Study of Microwave-Active Composite Materials to Improve the Polyethylene Rotomolding Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
- -
- Fe in (a), (e), (i) and (o);
- -
- Si in (b), f), (l) and (p);
- -
- Ti in (c), (g), (m) and (q);
- -
- O in (d), (h), (n) and (r).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dornfeld, D.A. Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf.-Green Tech. 2014, 1, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Khripko, D.; Schlüter, B.A.; Rommel, B.; Rosano, M.; Hesselback, J. Energy demand and efficiency measures in polymer processing: Comparison between temperate and Mediterranean operating plants. Int. J. Energy Environ. Eng. 2016, 7, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Defonseka, C. Processing Systems for Polymers; Chapter 8; De Gruyter: Berlin, Germany, 2020; Volume 2020, pp. 65–94. [Google Scholar]
- Stampi rotazionali—Tecnomodel. Available online: https://www.tecnomodel.com/stampi-rotazionali/ (accessed on 12 October 2022).
- RotoDesign | Tecnologia-Processo. Available online: http://www.rotodesign.it/tecnologia-processo.html (accessed on 12 October 2022).
- Crawford, R.J. Recent advances in the manufacture of plastic products by rotomolding. J. Mater. Process. Technol. 1996, 56, 263–271. [Google Scholar] [CrossRef]
- Ogila, K.O.; Shao, M.; Yang, W.; Tan, J. Rotational molding: A review of the models and materials. Express Polym. Lett. 2017, 11, 778–798. [Google Scholar] [CrossRef]
- Vignali, A.; Iannace, S.; Falcone, G.; Utzeri, R.; Stagnaro, P.; Bertini, F. Lightweight Poly(ε-Caprolactone) Composites with Surface Modified Hollow Glass Microspheres for Use in Rotational Molding: Thermal, Rheological and Mechanical Properties. Polymers 2019, 11, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stagnaro, P.; Utzeri, R.; Vignali, A.; Falcone, G.; Iannace, S.; Bertini, F. Lightweight polyethylene-hollow glass microspheres composites for rotational molding technology. J. App. Polym. Sci. 2021, 138, 49766. [Google Scholar] [CrossRef]
- Wypych, A.; Bobowska, I.; Tracz, M.; Opasinska, A.; Kadlubowski, S.; Krzywania-Kaliszewska, A.; Grobelny, J.; Wojciechowski, P. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods. J. Nanomater. 2014, 2014, 124814. [Google Scholar] [CrossRef]
- Wang, S.T.; Sun, J.; Yu, Y.; Li, Q.J.; Tong, L.; Guo, Y.M.; Wang, C.C. A Facile Method to Increase Dielectric Properties of Rutile TiO2. Ceram. Int. 2018. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Withers, R.L.; Frankcombe, T.J.; Norén, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H.; et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821–826. [Google Scholar] [CrossRef]
- Available online: https://www.microwaves101.com/encyclopedias/silicon-carbide (accessed on 17 October 2022).
- Sabisky, E.S.; Gerritsen, H.J. Measurements of Dielectric Constant of Rutile (TiO2) at Microwave Frequencies between 4.2° and 300 °K. J. Appl. Phys. 1962, 33, 1450. [Google Scholar] [CrossRef]
- Silaghi, M.A. Chapter 1. Dielectric Material; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Chakraborty, S. Frequency-dependent dielectric properties of sodium silicate. Mod. Phys. Lett. B 2018, 32, 185041. [Google Scholar] [CrossRef]
- Chakraborty, S.; Basu, A.; Haldar, S. Effect of doping on dielectric loss of sodium silicate ceramic. Adv. Sci. Lett. 2016, 22, 21. [Google Scholar] [CrossRef]
- Mascia, F.; Fratton, F. Compounds and Compositions for Susceptor Materials. 2011. Available online: https://patents.google.com/patent/WO2011095883A2/en (accessed on 17 October 2022).
- Obarski, G.E. Wavelength Measurement System for Optical Fiber Communications; Technical Note NIST-Gov; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1990.
- Lunt, R.A.; Jackson, A.J.; Walsh, A. Dielectric response of Fe2O3 crystals and thin films. Chem. Phys. Lett. 2013, 586, 67–69. [Google Scholar] [CrossRef]
- Brunengo, E.; Conzatti, L.; Schizzi, I.; Buscaglia, M.T.; Canu, G.; Curecheriu, L.; Costa, C.; Castellano, M.; Mitoseriu, L.; Stagnaro, P.; et al. Improved dielectric properties of poly(vinylidene fluoride)–BaTiO3 composites by solvent-free processing. J. Appl. Polym. Sci. 2021, 138, 50049. [Google Scholar] [CrossRef]
- Opyd, B.; Granat, K.; Nowak, D. Determination of electrical properties of materials used in microwave heating of foundry molds and cores. Metalurgija 2015, 54, 347–349. [Google Scholar]
- Mello, P.A.; Barin, J.S.; Guarnieri, R.A. Chapter 2—Microwave Heating. In Microwave-Assisted Sample Preparation for Trace Element Analysis; Elsevier: Amsterdam, The Netherlands, 2014; pp. 59–75. [Google Scholar]
- Kamol, S.; Limsuwan, P.; Onreabroy, W. Three-dimensional standing waves in a microwave oven. Am. J. Phys. 2010, 78, 492–495. [Google Scholar] [CrossRef]
- Mejia, E.; Cherupurakal, N.; Mourad, A.-H.I.; Al Hassanieh, S.; Rabia, M. Effect of Processing Techniques on the Microstructure and Mechanical Performance of High-Density Polyethylene. Polymers 2021, 13, 3346. [Google Scholar] [CrossRef]
- Osswald, T.A.; Menges, G. Failure and Damage of Polymers. In Materials Science of Polymers for Engineers; Carl Hanser Verlag: Munich, Germany, 2012; pp. 423–487. [Google Scholar] [CrossRef]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Chamerski, K.; Lesniak, M.; Sitarz, M.; Stopa, M.; Filipecki, J. An Investigation of the Effect of Silicone Oil on Polymer Intraocular Lenses by Means of PALS, FT-IR and Raman Spectroscopies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 167, 96–100. [Google Scholar] [CrossRef]
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sadrabadi, T.E.; Zebarjad, S.M.; Khaki, J.V.; Sahebian, S. On the dependence of avrami indexes of MDPE on milling time. Polym. Plast. Technol. Eng. 2010, 49, 1284–1288. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, X.; Sun, Y.; Yang, H.; Lin, B.; Han, X.; Chen, P. Study on the influence of crosslinking density and free polysiloxan chain length on oxygen permeability and hydrophilicity of multicomponent silicone hydrogels. Colloid Polym. Sci. 2021, 299, 1327–1335. [Google Scholar] [CrossRef]
MWSIC Formula | Labeled As | Description |
---|---|---|
SiC | SCF | Silicon carbide 35 μm grain size |
SiC | SCC | Silicon carbide 70 μm grain size |
Fe2SiO4 | ISF | Iron silicate 35 μm grain size |
Fe2SiO4 | ISC | Iron silicate 500 μm grain size |
Fe2O3 | IO | Iron oxide powder < 5 μm, ≥99% |
TiO2 | TO | Titanium oxide ≥ 99% |
BaTiO3 | BTO | Barium titanate powder < 3 μm, ≥99% |
Material | Measure at | Dielectric Constant (k′) | Dielectric Loss (k″) | Loss Tangent (k″/k′) |
---|---|---|---|---|
Fe2SiO4 [15,16] | 25 °C, 10 GHz | 5.77 | 0.01 ** | 0.0018 |
SiC [12] | 25 °C, 3–10 GHz | 10–60 | 0.01–36 ** | 0.001–0.58 |
TiO2 [11,12,13,14] | 20/25 °C, 4 GHz | 80–170 | 0.008–0.017 ** | 0.0001 |
Fe2O3 [17] | 20/25 °C, 3 GHz | 6–50 | 1–4 | 0.2–0.6 |
BaTiO3 [21] | 30 °C, 1 MHz | 2200 | 150 | 0.068 ** |
H2O [12] | 20 °C, 0.1/2.5 GHz | 78.1/80.1 | 3.6 | 0.016/0.123 |
SiO2 [12,20] | 25 °C, 8.5 GHz | 3.5–4 | 0.0008 ** | 0.0002 |
Na2SiO3 [16,17] | 25 °C, 8.5 GHz | 5.84 | 0.041 ** | 0.0070 |
PE [12,20] | 25 °C, 2.5 GHz | 2.444 | 0.002 ** | 0.0010 (2.6 *) |
PVC [12,20] | 30 °C, 0.01/2.5 GHz | 3/2.666 | 0.018/0.04 | 0.001/0.013 |
PTFE [22] | 25 °C, 8.5 GHz | 2.058 | 0.0022 ** | 0.00108 |
Silicon RTV 521 | 23 °C, 8.5 GHz | 3.31 | 0.085 ** | 0.0257 |
MW-Active Compound | Q [J] in Cycle at: 750 W, t = 5 min | Q [J] in Cycle at: 750 W, t = 1.5 min |
---|---|---|
ISC | 1000 | 125 |
ISF | 700 | 84 |
SCC | 505 | 63 |
SCF | 500 | 65 |
TO | 170 | 75 |
IO | 330 | 117 |
BTO | 170 | 84 |
IO:BTO (1:1) | 167 | 84 |
Mold Material (Time) | Absorbed Current [A] | Grid Voltage [V] | Time [s] | Absorbed Power [Wh] |
---|---|---|---|---|
AL (780 s) | 5.60 | 225 | 286 | 100 |
SS (780 s) | 5.40 | 224 | 286 | 96 |
GL (780 s) | 5.70 | 226 | 286 | 102 |
Mold Material (Time) | Absorbed Current [A] | Grid Voltage [V] | Time [s] | Absorbed Power [Wh] |
---|---|---|---|---|
AL (780 s) | 4.00 | 226 | 780 | 196 |
SS (780 s) | 4.01 | 224 | 780 | 195 |
GL (780 s) | 4.01 | 225 | 960 | 241 |
GL (960 s) | 4.03 | 223 | 780 | 195 |
MW Process | Resistive Process | |
---|---|---|
Material mold | Weight [g] | Weight [g] |
SS | 14.4 (e) | 13.3 (f) |
GL | 15.0 (c) | 8.2 (d) |
AL | 15.0 (a) | 8.2 (b) |
Sample/Preparation Process | Tensile Modulus [MPa] | Tensile Strength at Break [Mpa] | Elongation at Break [%] |
---|---|---|---|
Riblene (LDPE) [23] | 120–550 | 32–60 | 450–810 |
Commercial PE/# | 489 ± 115 | 12.5 ± 1.6 | 435 ± 178 |
Press-fused pellets | 116 ± 12 | 11.6 ± 1.3 | 520 ± 217 |
Press-fused powder | 291 ± 23 | 8.5 ± 2.6 | 160 ± 80 |
Lab Dog Bone | 190 ± 35 | 16. ± 3.4 | 1100 ± 491 |
Lab MW-rotomolded | 287 ± 78 | 21.7 ± 3.2 | 320 ± 201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, G.; Vignolo, M.; Brunengo, E.; Utzeri, R.; Stagnaro, P. Study of Microwave-Active Composite Materials to Improve the Polyethylene Rotomolding Process. Polymers 2023, 15, 1061. https://doi.org/10.3390/polym15051061
Luciano G, Vignolo M, Brunengo E, Utzeri R, Stagnaro P. Study of Microwave-Active Composite Materials to Improve the Polyethylene Rotomolding Process. Polymers. 2023; 15(5):1061. https://doi.org/10.3390/polym15051061
Chicago/Turabian StyleLuciano, Giorgio, Maurizio Vignolo, Elisabetta Brunengo, Roberto Utzeri, and Paola Stagnaro. 2023. "Study of Microwave-Active Composite Materials to Improve the Polyethylene Rotomolding Process" Polymers 15, no. 5: 1061. https://doi.org/10.3390/polym15051061
APA StyleLuciano, G., Vignolo, M., Brunengo, E., Utzeri, R., & Stagnaro, P. (2023). Study of Microwave-Active Composite Materials to Improve the Polyethylene Rotomolding Process. Polymers, 15(5), 1061. https://doi.org/10.3390/polym15051061