg0.6Ni0.4O [40], hydroxyapatite, Fe2O3 [41], NbN [42], TiO2 [43], MoO3 [44], and so on are used to enhance the adsorption and sulfur fixation performance of the conductive layer. Adding polar inorganic compounds can greatly improve the sulfur fixing effect of the modified layer. However, most of the inorganic compounds have poor conductivity and the increase of the doping amount of polar materials is bound to reduce the conductivity of the modified layer and sacrifice the electrochemical activity of the modified layer. Therefore, researchers try to achieve the conductive functionalization of polar materials or select polar adsorption materials with excellent conductivity to modify the separator to improve the comprehensive performance of lithium–sulfur batteries. For example, Yang Wang et al.(Figure 3A,B) [45] successfully modified the polypropylene (PP) separator for the first time by using the binary transition metal oxide MnFe2O4 prepared by co-precipitation. The bifunctional modified separator decorated with MnFe2O4 and conductive acetylene black (AB) effectively hinders the diffusion of polysulfide compounds due to the synergy of chemical adsorption and physical limits. The sulfur load was about 0.7–1 mg/cm2.The battery using the modified separator has a magnification capacity of 920 mAh g−1 and 845 mAh g−1 under 1 C and 2 C conditions, respectively, the capacity is divided into 625 mAh g−1 after cycling 500 laps under 1 C conditions, and the capacity attenuation rate per revolution is 0.074%. Inigo Garbayo et al.(Figure 3C) [46] proposed a way to solve the polysulfide shuttle, that is, the use of alumina nanocoating in the electrode–electrolyte interface, thickness in the 10 nm range, and growth by magnetron sputtering, which can be used as an impervious layer of polysulfides between the electrode and the electrode, a solid polymer electrolyte separator. Through constant current cycle experiments, it is proved that the coating as a polysulfide barrier layer has the effect of reducing the polysulfide shuttle and prolonging the cycle life of the battery. Maryam Sadat Kiai et al. (Figure 3D) [47] use a novel liquid graphene oxide (L-GO) binder instead of the standard polyvinylidene fluoride (PVDF) binder to deposit silica (SiO2), titanium dioxide (TiO2), and poly1,5-diaminoanthraquinone (PDAAQ) on the glass fiber separator to significantly delay the growth of lithium dendrite by forming chemical bonding, alleviating the shuttle effect. Assembling the battery using SiO2/L-GO, TiO2/L-GO, and PDAAQ/L-GO modified separators, the capacities remain at 1020, 1070, and 1190 mAh g−1 after 100 cycles, respectively. The mass loading of sulfur in the cathode was ~2.5 mg cm−2.
- (3)
- The heteroatomic doping of carbon materials, by changing the charge distribution state on the surface of carbon materials, can provide the polarity site of adsorption of polysulfides and improve the sulfur-fixation performance of the conductive barrier layer [48,49]. In the literature publicized, the use of B [50], N, O [51], P [52], S [53,54], and other heteroatoms to dope carbon materials and the energy density, cycle life and magnification performance of lithium–sulfur batteries have a significant effect. Xiong Song (Figure 4) [55] et al. introduced a new lightweight multifunctional layer modified commercial polypropylene (PP) separator composed of one-dimensional porous iron embedded in nitrogen-doped carbon nanofibers (Fe-N-C) and two-dimensional graphene sheets. This new modified Fe-N-C/G@PP separator has four main advantages: (i) due to its unique porous intercalation structure and highly improved wettability, the Fe-N-C/G integrated layer can maintain a high transfer rate of lithium ions; (ii) the highly conductive Fe-N-C nanofibers can provide a strong LiPS chemical fixation; (iii) The Fe-N-C/G modified layer can be used as a three-dimensional conductive backbone to promote the reuse of sulfur species captured in the Fe-N-C/G layer; (iv) the lightweight Fe-N-C/G layer (only 0.083 mg cm−2) does not affect the energy density of Li-S batteries. The results show that the electrochemical properties of Li-S batteries using an Fe-N-C/G@PP separator are significantly improved, showing a good cycle performance and a high reversible capacity retention rate. The mass loading of the Fe-N-C/G modified layer onto the PP separator is 0.083 mg cm−2. After 500 cycles of charge and discharge, the battery capacity remains at 601.9 mAh g−1, and the capacity decay per revolution is only 0.053%. Through the study, it was found that diatomic doping has a synergistic improvement on the adsorption capacity of conductive carbon materials to lithium polysulfide.
4.2. Multifunctional Separator with Catalytic Function
4.3. Functional Separator with Electrostatic Repulsion Effect
- (1)
- Sulfonated polystyrene (PSS) with ultra-high sulfonic acid group content [71] is used for the functionalization of polyolefin separators. Haritha Hareendrakrishnakumar et al.(Figure 7A,B) [72] proposed a lithiated PEDOT: PSS-coated modified separator that has a dual role including inhibiting polysulfide shuttles and promoting Li+ selective diffusion. The negatively charged sulfonic acid group in PSS has an electrostatic shielding effect on the soluble high-order polysulfides through Coulomb repulsion, while the strong negatively charged atoms (O and S) in PEDOT form chelate coordination structures with insoluble lithium sulfides. The Li+ -PEDOT: PSS@CG separator (lithiated PEDOT: PSS-coated Celgard) has good electrolyte wettability, ionic conductivity, and interfacial properties. The battery has a sulfur load of 4.1 mg cm−2 and a discharge rate of 0.5 C, with an initial discharge capacity of 1096 mAh g−1 and a discharge capacity of 911 mAh g−1 after 500 cycles. Chunyang Zhou et al. (Figure 7C,D) [73] prepared a C-PVA/PAA-Li composite nanofiber separator by electrostatic spinning, thermal crosslinking, and an in situ lithium process. The C-PVA/PAA-Li composite nanofiber separator has a good porous structure and high ionic conductivity. It can prevent the polysulfide anion shuttle through electrostatic repulsion, reduce the charge transfer resistance, accelerate the migration of Li+, and inhibit the growth of lithium dendrites. The battery has a sulfur load of 1.5–2.0 mg cm−2. After 400 cycles of 0.2 c, the decay rate of the battery is only 0.08%, and the capacity of the battery is still 633 mAh g−1 at the current density of 3 C.
- (2)
- Because of the excellent performance of the conductive coating between positive separators, some researchers also try to combine the improvement of conductive performance with the electrostatic shielding strategy: on the one hand, the shuttling and deposition of polysulfides can be reduced by electrostatic shielding; on the other hand, it can provide a place for the electrochemical reaction of polysulfides, activating the deposited active substances, and also greatly help to reduce the interface resistance. Chengwei Songet al.(Figure 8) [74] proposed a reasonable design scheme for integrating conductive MWCNTs multilayers and PEI @ MWCNTs-CB layers on conventional PP separators (PEI@MWCNTs-CB/MWCNTs/PP briefly denoted as PMS) to improve the performance of Li-S batteries. The PEI @ MWCNTs-CB layer on the surface reduces the shuttle and deposition of polysulfides through the electrostatic shielding effect, thus stabilizing the cycle performance, while the internal conductive carbon layer is conducive to providing the electrochemical reaction sites of polysulfides in the separator and activating the deposited active substances. Due to the synergistic effect of dual-structure and multifunctional PMS modified separators, it shows high reversible capacity and superior long cycle performance. Especially under the condition of a high sulfur load (sulfur content reaches 80%), when discharging at 1 A·g−1 current density, the cycle exceeds 120 cycles, and the capacity of each cycle is reduced by only 0.06%. When discharging at 9 A·g−1 current density, it can also show good rate performance, and the discharge capacity reaches 550 mAh g−1.
4.4. Functionalized Separator with Spatial Barrier Effect
4.5. Construction of Multifunctional New Separators
5. Summary and Expectation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN Office for Disaster Risk Reduction. Human Cost of Disasters-an Overview of the last 20 Years (2000–2019); UN Office for Disaster Risk Reduction: London, UK, 2020. [Google Scholar]
- Intergovernmental Panel on Climate change (IPCC). Climate Change 2021-The Physical Science Basis; IPCC: London, UK, 2021. [Google Scholar]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The role of new energy in carbon neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Seh, Z.W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xu, Y.; Wang, C. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries. Nano Lett. 2011, 11, 4288–4294. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 2011, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries–A review. Chem. Commun. 2013, 49, 10545–10562. [Google Scholar] [CrossRef]
- Choi, N.-S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable Lithium–Sulfur Batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef]
- Gao, X.-P.; Yang, H.-X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci. 2009, 3, 174–189. [Google Scholar] [CrossRef]
- Rauh, R.D.; Abraham, K.M.; Pearson, G.F.; Surprenant, J.K.; Brummer, S.B. A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. J. Electrochem. Soc. 1979, 126, 523–527. [Google Scholar] [CrossRef]
- Lin, Z.; Liang, C. Lithium–sulfur batteries: From liquid to solid cells. J. Mater. Chem. A 2014, 3, 936–958. [Google Scholar] [CrossRef]
- Marmorstein, D.; Yu, T.; Striebel, K.; McLarnon, F.; Hou, J.; Cairns, E. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 2000, 89, 219–226. [Google Scholar] [CrossRef]
- Shim, J.; Striebel, K.A.; Cairns, E.J. The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance. J. Electrochem. Soc. 2002, 149, A1321. [Google Scholar] [CrossRef]
- He, X.; Ren, J.; Wang, L.; Pu, W.; Wan, C.; Jiang, C. Electrochemical characteristics of sulfur composite cathode for reversible lithium storage. Ionics 2008, 15, 477–481. [Google Scholar] [CrossRef]
- Mikhaylik, Y.V.; Akridge, J.R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151, A1969–A1976. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, G.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032. [Google Scholar] [CrossRef]
- Zhang, S.S. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio. Energies 2012, 5, 5190–5197. [Google Scholar] [CrossRef] [Green Version]
- Danuta, H.; Juliusz, U. Electric Dry Cells and Storage Batteries. U.S. Patent 3043896, 10 July 1962. [Google Scholar]
- Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Accounts Chem. Res. 2012, 46, 1125–1134. [Google Scholar] [CrossRef]
- Chung, S.-H.; Manthiram, A. High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. J. Phys. Chem. Lett. 2014, 5, 1978–1983. [Google Scholar] [CrossRef]
- Huang, J.-Q.; Zhuang, T.-Z.; Zhang, Q.; Peng, H.-J.; Chen, C.-M.; Wei, F. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium–Sulfur Batteries. ACS Nano 2015, 9, 3002–3011. [Google Scholar] [CrossRef]
- Chung, S.-H.; Manthiram, A. Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries. Adv. Funct. Mater. 2014, 24, 5299–5306. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Yen, Y.-J.; Tseng, Y.-H.; Chung, S.-H. Module-Designed Carbon-Coated Separators for High-Loading, High-Sulfur-Utilization Cathodes in Lithium–Sulfur Batteries. Molecules 2022, 27, 228. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Lu, C.; Chen, C.; Yuan, S. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216–222. [Google Scholar] [CrossRef]
- Mao, Y.; Li, G.; Guo, Y.; Li, Z.; Liang, C.; Peng, X.; Lin, Z. Foldable interpenetrated metal-organic frameworks/carbon nano-tubes thin film for lithium–sulfur batteries. Nat. Commun. 2017, 8, 14628. [Google Scholar] [CrossRef] [Green Version]
- Pei, F.; Lin, L.; Ou, D.; Zheng, Z.; Mo, S.; Fang, X.; Zheng, N. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H.-M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, L.; Chen, Y. A mini-review of advanced separator engineering in lithium metal batteries. Sustain. Energy Fuels 2021, 5, 5656–5671. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Sun, B.; Fu, P.; Liu, F.; Zhu, C.; Xu, B.-M.; Pan, Y.; Chen, C. A Review of the Application of Modified Separators in Inhibiting the “shuttle effect” of Lithium–Sulfur Batteries. Membranes 2022, 12, 790. [Google Scholar] [CrossRef]
- Jiaqi, H.; Yingzhi, S.; Yunfei, W.; Qiang, Z. Review on Advanced Functional Separators for Lithium-Sulfur Bat-teries. Acta Chim. Sinica 2017, 75, 173–188. [Google Scholar]
- Li, P.; Deng, J.; Li, J.; Wang, L.; Guo, J. Hollow graphene spheres coated separator as an efficient trap for soluble polysulfides in Li S battery. Ceram. Int. 2019, 45, 13219–13224. [Google Scholar] [CrossRef]
- Evers, S.; Yim, T.; Nazar, L.F. Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. J. Phys. Chem. C 2012, 116, 19653–19658. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, G.C.; Bi, H.L.; Xiang, H.F. A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium-sulfur batteries. Ionics 2015, 21, 981–986. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, Y.; Zhang, Z.; Zhang, K.; Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochimica Acta 2014, 129, 55–61. [Google Scholar] [CrossRef]
- Zhu, J.; Yildirim, E.; Aly, K.; Shen, J.; Chen, C.; Lu, Y.; Jiang, M.; Kim, D.; Tonelli, A.E.; Pasquinelli, M.A.; et al. Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: An experimental and molecular modeling study. J. Mater. Chem. A 2016, 4, 13572–13581. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, L.; Yuan, K.; Li, Z.; Hao, Z.; Xiang, J.; Huang, Y. SnO2 as a high-efficiency polysulfide trap in lithium–sulfur batteries. Nanoscale 2016, 8, 13638–13645. [Google Scholar] [CrossRef]
- Sun, W.; Ou, X.; Yue, X.; Yang, Y.; Wang, Z.; Rooney, D.; Sun, K. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochimica Acta 2016, 207, 198–206. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Qin, X.; Liang, G.; Han, W.; Zhou, D.; He, Y.-B.; Li, B.; Kang, F. Suppressing Self-Discharge and Shuttle Effect of Lithium-Sulfur Batteries with V2O5-Decorated Carbon Nanofiber Interlayer. Small 2017, 13, 1602539. [Google Scholar] [CrossRef]
- Tang, H.; Yao, S.; Mi, J.; Wu, X.; Hou, J.; Shen, X. Ketjen Black/Mg0.6Ni0.4O composite coated separator for lithium-sulfur batteries with enhanced electrochemical performance. Mater. Lett. 2017, 186, 127–130. [Google Scholar] [CrossRef]
- Zhu, R.; Lin, S.; Jiao, J.; Ma, D.; Cai, Z.; Hany, K.; Hamouda, T.M.; Cai, Y. Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery. Ionics 2019, 26, 2325–2334. [Google Scholar] [CrossRef]
- Qiu, W.; An, C.; Yan, Y.; Xu, J.; Zhang, Z.; Guo, W.; Wang, Z.; Zheng, Z.; Wang, Z.; Deng, Q.; et al. Suppressed polysulfide shuttling and improved Li+ transport in Li S batteries enabled by NbN modified PP separator. J. Power Sources 2019, 423, 98–105. [Google Scholar] [CrossRef]
- Song, H.; Zuo, C.; Xu, X.; Wan, Y.; Wang, L.; Zhou, D.; Chen, Z. A thin TiO2 NTs/GO hybrid membran eseparator applied as an interlayer for lithium–sulfur batteries. RSC Adv. 2018, 8, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Imtiaz, S.; Ali Zafar, Z.; Razaq, R.; Sun, D.; Xin, Y.; Li, Q.; Zhang, Z.; Zheng, L.; Huang, Y.; Anderson, J.A. Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for Lithium-Sulfur Batteries. Adv. Mater. Interfaces 2018, 5, 1800243. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; Chen, C.; Wang, Y.; Li, Q.; Wu, Z.; Zhong, B.; Chen, Y. Alleviating the shuttle effect via bifunctional MnFe2O4/AB modified separator for high performance lithium sulfur battery. Electrochim. Acta 2020, 354, 136704. [Google Scholar] [CrossRef]
- Garbayo, I.; Santiago, A.; Judez, X.; de Buruaga, A.S.; Castillo, J.; Muñoz-Márquez, M.A. Alumina Nanofilms As Active Barriers for Polysulfides in High-Performance All-Solid-State Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2021, 4, 2463–2470. [Google Scholar] [CrossRef]
- Kiai, M. Liquid Graphene Oxide Binder and Modified Glass Fiber Separator for Lithium Sulfur Battery with Highly Improved Cycling Performance. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Xu, G.; Yan, Q.-b.; Wang, S.; Kushima, A.; Bai, P.; Liu, K.; Zhang, X.; Tang, Z.; Li, J. A thin multifunctional coating on a sep-arator improves the cyclability and safety of lithium sulfur batteries. Chem. Sci. 2017, 8, 6619–6625. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.S. Heteroatom-doped carbons: Synthesis, chemistry and application in lithium/sulphur batteries. Inorg. Chem. Front. 2015, 2, 1059–1069. [Google Scholar] [CrossRef]
- Wu, F.; Qian, J.; Chen, R.; Ye, Y.; Sun, Z.; Xing, Y.; Li, L. Light-weight functional layer on a separator as a polysulfide immo-bilizer to enhance cycling stability for lithium–sulfur batteries. J. Mater.Chem. A 2016, 4, 17033–17041. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.; Zhang, Y.; Wang, L.; Zhang, L.; Zhang, L.; Xu, L.; Liu, L. Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J. Mater. Chem. A 2017, 5, 12958–12968. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y.; Zhao, X. Oxidized multiwall carbon nanotube modified separator for high performance lithium–sulfur batteries with high sulfur loading. RSC Adv. 2016, 6, 89972–89978. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Y.; Ding, Y.; Peng, L.; Zhang, W.; Yu, G. A Conductive Molecular Framework Derived Li2S/N, P-Codoped Carbon Cathode for Advanced Lithium–Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1602876. [Google Scholar] [CrossRef]
- Ramakrishnan, P.; Baek, S.-H.; Park, Y.; Kim, J.H. Nitrogen and sulfur co-doped metal monochalcogen encapsulated hon-eycomb like carbon nanostructure as a high performance lithium-ion battery anode material. Carbon 2017, 115, 249–260. [Google Scholar] [CrossRef]
- Song, X.; Wang, S.; Chen, G.; Gao, T.; Bao, Y.; Ding, L.-X.; Wang, H. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem. Eng. J. 2017, 333, 564–571. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.; Wang, X.; Liu, M.; Ye, F.; Wang, J.; Qiu, Y.; Li, W.; Zhang, Y. Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 2015, 12, 468–475. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Wang, Y.; Chen, J.; Zhou, H.; Huang, Y. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 2014, 11, 678–686. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Lett. 2011, 11, 2644–2647. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Zhang, Z.; Qiu, W.; Wei, J.; Fang, Z.; Deng, Q.; Guo, W.; Liu, D.; Xie, Z.; Qu, D.; et al. Multifunc-tional Polypropylene Separator via Cooperative Modification and Its Application in the Lithium-Sulfur Battery. Langmuir: The ACS J. Surfaces Coll. 2020, 36, 11147–11153. [Google Scholar] [CrossRef]
- Tian, W.; Xi, B.; Gu, Y.; Fu, Q.; Feng, Z.; Feng, J.; Xiong, S. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Chen, L. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J. Power Sources 2013, 242, 65–69. [Google Scholar] [CrossRef]
- Lin, W.; Chen, Y.; Li, P.; He, J.; Zhao, Y.; Wang, Z.; Liu, J.; Qi, F.; Zheng, B.; Zhou, J.; et al. Enhanced Performance of Lithium Sulfur Battery with a Reduced Graphene Oxide Coating Separator. J. Electrochem. Soc. 2015, 162, A1624–A1629. [Google Scholar] [CrossRef]
- Zhuang, T.-Z.; Huang, J.-Q.; Peng, H.-J.; He, L.-Y.; Cheng, X.-B.; Chen, C.-M.; Zhang, Q. Rational Integration of Polypro-pylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium–Sulfur Batteries. Small 2016, 12, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Kim, H.M.; Shin, S.; Sun, Y.-K. Designing a High-Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dual-Functional Graphene–Polypropylene–Al2O3 Separa-tor. Adv. Funct. Mater. 2018, 28, 1704294. [Google Scholar] [CrossRef]
- Ou, X.; Yu, Y.; Wu, R.; Tyagi, A.; Zhuang, M.; Ding, Y.; Abidi, I.H.; Wu, H.; Wang, F.; Luo, Z. Shuttle Suppression by Poly-mer-Sealed Graphene-Coated Polypropylene Separator. ACS Appl. Mater. Interfaces 2018, 10, 5534–5542. [Google Scholar] [CrossRef]
- Aslam, M.K.; Jamil, S.; Hussain, S.; Xu, M. Effects of catalysis and separator functionalization on high energy lithium sulfur batteries: A complete review. Energy Environ. Mater. 2022. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, X.; Li, Y.; Zeng, P.; Liu, H.; Yu, H.; Wu, M.; Li, Z.; Shao, D.; Miao, C.; et al. Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 2019, 385, 123905. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, Z.; Huang, W.; Liu, H.; Liu, Y.; Shan, Z. The surface modification of the separator for electrocatalyst in lithi-um-sulfur batteries. Ionics 2020, 26, 1129–1138. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Ye, J.; Xia, G.; Fu, Z.; Hu, C. A trifunctional modified separator based on Fe tetraaminophthalocyanine@Rgo for lithium-sulfur batteries. Chem. Eng. J. 2021, 405, 126947. [Google Scholar] [CrossRef]
- Jin, L.; Fu, Z.; Qian, X.; Huang, B.; Li, F.; Wang, Y.; Shen, X. Catalytic Co-N-C hollow nanocages as separator coating layer for lithium-sulfur batterys. Microporous Mesoporous Mater. 2021, 316, 110927. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, M.; Liang, H.; Ying, W.; Zeng, X.; Ying, Y.; Zhou, S.; Liang, C.; Lin, Z.; Peng, X. Blocking Polysulfides and Fa-cilitating Lithium-Ion Transport: Polystyrene Sulfonate@HKUST-1 Membrane separator for Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 30451–30459. [Google Scholar] [CrossRef]
- Hareendrakrishnakumar, H.; Chulliyote, R.; Joseph, M.G. Ion-selective PEDOT: PSS-decorated separator as a potential pol-ysulfide immobilizer for lithium-sulfur batteries. Ionics 2021, 27, 1087–1099. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Zhu, X.; Chen, K.; Ouyang, Y.; Wu, Y.; Miao, Y.-E.; Liu, T. A dual-functional poly (vinyl alcohol)/poly (lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S bat-teries. Nano Res. 2021, 14, 1541–1550. [Google Scholar] [CrossRef]
- Song, C.; Peng, C.; Bian, Z.; Dong, F.; Xu, H.; Yang, J.; Zheng, S. Stable and Fast Lithium–Sulfur Battery Achieved by Rational Design of Multifunctional Separator. Energy Environ. Mater. 2019, 2, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, M.; Lv, W.; He, Y.-B.; Wang, C.; Yun, Q.; Li, B.; Kang, F.; Yang, Q.-H. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy 2016, 30, 1–8. [Google Scholar] [CrossRef]
- Peng, H.-J.; Zhang, Z.-W.; Huang, J.-Q.; Zhang, G.; Xie, J.; Xu, W.-T.; Shi, J.-L.; Chen, X.; Cheng, X.-B.; Zhang, Q. A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries. Adv. Mater. 2016, 28, 9551–9558. [Google Scholar] [CrossRef]
- Peng, H.-J.; Wang, D.-W.; Huang, J.-Q.; Cheng, X.-B.; Yuan, Z.; Wei, F.; Zhang, Q. Janus Separator of Polypropyl-ene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Adv. Sci. 2016, 3, 1500268. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, W.; Wang, L.; Wang, Z.; Zhao, W.; Duan, W.; Zhao, Z.; Liu, B.; Jin, J. A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 5993–5998. [Google Scholar] [CrossRef]
- Park, J.; Yu, B.-C.; Park, J.S.; Choi, J.W.; Kim, C.; Sung, Y.-E.; Goodenough, J.B. Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery. Adv. Energy Mater. 2017, 7, 1602567. [Google Scholar] [CrossRef]
- Ali, S.; Waqas, M.; Jing, X.; Chen, N.; Chen, D.; Xiong, J.; He, W. A carbon-tungsten disulfide composite bi-layer separator for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 39417–39421. [Google Scholar] [CrossRef]
- Ghazi, Z.A.; He, X.; Khattak, A.M.; Khan, N.A.; Liang, B.; Iqbal, A.; Wang, J.; Sin, H.; Li, L.; Tang, Z. MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium–Sulfur Batteries. Adv. Mater. 2017, 29, 1606817. [Google Scholar] [CrossRef]
- Pan, S.; Yin, Z.; Cheng, Q.; Zhang, G.; Yu, X.; Pan, Z.; Rao, H.; Zhong, X. Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium–sulfur battery. J. Alloys Comp. 2020, 832, 154947. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Y.; Pasta, M.; Zhou, G.; Li, Y.; Liu, W.; Xiong, F.; Cui, Y. Entrapment of Polysulfides by a Black-Phosphorus-Modified Separator for Lithium-Sulfur Batteries. Adv. Mater. 2016, 28, 9797–9803. [Google Scholar] [CrossRef] [PubMed]
- Ahn, W.; Lim, S.N.; Lee, D.U.; Kim, K.-B.; Chen, Z.; Yeon, S.-H. Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries. J. Mater. Chem. A 2015, 3, 9461–9467. [Google Scholar] [CrossRef]
- Fan, C.-Y.; Yuan, H.-Y.; Li, H.-H.; Wang, H.-F.; Li, W.-L.; Sun, H.-Z.; Wu, X.-L.; Zhang, J.-P. The Effective Design of a Poly-sulfide-Trapped Separator at the Molecular Level for High Energy Density Li–S Batteries. ACS Appl. Mater. Interfaces 2016, 8, 16108–16115. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.L.; Chung, S.H. A Poly(ethylene oxide)/Lithium bis(trifluoromethanesulfonyl)imide-Coated Polypropylene Membrane for a High-Loading Lithium-Sulfur Battery. Polymers 2021, 13, 535. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Ben Ticha, E.; Wang, L.; Li, Q.; Zhao, H.; Gao, L.; Liu, M.; Liu, Y.; Kang, W.; Cheng, B. Physical Inhibition and Chemical Confinement of Lithium Polysulfides by Designing a Double-Layer Composite Separator for Lithium-Sulfur Battery. Chemelectrochem 2019, 6, 4817–4830. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, Y.; Shi, R.; Yu, J.; Sun, Z.; Guo, S.; Guo, J.; Yan, F. Robust and High-Temperature-Resistant Nanofiber Membrane Separators for Li-Metal, Li-Sulfur, and Aqueous Li-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 16289–16299. [Google Scholar] [CrossRef]
- Belgibayeva, A.; Taniguchi, I. Insights into the improved electrochemical performance of lithium–sulfur battery with free-standing SiO2/C composite nanofiber mat interlayer. J. Power Sour. 2021, 484, 229308. [Google Scholar] [CrossRef]
- Kim, H.-B.; Ngo, D.T.; Verma, R.; Singhbabu, Y.N.; Kim, D.-Y.; Le, H.T.; Mali, S.S.; Hong, C.-K.; Park, C.-J. Vanadium nitride and carbon nanofiber composite membrane as an interlayer for extended life cycle lithium-sulphur batteries. Ceram. Int. 2021, 47, 21476–21489. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Ma, Q.; Li, D.; Yu, W.; Liu, G.; Wang, T.; Yang, Y.; Dong, X.; Jinxian, W. Dandelion Derived Nitro-gen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur Battery. ACS Sustain. Chem. Eng. 2018, 7, 3042–3051. [Google Scholar] [CrossRef]
- Hong, X.; Liu, Y.; Fu, J.; Wang, X.; Zhang, T.; Wang, S.; Hou, F.; Liang, J. A wheat flour derived hierarchical porous car-bon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 2020, 170, 119–126. [Google Scholar] [CrossRef]
- Chen, X.; Du, G.; Zhang, M.; Kalam, A.; Su, Q.; Ding, S.; Xu, B. Nitrogen-doped hierarchical porous carbon derived from low-cost biomass pomegranate residues for high performance lithium-sulfur batteries. J. Electroanal. Chem. 2019, 848, 113316. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, X.; Deng, S.; Zhan, J.; Fang, R.; Xia, Y.; Wang, X.; Zhang, Q.; Tu, J. Popcorn Inspired Porous Macrocellular Carbon: Rapid Puffing Fabrication from Rice and Its Applications in Lithium-Sulfur Batteries. Adv. Energy Mater. 2017, 8, 1701110. [Google Scholar] [CrossRef]
- Selvan, R.K.; Zhu, P.; Yan, C.; Zhu, J.; Dirican, M.; Shanmugavani, A.; Lee, Y.S.; Zhang, X. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. J. Colloid Interface Sci. 2018, 513, 231–239. [Google Scholar] [CrossRef]
- Chulliyote, R.; Hareendrakrishnakumar, H.; Joseph, M.G. Hierarchical Porous Carbon Material with Multifunctionalities Derived from Honeycomb as a Sulfur Host and Laminate on the Cathode for High-Performance Lithium–Sulfur Batteries. ACS Sustain. Chem. Eng. 2019, 7, 19344–19355. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Yang, L.; Wang, Y.; Liu, Y.; Chen, Y.; Guo, X.; Wu, Z.; Zhong, B. N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. J. Colloid Interface Sci. 2020, 585, 43–50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ai, R.; Wang, F.; Hu, X.; Zeng, Y.; Hou, J.; Zhao, J.; Zhang, Y.; Zhang, Y.; Li, X. Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries. Polymers 2023, 15, 993. https://doi.org/10.3390/polym15040993
Wang Y, Ai R, Wang F, Hu X, Zeng Y, Hou J, Zhao J, Zhang Y, Zhang Y, Li X. Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries. Polymers. 2023; 15(4):993. https://doi.org/10.3390/polym15040993
Chicago/Turabian StyleWang, Ying, Rui Ai, Fei Wang, Xiuqiong Hu, Yuejing Zeng, Jiyue Hou, Jinbao Zhao, Yingjie Zhang, Yiyong Zhang, and Xue Li. 2023. "Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries" Polymers 15, no. 4: 993. https://doi.org/10.3390/polym15040993
APA StyleWang, Y., Ai, R., Wang, F., Hu, X., Zeng, Y., Hou, J., Zhao, J., Zhang, Y., Zhang, Y., & Li, X. (2023). Research Progress on Multifunctional Modified Separator for Lithium–Sulfur Batteries. Polymers, 15(4), 993. https://doi.org/10.3390/polym15040993