Mechanical and Thermo-Mechanical Performance of Natural Fiber-Based Single-Ply and 2-Ply Woven Prepregs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Manufacturing of the Composite Laminates
2.2.2. Testing
2.2.3. Static Mechanical Testing
2.2.4. Dynamic Mechanical Analysis
2.2.5. Thermo-Gravimetric Analysis
2.2.6. Differential Scanning Calorimetry
2.2.7. Microscopic Analysis/Fractography
3. Results and Discussion
3.1. Tensile Properties
Fractography
3.2. Dynamic Mechanical Analysis
3.3. Thermal Properties
3.3.1. Thermo-Gravimetric/Differential Thermo-Gravimetric (TG/DTG) Analysis
3.3.2. Calculation of the Heat-Resistance Index (THRI)
3.3.3. Differential Scanning Calorimetry (DSC) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmood, R.Y. Enhancement of thermal stability and wettability for epoxy/Cu coated carbon fiber composites. Iraqi J. Phys. 2020, 18, 55–61. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Liu, Q.; Shaw, M.T.; Parnas, R.S.; McDonnel, A.M. Investigation of basalt fiber composite mechanical properties for applications in transportation. Polym. Compos. 2006, 27, 41–48. [Google Scholar] [CrossRef]
- Ilangovan, S.; Senthil Kumaran, S.; Vasudevan, A.; Naresh, K. Effect of silica nanoparticles on mechanical and thermal properties of neat epoxy and filament wounded E-glass/epoxy and basalt/epoxy composite tubes. Mater. Res. Express 2019, 6, 0850e2. [Google Scholar] [CrossRef]
- Senthilrajan, S.; Venkateshwaran, N.; Naresh, K.; Velmurugan, R.; Gupta, N.K. Effects of jute fiber length and weight percentage on quasi-static flexural and dynamic mechanical properties of jute/polyester composites for thin-walled structure applications. Thin-Walled Struct. 2022, 179, 109719. [Google Scholar] [CrossRef]
- Singh, H.; Singh, J.I.P.; Singh, S.; Dhawan, V.; Tiwari, S.K. A brief review of jute fiber and its composites. Mater. Today Proc. 2018, 5, 28427–28437. [Google Scholar] [CrossRef]
- Prasath, K.A.; Krishnan, B.R. Mechanical properties of woven fabric basalt/jute fiber reinforced polymer hybrid composites. Int. J. Mech. Eng. Robot. Res. 2013, 2, 279–290. [Google Scholar] [CrossRef]
- Czigany, T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos. Sci. Technol. 2006, 66, 3210–3220. [Google Scholar] [CrossRef]
- Mishra, R.; Petru, M.; Novotna, J. Bio-composites reinforced with natural fibers: Comparative analysis of thermal, static and dynamic-mechanical properties. Fibers Polym. 2020, 21, 619–627. [Google Scholar] [CrossRef]
- Wong, D.W.Y.; Lin, L.; McGrail, P.T.; Peijs, T.; Hogg, P.J. Improved fracture toughness of carbon fiber/epoxy composite laminates using dissolvable thermoplastic fibers. Compos. Part A Appl. Sci. Manuf. 2010, 41, 759–767. [Google Scholar] [CrossRef]
- Yang, T.; Hu, L.; Xiong, X.; Petrů, M.; Noman, M.T.; Mishra, R. Sound absorption properties of natural fibers: A review. Sustainability 2020, 12, 8477. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fiber and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Madueke, C.I.; Mbah, O.M.; Umunakwe, R. A review on the limitations of natural fibers and natural fiber composites with emphasis on tensile strength using coir as a case study. Polym. Bull. 2022, 1–18. [Google Scholar] [CrossRef]
- Antony, S.; Cherouat, A.; Montay, G. Effect of fiber content on the mechanical properties of hemp fiber woven fabrics/polypropylene composite laminates. Polym. Polym. Compos. 2021, 29 (Suppl. 9), S790–S802. [Google Scholar] [CrossRef]
- Keerthi Gowda, B.S.; Naresh, K.; Ilangovan, S.; Sanjay, M.R.; Siengchin, S. Effect of fiber volume fraction on mechanical and fire resistance properties of basalt/polyester and pineapple/polyester composites. J. Nat. Fibers 2022, 19. [Google Scholar] [CrossRef]
- Abounaim, M.; Diestel, O.; Offmann, G. High performance thermoplastic composite from flat knitted multi-layer textile preform using hybrid yarn. Compos. Sci. Technol. 2011, 71, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Botev, M.; Betchev, H.; Bikiaris, D.; Panayiotou, C. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J Appl. Polym. Sci. 1999, 74, 523–531. [Google Scholar] [CrossRef]
- Khondker, O.A.; Ishiaku, U.S.; Nakai, A.; Hamada, H. A novel processing technique for thermoplastic manufacturing of single-ply composites reinforced with jute yarns. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2274–2284. [Google Scholar] [CrossRef]
- Mishra, R.; Jamshaid, H.; Yosfani, S.; Hussain, U. Thermo physiological comfort of single jersey knitted fabric derivatives. Fash. Text. 2021, 8, 40. [Google Scholar] [CrossRef]
- Preethikaharshini, J.; Naresh, K.; Rajeshkumar, G.; Arumugaprabu, V.; Khan, M.A.; Khan, K.A. Review of advanced techniques for manufacturing biocomposites: Non-destructive evaluation and artificial intelligence-assisted modeling. J. Mater. Sci. 2022, 57, 16091–16146. [Google Scholar] [CrossRef]
- Naresh, K.; Khan, K.A.; Umer, R.; Cantwell, W.J. The use of X-ray computed tomography for design and process modeling of aerospace composites: A review. Mater. Design. 2020, 190, 108553. [Google Scholar] [CrossRef]
- Park, S.J.; Seo, M.K. Interface Science and Composites; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780080963488/9780080976051. [Google Scholar]
- Alcock, B.; Cabrera, N.O.; Barkoula, N.M.; Loos, J.; Peijs, T. The mechanical properties of single-ply all-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 716–726. [Google Scholar] [CrossRef]
- Hoa, S.V.; Hoang, M.D.; Simpson, J. Manufacturing procedure to make flat thermoplastic composite laminates by automated fiber placement and their mechanical properties. J. Therm. Comp. Mater. 2016, 30, 1693–1712. [Google Scholar] [CrossRef]
- Ahmad, Z.; Jamshaid, H.; Nawab, Y. Influence of inlay yarn type and stacking sequence on mechanical performance of knitted uni-directional thermoplastic composite prepregs. J. Ind. Text. 2022, 51 (Suppl. 3), 4973S–5008S. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.; Pechociakova, M.; Noman, M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016, 17, 1675–1686. [Google Scholar] [CrossRef]
- Selva Priya, M.; Naresh, K.; Jayaganthan, R.; Velmurugan, R. A comparative study between in-house 3D printed and injection molded ABS and PLA polymers for low-frequency applications. Mater. Res. Express 2019, 6, 085345. [Google Scholar] [CrossRef]
- Prasad, V.V.; Talupula, S. A Review on Reinforcement of Basalt and aramid (Kevlar 129) fibers. Mater. Today Proc. 2018, 5, 5993–5998. [Google Scholar] [CrossRef]
- Naresh, K.; Khan, K.A.; Umer, R.; Vasudevan, A. Temperature-frequency–dependent viscoelastic properties of neat epoxy and fiber reinforced polymer composites: Experimental characterization and theoretical predictions. Polymers 2020, 12, 1700. [Google Scholar] [CrossRef]
- Vasudevan, A.; Senthil Kumaran, S.; Naresh, K.; Velmurugan, R. Experimental and analytical investigation of thermo-mechanical responses of pure epoxy and carbon/kevlar/s-glass/e-glass/epoxy interply hybrid laminated composites for aerospace applications. Int. J. Polym. Anal. Charact. 2018, 23, 591–605. [Google Scholar] [CrossRef]
- Jiang, L.; Fu, J.; Liu, L.; Du, P. Wear and thermal behavior of basalt fiber reinforced rice husk/polyvinyl chloride composites. J. Appl. Polym. Sci. 2021, 138, 50094. [Google Scholar] [CrossRef]
- Khan, J.; Khan, M.; Islam, R.; Gafur, A. Mechanical, thermal and interfacial properties of jute fabric-reinforced polypropylene composites: Effect of potassium dichromate. Mater. Sci. Appl. 2010, 1, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Naresh, K.; Khan, K.A.; Umer, R. Experimental characterization and modeling multifunctional properties of epoxy/graphene oxide nanocomposites. Polymers 2021, 13, 2831. [Google Scholar] [CrossRef]
- Naresh, K.; Shankar, K.; Velmurugan, R. Digital image processing and thermo-mechanical response of neat epoxy and different laminate orientations of fiber reinforced polymer composites for vibration isolation applications. Int. J. Polym. Anal. Charact. 2018, 23, 684–709. [Google Scholar] [CrossRef]
- Aji, I.S.; Zainudin, E.S.; Khalina, A.; Sapuan, S.M.; Khairul, M.D. Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J. Therm. Anal. Calorim. 2012, 109, 893–900. [Google Scholar] [CrossRef]
Properties | Basalt | Polypropylene | Jute |
---|---|---|---|
Diameter of fibers (micron) | 12 ± 0.01 | 34 ± 0.01 | 18 ± 0.08 |
No. of filaments | 890 | 300 | -------- |
Linear density of yarn (tex) | 300 ± 1.14 | 292 ± 1.02 | 296 ± 2.24 |
TPM (twists/m) | 20 ± 1.00 | 30 ± 1.00 | 180 ± 1.00 |
Tensile strength (N) | 92.75 ± 4.42 | 88.91 ± 3.07 | 41.43 ± 2.11 |
Tensile elongation (%) | 1.29 ± 0.01 | 12.55 ± 0.72 | 1.39 ± 0.01 |
Tenacity (N/tex) | 0.32 ± 0.01 | 0.23 ± 0.01 | 0.14 ± 0.01 |
Initial modulus (MPa) | 9,378 ± 10.45 | 721 ± 7.42 | 3,741 ± 14.12 |
Factors | Level 1 | Level 2 |
---|---|---|
Reinforcing yarn | Basalt yarn | Jute yarn |
Thermoplastic/matrix yarn | Polypropylene (PP) | Polypropylene (PP) |
No. of layers/stacking sequence (angle in degrees) | 1 (0) | 2 (0/45) |
Sample Code | Pattern of Layering |
---|---|
PP | Control sample (pure PP) |
B1L | Basalt one layer |
B2L | Basalt two layer |
J1L | Jute one layer |
J2L | Jute two layer |
Sample Code | Maximum Tensile Stress (N/mm2) | Tensile Modulus (GPa) | Elongation to Break (%) |
---|---|---|---|
PP (control sample) | 0.11 ± 0.01 | 12.25 ± 0.07 | 12.46 ± 0.41 |
B1L | 1.15 ± 0.05 | 26.33 ± 1.12 | 3.56 ± 0.11 |
B2L | 1.18 ± 0.04 | 27.75 ± 1.22 | 2.76 ± 0.09 |
J1L | 0.31 ± 0.01 | 22.58 ± 1.08 | 2.68 ± 0.10 |
J2L | 0.47 ± 0.02 | 23.67 ± 1.11 | 2.48 ± 0.18 |
Sample Code | Storage Modulus (MPa) at 30 °C | Storage Modulus (MPa) at 100 °C | Tan δ at 30 °C | Tan δ at 100 °C |
---|---|---|---|---|
PP (control sample) | 998.42 ± 18.47 | 71.45 ± 1.21 | 0.07 ± 0.01 | 0.37 ± 0.01 |
B1L | 2154.74 ± 24.42 | 1086.17 ± 22.72 | 0.02 ± 0.01 | 0.22 ± 0.01 |
B2L | 2312.17 ± 27.16 | 1403.44 ± 24.08 | 0.01 ± 0.01 | 0.16 ± 0.01 |
J1L | 1405.46 ± 28.33 | 114.24 ± 7.01 | 0.06 ± 0.01 | 0.29 ± 0.01 |
J2L | 1803.83 ± 31.22 | 521.28 ± 10.86 | 0.04 ± 0.01 | 0.24 ± 0.01 |
Sample | Weight Loss Temperature (°C) | Heat-Resistance Index (THRI) | |
---|---|---|---|
T5 | T30 | ||
PP | 301.15 | 411.21 | 179.92 |
Jute | 303.22 | 421.44 | 183.33 |
Basalt | 321.45 | 1425.24 | 482.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshaid, H.; Mishra, R.K.; Chandan, V.; Nazari, S.; Shoaib, M.; Bizet, L.; Ivanova, T.A.; Muller, M.; Valasek, P. Mechanical and Thermo-Mechanical Performance of Natural Fiber-Based Single-Ply and 2-Ply Woven Prepregs. Polymers 2023, 15, 994. https://doi.org/10.3390/polym15040994
Jamshaid H, Mishra RK, Chandan V, Nazari S, Shoaib M, Bizet L, Ivanova TA, Muller M, Valasek P. Mechanical and Thermo-Mechanical Performance of Natural Fiber-Based Single-Ply and 2-Ply Woven Prepregs. Polymers. 2023; 15(4):994. https://doi.org/10.3390/polym15040994
Chicago/Turabian StyleJamshaid, Hafsa, Rajesh Kumar Mishra, Vijay Chandan, Shabnam Nazari, Muhammad Shoaib, Laurent Bizet, Tatiana Alexiou Ivanova, Miroslav Muller, and Petr Valasek. 2023. "Mechanical and Thermo-Mechanical Performance of Natural Fiber-Based Single-Ply and 2-Ply Woven Prepregs" Polymers 15, no. 4: 994. https://doi.org/10.3390/polym15040994
APA StyleJamshaid, H., Mishra, R. K., Chandan, V., Nazari, S., Shoaib, M., Bizet, L., Ivanova, T. A., Muller, M., & Valasek, P. (2023). Mechanical and Thermo-Mechanical Performance of Natural Fiber-Based Single-Ply and 2-Ply Woven Prepregs. Polymers, 15(4), 994. https://doi.org/10.3390/polym15040994