Antimicrobial and Flame-Retardant Coatings Prepared from Nano- and Microparticles of Unmodified and Nitrogen-Modified Polyphenols
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals, Tannins, and Lignins
2.2. Characterization of Tannin and Lignins
2.3. Nitrogen Modification of Tannin and Lignin
2.4. Synthesis of NPs and MPs
2.4.1. Solvent Selection
2.4.2. Solvent Exchange
2.5. Characterization of NPs and MPs
2.5.1. Determination of Particle Size
2.5.2. Determination of ζ-Potential
2.5.3. Determination of Particle Morphology
2.6. Antibacterial Properties
2.6.1. Determination of Minimum Inhibitory Concentrations
2.6.2. Antibacterial Efficacy of Nanocoatings
2.7. Coating Preparation
2.7.1. Coatings for Antibacterial Testing
2.7.2. Coatings for Microscale Combustion Calorimetry (MCC) Testing
2.8. Microscale Combustion Calorimetry
3. Results and Discussion
3.1. Characterization of Tannins and Lignins
3.2. Characterization of TNPs and LNPs
3.3. Antibacterial Properties of Nanoparticles and Nanocoatings
3.4. FR Properties of Nano/Microcoatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gigante, V.; Panariello, L.; Coltelli, M.-B.; Danti, S.; Obisesan, K.A.; Hadrich, A.; Staebler, A.; Chierici, S.; Canesi, I.; Lazzeri, A.; et al. Liquid and solid functional bio-based coatings. Polymers 2021, 13, 3640. [Google Scholar] [CrossRef] [PubMed]
- Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016, 18, 1175–1200. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Liu, H.; Zhang, D.; Shi, Q.-S.; Zhong, X.-Q.; Guo, Y.; Xie, X.-B. High value valorization of lignin as environmental benign antimicrobial. Mater. Today Bio. 2023, 18, 100520. [Google Scholar] [CrossRef] [PubMed]
- Borrega, M.; Kalliola, A.; Määttänen, M.; Borisova, A.S.; Mikkelson, A.; Tamminen, T. Alkaline extraction of polyphenols for valorization of industrial spruce bark. Bioresour. Technol. Rep. 2022, 19, 101129. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind. Crop. Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Widsten, P. Lignin-based sunscreens—State-of-the-art, prospects and challenges. Cosmetics 2020, 7, 85. [Google Scholar] [CrossRef]
- Shu, F.; Jiang, B.; Yuan, Y.; Li, M.; Wu, W.; Jin, Y.; Xiao, H. Biological Activities and Emerging Roles of Lignin and Lignin-Based Products—A Review. Biomacromolecules 2021, 22, 4905–4918. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent. Phyther. Res. 2016, 30, 1035–1045. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Wang, G.; Pang, T.; Xia, Y.; Liu, X.; Li, S.; Parvez, A.M.; Kong, F.; Si, C. Subdivision of bamboo kraft lignin by one-step ethanol fractionation to enhance its water-solubility and antibacterial performance. Int. J. Biol. Macromol. 2019, 133, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ucella-Filho, J.G.M.; Freire, A.D.S.M.; Carréra, J.C.; Lucas, F.M.F.; Zucolotto, S.M.; Dias Júnior, A.F.; Mori, F.A. Tannin-rich bark extract of plants as a source of antimicrobial bioactive compounds: A bibliometric analysis. S. Afr. J. Bot. 2022, 150, 1038–1050. [Google Scholar] [CrossRef]
- Alzagameem, A.; Klein, S.E.; Bergs, M.; Do, X.T.; Korte, I.; Dohlen, S.; Hüwe, C.; Kreyenschmidt, J.; Kamm, B.; Larkins, M.; et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 2019, 11, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndaba, B.; Roopnarain, A.; Daramola, M.O.; Adeleke, R. Influence of extraction methods on antimicrobial activities of lignin-based materials: A review. Sustain. Chem. Pharm. 2020, 18, 100342. [Google Scholar] [CrossRef]
- Coral Medina, J.D.; Woiciechowski, A.L.; Zandona Filho, A.; Bissoqui, L.; Noseda, M.D.; de Souza Vandenberghe, L.P.; Zawadzki, S.F.; Soccol, C.R. Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value. Ind. Crop. Prod. 2016, 94, 630–637. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins: Prospectives and actual industrial applications. Biomolecules 2019, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Buzzini, P.; Arapitsas, P.; Goretti, M.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev. Med. Chem. 2008, 8, 1179–1187. [Google Scholar] [CrossRef]
- Widsten, P.; Tamminen, T.; Paajanen, A.; Hakkarainen, T.; Liitiä, T. Modified and unmodified technical lignins as flame retardants for polypropylene. Holzforschung 2021, 75, 584–590. [Google Scholar] [CrossRef]
- Solis-Pomar, F.; Díaz-Gómez, A.; Berrío, M.E.; Ramírez, J.; Jaramillo, A.F.; Fernández, K.; Rojas, D.; Melendrez, M.F.; Pérez-Tijerina, E. A dual active-passive coating with intumescent and fire-retardant properties based on high molecular weight tannins. Coatings 2021, 11, 460. [Google Scholar] [CrossRef]
- Liu, L.; Qian, M.; Song, P.; Huang, G.; Yu, Y.; Fu, S. Fabrication of Green Lignin-based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites. ACS Sustain. Chem. Eng. 2016, 4, 2422–2431. [Google Scholar] [CrossRef]
- Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J. Thermal Stability and Fire Retardant Properties of Polyamide 11 Microcomposites Containing Different Lignins. Ind. Eng. Chem. Res. 2017, 56, 13704–13714. [Google Scholar] [CrossRef]
- Lourençon, T.V.; de Lima, G.G.; Ribeiro, C.S.P.; Hansel, F.A.; Maciel, G.M.; da Silva, K.; Winnischofer, S.M.B.; de Muniz, G.I.B.; Magalhães, W.L.E. Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. Int. J. Biol. Macromol. 2021, 166, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Boarino, A.; Wang, H.; Olgiati, F.; Artusio, F.; Özkan, M.; Bertella, S.; Razza, N.; Cagno, V.; Luterbacher, J.S.; Klok, H.-A.; et al. Lignin: A Sustainable Antiviral Coating Material. ACS Sustain. Chem. Eng. 2022, 10, 14001–14010. [Google Scholar] [CrossRef] [PubMed]
- Pöhler, T.; Widsten, P.; Hakkarainen, T. Improved Fire Retardancy of Cellulose Fibres via Deposition of Nitrogen-Modified Biopolyphenols. Molecules 2022, 27, 3741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xiao, X.; Tai, Q.; Huang, H.; Hu, Y. Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polym. Eng. Sci. 2012, 52, 2620–2626. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, S.; Song, P.; Luo, X.; Jin, Y.; Lu, F.; Wu, Q.; Ye, J. Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 2012, 97, 541–546. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Aguilera, J.R.; Venegas, V.; Oliva, J.M.; Sayagués, M.J.; De Miguel, M.; Sánchez-Alcázar, J.A.; Arévalo-Rodríguez, M.; Zaderenko, A.P. Targeted multifunctional tannic acid nanoparticles. RSC Adv. 2016, 6, 7279–7287. [Google Scholar] [CrossRef]
- Limaye, M.V.; Schütz, C.; Kriechbaum, K.; Wohlert, J.; Bacsik, Z.; Wohlert, M.; Xia, W.; Pléa, M.; Dembele, C.; Salazar-Alvarez, G.; et al. Functionalization and patterning of nanocellulose films by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions. Nanoscale 2019, 11, 19278–19284. [Google Scholar] [CrossRef] [Green Version]
- Wikberg, H.; Ohra-aho, T.; Leppävuori, J.; Kanerva, H. Method for producing reactive lignin. French Patent WO2018115592A1, 28 June 2018. [Google Scholar]
- Jääskeläinen, A.-S.; Liitiä, T.; Mikkelson, A.; Tamminen, T. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind. Crops Prod. 2017, 103, 51–58. [Google Scholar] [CrossRef]
- Granata, A.; Argyropoulos, D.S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. J. Agric. Food Chem. 1995, 43, 1538–1544. [Google Scholar] [CrossRef]
- Nordlund, E.; Lille, M.; Silventoinen, P.; Nygren, H.; Seppänen-Laakso, T.; Mikkelson, A.; Aura, A.-M.; Heiniö, R.-L.; Nohynek, L.; Puupponen-Pimiä, R.; et al. Plant cells as food—A concept taking shape. Food Res. Int. 2018, 107, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.M. Rapid methoxyl analysis of lignins using gas chromatography. Holzforschung 1996, 50, 573–574. [Google Scholar]
- National Committee for Clinical Laboratory Standards (NCCLS). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 3rd ed.; Approved Standard NC; Clinical and Laboratory Standards Institute (CLSI): Villanova, PA, USA, 1993. [Google Scholar]
- Lyon, R.E.; Walters, R.N. Pyrolysis combustion flow calorimetry. J. Anal. Appl. Pyrolysis 2004, 71, 27–46. [Google Scholar] [CrossRef]
- Lyon, R.E.; Walters, R.N.; Stoliarov, S.I.; Safronava, N. Principles and Practice of Microscale Combustion Calorimetry; Report No. DOT/FAA/TC-12/53; Federal Aviation Administration: Atlantic City, NJ, USA, 2013. [Google Scholar]
Tannin/ Lignin | Functional Group, mmol/g | Molar Mass, g/mol | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phenolic OH * | Aliphatic OH | COOH | OCH3 | Mw | Mn | PDI | |||||
H | G | C + S | Cat | Total | |||||||
T100 | 2.9 | 3.9 | 1.0 | 0.03 | 4000 | 3.5 | |||||
T160 | 3.5 | 2.1 | 1.3 | 1.10 | 2900 | 2.8 | |||||
SW KL | 0.23 | 2.46 | 2.05 | 0.00 | 4.74 | 1.99 | 0.43 | 4.55 | 5010 | 2277 | 2.2 |
SW KL-LowMW | 0.28 | 3.51 | 1.72 | 0.00 | 5.51 | 1.61 | 0.57 | 4.28 | 1590 | 1060 | 1.5 |
SW KL-MediumMW | 0.25 | 2.20 | 1.90 | 0.00 | 4.35 | 1.37 | 0.49 | 4.07 | 3390 | 1994 | 1.7 |
SW KL-HighMW | 0.21 | 1.82 | 1.83 | 0.00 | 3.86 | 2.00 | 0.31 | 3.61 | 9570 | 2991 | 3.2 |
SW CatLignin | 0.70 | 1.20 | 2.40 | 1.20 | 5.50 | 0.90 | 0.70 | 2.19 | 3700 | 1700 | 2.2 |
Beech OSL | 0.08 | 0.56 | 2.44 | 0.35 | 3.43 | 1.80 | 0.12 | 6.32 | 1890 | 943 | 2.0 |
Eucalypt OSL | 0.10 | 0.38 | 2.59 | 0.28 | 3.35 | 0.62 | 0.19 | 6.33 | 4092 | 981 | 4.2 |
HW KL | 0.20 | 0.49 | 3.40 | 0.50 | 4.59 | 1.30 | 0.30 | 5.60 | 2050 | 1170 | 1.8 |
HW CatLignin | 1.17 | 0.67 | 3.05 | 1.87 | 6.76 | 0.29 | 0.83 | 2.75 | 2330 | 1370 | 1.7 |
Bamboo OSL | 0.69 | 0.41 | 1.57 | 0.32 | 2.99 | 0.66 | 0.32 | 5.07 | 2927 | 809 | 3.6 |
Bagasse OSL | 0.86 | 0.40 | 1.14 | 0.33 | 2.73 | 0.70 | 0.59 | 3.60 | 3611 | 806 | 4.5 |
Wheat straw SL | 0.47 | 0.53 | 1.96 | 0.44 | 3.40 | 1.43 | 0.96 | 4.60 | 3300 | 2000 | 1.7 |
Polyphenol | Particle Size Distribution, nm | Predominant Particle Shape(s) | Z-Potential, mV | ||
---|---|---|---|---|---|
Tannins | Mi | Mv | Mn | ||
Tannin T160 | 81 | 70 | 54 | Spherical | −40.7 |
Tannin T100 | 99 | 152 | 52 | Spherical | −38.4 |
N-T160 | 113 | 95 | 49 | n/a | −36.2 |
Lignins | Mi | Mv | Mn | ||
SW KL | 137 | 170 | 95 | Spherical | −39.4 |
SW KL-LowMW | 179 | 580 | 42 | Spherical | −61.3 |
SW KL-MediumMW | 117 | 109 | 79 | Spherical | −44.7 |
SW KL-HighMW | 314 | 728 | 109 | Spherical | −36.6 |
SW CatLignin | 52 | 41 | 26 | Spherical | −51.4 |
HW KL | 143 | 185 | 99 | Elongated and spherical | −43.7 |
N-HW KL | 430 | 310 | 794 | n/a | −42.3 |
HW CatLignin | 106 | 93 | 59 | Elongated and spherical | −48.9 |
Wheat straw soda | 169 | 226 | 119 | Elongated and spherical | −41.4 |
Bagasse OSL | 105 | 92 | 64 | Elongated and spherical | −41.8 |
Bamboo OSL | 157 | 285 | 96 | Elongated and spherical | −38.7 |
Beech OSL | 289 | 680 | 106 | Mostly elongated, some spherical | −34.6 |
Eucalyptus OSL | 114 | 104 | 69 | Elongated and spherical | −42.2 |
Group 1 | SW KL Properties | SW KL LNP Properties | ||||||
---|---|---|---|---|---|---|---|---|
OH and COOH, mmol/g | Mw, g/mol | Mn, g/mol | Mi, nm | Mv, nm | Mn, nm | Z-Potential, mV | ||
SW KL properties (n = 4) | OH and COOH, mmol/g | 1 | 0.42 (−) | 0.58 (−) | 0.10 (−) | 0.00 (+) | 0.51 (−) | 0.53 (−) |
Mw, g/mol | 0.42 (−) | 1 | 0.90 (+) | 0.63 (+) | 0.19 (+) | 0.80 (+) | 0.68 (+) | |
Mn, g/mol | 0.58 (−) | 0.90 (+) | 1 | 0.32 (+) | 0.02 (+) | 0.97 (+) | 0.91 (+) | |
SW KL LNP properties (n = 4) | Mi, nm | 0.10 (−) | 0.63 (+) | 0.32 (+) | 1 | 0.79 (+) | 0.19 (+) | 0.09 (+) |
Mv, nm | 0.00 (+) | 0.19 (+) | 0.02 (+) | 0.79 (+) | 1 | 0.00 (−) | 0.02 (−) | |
Mn, nm | 0.51 (−) | 0.80 (+) | 0.97 (+) | 0.19 (+) | 0.00 (−) | 1 | 0.98 (+) | |
Z-potential, mV | 0.53 (−) | 0.68 (+) | 0.91 (+) | 0.09 (+) | 0.02 (−) | 0.98 (+) | 1 | |
Group 2 | HW and grass lignin properties * | HW and grass LNP properties * | ||||||
OH and COOH, mmol/g | Mw, g/mol | Mn, g/mol | Mi, nm | Mv, nm | Mn, nm | Z-potential, mV | ||
HW and grass lignin properties * | OH and COOH, mmol/g | 1 | 0.22 (−) | 0.63 (+) | 0.41 (+) | 0.27 (+) | 0.69 (+) | 0.10 (+) |
Mw, g/mol | 0.22 (−) | 1 | 0.01 (+) | 0.88 (−) | 0.93 (−) | 0.39 (−) | 0.93 (−) | |
Mn, g/mol | 0.63 (+) | 0.01 (+) | 1 | 0.00 (+) | 0.01 (+) | 0.45 (+) | 0.07 (+) | |
HW and grass LNP properties * | Mi, nm | 0.41 (+) | 0.88 (−) | 0.00 (+) | 1 | 0.98 (+) | 0.45 (+) | 0.87 (+) |
Mv, nm | 0.27 (+) | 0.93 (−) | 0.01 (+) | 0.98 (+) | 1 | 0.35 (+) | 0.95 (+) | |
Mn, nm | 0.69 (+) | 0.39 (−) | 0.45 (+) | 0.45 (+) | 0.35 (+) | 1 | 0.23 (+) | |
Z-potential, mV | 0.10 (+) | 0.93 (−) | 0.07 (+) | 0.87 (+) | 0.95 (+) | 0.23 (+) | 1 | |
Group 3 | KL and CatLignin properties | KL and CatLignin LNP properties | ||||||
OH and COOH, mmol/g | Mw, g/mol | Mn, g/mol | Mi, nm | Mv, nm | Mn, nm | Z-potential, mV | ||
KL and CatLignin properties (n = 4) | OH and COOH, mmol/g | 1 | 0.03 (+) | 0.06 (+) | 0.13 (−) | 0.30 (+) | 0.22 (−) | 0.13 (−) |
Mw, g/mol | 0.03 (+) | 1 | 0.98 (+) | 0.01 (−) | 0.00 (−) | 0.00 (+) | 0.17 (+) | |
Mn, g/mol | 0.06 (+) | 0.98 (+) | 1 | 0.00 (−) | 0.00 (+) | 0.00 (+) | 0.21 (+) | |
KL and CatLignin LNP properties (n = 4) | Mi, nm | 0.13 (−) | 0.01 (−) | 0.00 (−) | 1 | 0.94 (+) | 0.98 (+) | 0.75 (+) |
Mv, nm | 0.82 (+) | 0.00 (−) | 0.00 (+) | 0.94 (+) | 1 | 0.99 (+) | 0.82 (+) | |
Mn, nm | 0.22 (−) | 0.00 (+) | 0.00 (+) | 0.98 (+) | 0.99 (+) | 1 | 0.83 (+) | |
Z-potential, mV | 0.13 (−) | 0.17 (+) | 0.21 (+) | 0.75 (+) | 0.30 (+) | 0.83 (+) | 1 |
Sample | Size (Mi), nm | Z-Potential, mV | S/C 1 Yield Ratio | ||||
---|---|---|---|---|---|---|---|
Original | Supernatant | Concentrate | Original | Supernatant | Concentrate | ||
T160 | 126 ± 1 | 80 ± 0 | 133 ± 1 | −24.8 ± 0.4 | −20.7 ± 0.6 | −35.3 ± 1.1 | 22/78 |
N-T160 | 214 ± 2 | 128 ± 1 | 222 ± 1 | −34.0 ± 1.5 | −35.5 ± 1.6 | −39.7 ± 1.1 | 48/52 |
HW KL | 176 ± 1 | 103 ± 1 | 199 ± 4 | −44.3 ± 0.5 | −43.0 ± 1.2 | −45.8 ± 1.3 | 10/90 |
N-HW KL 2 | 2054 ± 83 | 325 ± 14 | 1590 ± 167 | −52.7 ± 1.0 | −48.9 ± 1.2 | −48.5 ± 1.9 | 22/78 |
Coating | PHRR, W/g | TPHRR, °C | THR, J/g | Char Yield, % |
---|---|---|---|---|
Uncoated cellulose sheet (ref) | 207 ± 5 | 378 ± 2 | 10200 ± 200 | 11.5 ± 0.8 |
T160, 10 g/m2 | 192 ± 2 | 380 ± 0 | 9630 ± 60 | 12.7 ± 0.5 |
N-HW KL, 48 g/m2 | 177 ± 1 | 377 ± 2 | 9700 ± 250 | 14.6 ± 0.9 |
N-T160, 61 g/m2 | 141 ± 2 | 364 ± 1 | 8290 ± 40 | 18.4 ± 0.6 |
N-T160, 89 g/m2 | 127 ± 1 | 362 ± 0 | 7960 ± 10 | 19.2 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widsten, P.; Salo, S.; Hakkarainen, T.; Nguyen, T.L.; Borrega, M.; Fearon, O. Antimicrobial and Flame-Retardant Coatings Prepared from Nano- and Microparticles of Unmodified and Nitrogen-Modified Polyphenols. Polymers 2023, 15, 992. https://doi.org/10.3390/polym15040992
Widsten P, Salo S, Hakkarainen T, Nguyen TL, Borrega M, Fearon O. Antimicrobial and Flame-Retardant Coatings Prepared from Nano- and Microparticles of Unmodified and Nitrogen-Modified Polyphenols. Polymers. 2023; 15(4):992. https://doi.org/10.3390/polym15040992
Chicago/Turabian StyleWidsten, Petri, Satu Salo, Tuula Hakkarainen, Thu Lam Nguyen, Marc Borrega, and Olesya Fearon. 2023. "Antimicrobial and Flame-Retardant Coatings Prepared from Nano- and Microparticles of Unmodified and Nitrogen-Modified Polyphenols" Polymers 15, no. 4: 992. https://doi.org/10.3390/polym15040992
APA StyleWidsten, P., Salo, S., Hakkarainen, T., Nguyen, T. L., Borrega, M., & Fearon, O. (2023). Antimicrobial and Flame-Retardant Coatings Prepared from Nano- and Microparticles of Unmodified and Nitrogen-Modified Polyphenols. Polymers, 15(4), 992. https://doi.org/10.3390/polym15040992