Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PCPP/NS Nanocomposite Films
2.3. Characterization of the Nanocomposite Films
2.3.1. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
2.3.2. Tensile Test
2.3.3. Seal Strength
2.3.4. Water Vapor Permeability (WVP)
2.3.5. Oxygen Permeability (OP)
2.3.6. Overall Migration (OM)
2.3.7. Statistical Analysis
3. Results and Discussions
3.1. Scanning Electron Microscopy and Energy Dispersive Spectroscopy (EDS)
3.2. Mechanical Properties
3.3. Seal Strength
3.3.1. Sealing Curves
3.3.2. Seal Strength of the Nanocomposites
3.4. Barrier Properties: WVP and OP
3.5. Overall Migration (OM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues: Scientific status summary. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Schwarz, A.; de Ruiter, R.; Zondervan, E.; van Eijk, F.; Huybrechts, L. A Circular Economy For Plastics: Let’s Turn Challenges Into Opportunities; European Circular Economy Stakeholder Platform; Holland Circular Hotspot: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Biron, M. Recycling: The First Source of Renewable Plastics; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-323-48065-9. [Google Scholar]
- Grigore, M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, E.; Correa, M.G.; Garrido, L.; Guarda, A.; Galotto, M.J.; de Dicastillo, C.L. Food Packaging Plastics: Identification and Recycling BT—Recent Developments in Plastic Recycling; Parameswaranpillai, J., Rangappa, S.M., Rajkumar, A.G., Siengchin, S., Eds.; Springer Singapore: Singapore, 2021; pp. 311–343. ISBN 978-981-16-3627-1. [Google Scholar]
- Cecon, V.S.; Da Silva, P.F.; Curtzwiler, G.W.; Vorst, K.L. The challenges in recycling post-consumer polyolefins for food contact applications: A review. Resour. Conserv. Recycl. 2021, 167, 105422. [Google Scholar] [CrossRef]
- Velásquez, E.; Espinoza, S.; Valenzuela, X.; Garrido, L.; Galotto, M.J.; Guarda, A.; de Dicastillo, C.L. Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging. Polymers 2021, 13, 1502. [Google Scholar] [CrossRef]
- Calhoun, A. 3—Polypropylene. In Plastics Design Library, 2nd ed.; Wagner, J.R., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 35–45. ISBN 978-0-323-37100-1. [Google Scholar]
- Chen, Y.; Yang, H.; Yang, S.; Ren, P.; Zhang, Q.; Li, Z. Polypropylene films with high barrier performance via crystal morphology manipulation. J. Mater. Sci. 2017, 52, 5449–5461. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef] [Green Version]
- Spicker, C.; Rudolph, N.; Kühnert, I.; Aumnate, C. The use of rheological behavior to monitor the processing and service life properties of recycled polypropylene. Food Packag. Shelf Life 2019, 19, 174–183. [Google Scholar] [CrossRef]
- de Dicastillo, C.L.; Velásquez, E.; Rojas, A.; Guarda, A.; Galotto, M.J. The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1760–1776. [Google Scholar] [CrossRef] [PubMed]
- Zdiri, K.; Elamri, A.; Hamdaoui, M.; Harzallah, O.; Khenoussi, N.; Brendlé, J. Reinforcement of recycled pp polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 2018, 11, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Uwa, C.A.; Sadiku, E.R.; Jamiru, T.; Nnachi, A.F. Synthesis and characterisation of polypropylene nanocomposites for food packaging material. Mater. Today Proc. 2021, 38, 1197–1202. [Google Scholar] [CrossRef]
- Patil, J.; Patil, H.; Sankpal, R.; Rathod, D.; Patil, K.; Kubade, P.R.; Kulkarni, H.B. Studies on mechanical and thermal performance of carbon nanotubes/polypropylene nanocomposites. Mater. Today Proc. 2020, 46, 7182–7186. [Google Scholar] [CrossRef]
- Velásquez, E.; Garrido, L.; Valenzuela, X.; Galotto, M.J.; Guarda, A.; de Dicastillo, C.L. Physical properties and safety of 100% post-consumer PET bottle -organoclay nanocomposites towards a circular economy. Sustain. Chem. Pharm. 2020, 17, 100285. [Google Scholar] [CrossRef]
- Velásquez, E.J.; Garrido, L.; Guarda, A.; Galotto, M.J.; de Dicastillo, C.L. Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays. Appl. Clay Sci. 2019, 180, 105185. [Google Scholar] [CrossRef]
- Shams, R.; Rizvi, Q.u.e.H.; Dar, A.H.; Majid, I.; Khan, S. Nanocomposite: Potential Nanofiller for Food Packaging Applications; Wiley: Hoboken, NJ, USA; pp. 119–131. [CrossRef]
- US Food and Drug Administration. FDA Code of Federal Regulartions 21CFR73.575 for Listing of Color Additives Exempt from Certification; US Food and Drug Administration: Silver Spring, MD, USA, 2014; Volume 1, Title 21.
- Dorigato, A.; Pegoretti, A. (Re)processing effects on linear low-density polyethylene/silica nanocomposites. J. Polym. Res. 2013, 20, 92. [Google Scholar] [CrossRef]
- Azinfar, B.; Ahmad Ramazani, S.A.; Jafariesfad, N. In situ preparation and property investigation of polypropylene/fumed silica nanocomposites. Polym. Compos. 2014, 35, 37–44. [Google Scholar] [CrossRef]
- European Union. EC Regulation European Comission Regulation(EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) N° 1333/2008 of the European Parliament and of the council. Off. J. Eur. Union 2012, L83, 1–295. [Google Scholar]
- Claudia, F.-P. The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551). Arch. Toxicol. 2016, 90, 2885–2916. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Statement on the safety assessment of the substance silicon dioxide, silanated, FCM Substance No 87 for use in food contact materials. Eur. Food Saf. Auth. J. 2014, 12, 3712. [Google Scholar]
- European Union. EC Regulation Comission Regulation (EU) No 2016/1416 of 24 August 2016 ammending and correcting regulation (EU) No 10/2011on plastic materials and articles intended to come into contact with food (Text with EEA relevance). Off. J. Eur. Union 2016, L230, 22–42. [Google Scholar]
- Qiu, Y.; Fu, J.; Sun, B.; Ma, X. Sustainable nanocomposite films based on SiO2 and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) for food packaging. e-Polymers 2021, 21, 72–81. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, Y.; Ye, Q. Effect of nano-SiO2-LDPE packaging on biochemical, sensory, and microbiological quality of Pacific white shrimp Penaeus vannamei during chilled storage. Fish. Sci. 2015, 81, 983–993. [Google Scholar] [CrossRef]
- Wang, L.; Shao, S.; Madebo, M.P.; Hou, Y.; Zheng, Y.; Jin, P. Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chem. 2020, 315, 126295. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.V.; Shin, G.H.; Kim, J.T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends Food Sci. Technol. 2018, 82, 21–31. [Google Scholar] [CrossRef]
- Fambri, L.; Dabrowska, I.; Ceccato, R.; Pegoretti, A. Effects of Fumed Silica and Draw Ratio on Nanocomposite Polypropylene Fibers. Polymers 2017, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Dorigato, A.; Pegoretti, A. Reprocessing effects on polypropylene/silica nanocomposites. J. Appl. Polym. Sci. 2014, 131, 40242. [Google Scholar] [CrossRef]
- Titone, V.; Mistretta, M.C.; Botta, L.; La Mantia, F.P. Investigation on the Properties and on the Photo-Oxidation Behaviour of Polypropylene/Fumed Silica Nanocomposites. Polymers 2021, 13, 2673. [Google Scholar] [CrossRef]
- Velásquez, E.; Vidal, C.P.; Rojas, A.; Guarda, A.; Galotto, M.J.; de Dicastillo, C.L. Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3388–3403. [Google Scholar] [CrossRef]
- Raj, M.M.; Patel, H.V.; Raj, L.M.; Patel, N.K.; Patel, R. Studies on Mechanical Properties of Recycled Polypropylene Blended with Virgin Polypropylene. Int. J. Sci. Invent. Today 2013, 2, 194–203. [Google Scholar]
- Wu, W.; Wang, Y. Physical and Thermal Properties of High-Density Polyethylene Film Modified with Polypropylene and Linear Low-Density Polyethylene. J. Macromol. Sci. Part B 2020, 59, 213–222. [Google Scholar] [CrossRef]
- Awad, S.A.; Khalaf, E.M. Investigation of improvement of properties of polypropylene modified by nano silica composites. Compos. Commun. 2019, 12, 59–63. [Google Scholar] [CrossRef]
- Vassiliou, A.; Bikiaris, D.; Pavlidou, E. Optimizing Melt-Processing Conditions for the Preparation of iPP/Fumed Silica Nanocomposites: Morphology, Mechanical and Gas Permeability Properties. Macromol. React. Eng. 2007, 1, 488–501. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Zhang, L.; Du, H.L.; Burnell-Gray, J.S. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur. Polym. J. 2006, 42, 1643–1652. [Google Scholar] [CrossRef]
- Aithani, D.; Lockhart, H.; Auras, R.; Tanprasert, K. Heat Sealing measurement by an innovative technique. Packag. Technol. Sci. 2006, 19, 245–257. [Google Scholar] [CrossRef]
- Simanke, A.G.; De Lemos, C.; Pires, M. Linear low density polyethylene: Microstructure and sealing properties correlation. Polym. Test. 2013, 32, 279–290. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Alias, A.K. Mechanical, Barrier, Physicochemical, and Heat Seal Properties of Starch Films Filled with Nanoparticles. J. Nano Res. 2013, 25, 90–100. [Google Scholar] [CrossRef]
- Hahm, W.G.; Myung, H.S.; Im, S.S. Preparation and properties ofin situ polymerized poly(ethylene terephthalate)/fumed silica nanocomposites. Macromol. Res. 2004, 12, 85–93. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Vidal, C.P.; Guarda, A.; Galotto, M.J.; de Dicastillo, C.L. Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants 2021, 10, 1976. [Google Scholar] [CrossRef] [PubMed]
- Lagaron, J.M.; Catalá, R.; Gavara, R. Structural characteristics defining high barrier properties in polymeric materials. Mater. Sci. Technol. 2013, 20, 1–7. [Google Scholar] [CrossRef]
- Masmoudi, F.; Alix, S.; Buet, S.; Mehri, A.; Bessadok, A.; Jaziri, M.; Ammar, E. Design and Characterization of a New Food Packaging Material by Recycling Blends Virgin and Recovered polyethylene terephthalate. Polym. Eng. Sci. 2020, 60, 250–256. [Google Scholar] [CrossRef]
- Gall, M.; Steinbichler, G.; Lang, R.W. Learnings about design from recycling by using post-consumer polypropylene as a core layer in a co-injection molded sandwich structure product. Mater. Des. 2021, 202, 109576. [Google Scholar] [CrossRef]
Film | YM (MPa) | TS (MPa) | EB (%) | Thickness (µm) |
---|---|---|---|---|
VPP | 1163 ± 61 f | 39.0 ± 0.7 e | 21.2 ± 6.0 cd | 162 ± 13 |
PCPP | 608 ± 65 bcde | 19.8 ± 0.9 b | 23.7 ± 8.2 d | 148 ± 10 |
PCPP-0.5 NS1 | 569 ± 63 abc | 20.2 ± 0.7 bc | 14.3 ± 3.4 b | 159 ± 9 |
PCPP-1NS1 | 657 ± 80 de | 21.8 ± 1.1 d | 13.6 ± 1.8 b | 173 ± 10 |
PCPP-2NS1 | 547 ± 45 ab | 19.1 ± 1.4 b | 13.6 ± 3.5 b | 181 ± 7 |
PCPP-4NS1 | 537 ± 50 a | 17.2 ± 1.7 a | 9.2 ± 1.4 a | 181 ± 14 |
PCPP-0.5NS2 | 593 ± 62 abcd | 21.2 ± 2.0 cd | 15.1 ± 4.4 b | 164 ± 14 |
PCPP-1NS2 | 660 ± 70 e | 21.6 ± 1.6 d | 13.7 ± 3.5 b | 177 ± 14 |
PCPP-2NS2 | 602 ± 111 bcde | 20.0 ± 2.2 bc | 15.4 ± 3.4 b | 169 ± 7 |
PCPP-4NS2 | 612 ± 87 cde | 19.0 ± 1.6 b | 17.3 ± 4.5 bc | 164 ± 7 |
Film | Seal Strength (N m−1) | Type of Failure |
---|---|---|
PCPP | 108.3 ± 88.4 ab | AP |
PCPP-0.5NS1 | 25.5 ± 8.3 a | AP |
PCPP-1NS1 | 39.1 ± 13.9 a | AP |
PCPP-2NS1 | 154.4 ± 39.4 b | AP |
PCPP-4NS1 | 188.3 ± 140.6 b | AP (4/6), MB (2/6) |
PCPP-0.5NS2 | 127.5 ± 82.0 ab | AP |
PCPP-1NS2 | 115.8 ± 47.2 ab | AP |
PCPP-2NS2 | 168.0 ± 126.0 b | AP |
PCPP-4NS2 | 196.8 ± 145.3 ab | AP |
Film | WVP × 105 (g mm m−2 d Pa−1) | OP (cm3 mm m−2 day−1 atm−1) |
---|---|---|
VPP | 3.49 ± 0.05 a | 453.93 ± 115.14 b |
PCPP | 6.47 ± 0.26 b | 80.75 ± 8.52 a |
PCPP-1NS1 | 6.48 ± 0.20 b | 91.53 ± 10.87 a |
PCPP-1NS2 | 6.79 ± 0.57 b | 82.35 ± 6.77 a |
Film | Overall Migration (mg dm−2) |
---|---|
VPP | 6.7 ± 1.4 a |
PCPP | 17.3 ± 0.7 c |
PCPP-1NS1 | 15.6 ± 0.7 bc |
PCPP-4NS1 | 15.9 ± 0.1 bc |
PCPP-1NS2 | 15.3 ± 0.1 b |
PCPP-4NS2 | 15.9 ± 0.1 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, E.; López de Dicastillo, C.; Patiño Vidal, C.; Copello, G.; Reyes, C.; Guarda, A.; Galotto, M.J. Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability. Polymers 2023, 15, 1081. https://doi.org/10.3390/polym15051081
Velásquez E, López de Dicastillo C, Patiño Vidal C, Copello G, Reyes C, Guarda A, Galotto MJ. Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability. Polymers. 2023; 15(5):1081. https://doi.org/10.3390/polym15051081
Chicago/Turabian StyleVelásquez, Eliezer, Carol López de Dicastillo, Cristian Patiño Vidal, Guillermo Copello, Cristopher Reyes, Abel Guarda, and María José Galotto. 2023. "Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability" Polymers 15, no. 5: 1081. https://doi.org/10.3390/polym15051081
APA StyleVelásquez, E., López de Dicastillo, C., Patiño Vidal, C., Copello, G., Reyes, C., Guarda, A., & Galotto, M. J. (2023). Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability. Polymers, 15(5), 1081. https://doi.org/10.3390/polym15051081