Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for the Synthesis of Semi-IPN Hydrogels
2.2. Synthesis and Purification of Semi-IPN Hydrogels
2.3. Characterization Methods for Semi-IPN Hydrogels
2.4. Swelling Degree (SD) Determination for the Semi-IPN Hydrogels
2.5. Wastewater Sampling and Bacteriological Testing of Semi-IPN Hydrogels
2.6. Genetic-Marker-Based Quantitative PCR (qPCR) Analyses of Waterborne Pathogens
2.6.1. Genomic DNA Extraction of WW Materials
2.6.2. Molecular Detection and Quantification of Microbial Pathogens in WW
3. Results and Discussion
3.1. FTIR Spectroscopy of Semi-IPN Hydrogels
3.2. Thermo-Gravimetric Analysis (TGA/DTG) for Synthesized Semi-IPN Hydrogels
3.3. Morphology of the Synthesized Semi-IPN Hydrogels
3.4. Swelling Degree Study (SD) for the Semi-IPN Hydrogels
3.5. Bacteriological Evaluation Results
3.6. Removal Efficiency of Waterborne Pathogens
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoang, H.-G.; Lin, C.; Tran, H.-T.; Chiang, C.-F.; Bui, X.-T.; Cheruiyot, N.K.; Shern, C.-C.; Lee, C.-W. Heavy Metal Contamination Trends in Surface Water and Sediments of a River in a Highly-Industrialized Region. Environ. Technol. Innov. 2020, 20, 101043. [Google Scholar] [CrossRef]
- Setia, R.; Dhaliwal, S.S.; Kumar, V.; Singh, R.; Kukal, S.S.; Pateriya, B. Impact Assessment of Metal Contamination in Surface Water of Sutlej River (India) on Human Health Risks. Environ. Pollut. 2020, 265, 114907. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Bian, H.; Yao, X. Trends and Health Risks of Dissolved Heavy Metal Pollution in Global River and Lake Water from 1970 to 2017. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing AG: Cham, Switzerland, 2020; Volume 251, pp. 1–24. [Google Scholar] [CrossRef]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial Metal Pollution in Water and Probabilistic Assessment of Human Health Risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef]
- Sher, F.; Malik, A.; Liu, H. Industrial Polymer Effluent Treatment by Chemical Coagulation and Flocculation. J. Environ. Chem. Eng. 2013, 1, 684–689. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Chen, H.; Wu, Z. Removal of Cu(II) Ions from Contaminated Waters Using a Conducting Microfiltration Membrane. J. Hazard. Mater. 2017, 339, 182–190. [Google Scholar] [CrossRef]
- Vashi, H.; Iorhemen, O.T.; Tay, J.H. Aerobic Granulation: A Recent Development on the Biological Treatment of Pulp and Paper Wastewater. Environ. Technol. Innov. 2018, 9, 265–274. [Google Scholar] [CrossRef]
- Volpin, F.; Fons, E.; Chekli, L.; Kim, J.E.; Jang, A.; Shon, H.K. Hybrid Forward Osmosis-Reverse Osmosis for Wastewater Reuse and Seawater Desalination: Understanding the Optimal Feed Solution to Minimise Fouling. Process Saf. Environ. Prot. 2018, 117, 523–532. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Li, N.; Yang, Y.; Duan, G.; Wang, X.; Xu, Y.; Li, Y. A robust and 3D-printed solar evaporator based on naturally occurring molecules. Sci. Bull. 2023, 68, 203–213. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Yang, F.; Bai, W.; Zhang, X.; Li, H.; Duan, G.; Xu, Y.; Li, Y. A bioinspired antibacterial and phototermal membrane for stable and durable clean water remediation. Mater. Horiz. 2023, 10, 268–276. [Google Scholar] [CrossRef]
- Sonune, A.; Ghate, R. Developments in Wastewater Treatment Methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Mohammadzadeh Pakdel, P.; Peighambardoust, S.J. A Review on Acrylic Based Hydrogels and Their Applications in Wastewater Treatment. J. Environ. Manag. 2018, 217, 123–143. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel Applications for Adsorption of Contaminants in Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef]
- Buonomenna, M.G. Smart Composite Membranes for Advanced Wastewater Treatments. In Smart Composite Coatings and Membranes; Montemor, M.F., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2016; pp. 371–419. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.-C.; He, F.; Peng, S.; Li, Y.; Shao, L.; Darling, S.B. Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 2019, 1, 115–155. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hu, J.; Zhang, X.; Yuan, X.; Yuan, D.; Duan, G.; Li, Y. Robust and multifunctional natural polyphenolic composites for water remediation. Mater. Horiz. 2022, 9, 2496–2517. [Google Scholar] [CrossRef]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial Hydrogels for Biomedical Applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef]
- Peng, K.; Vora, L.K.; Domínguez-Robles, J.; Naser, Y.A.; Li, M.; Larrañeta, E.; Donnelly, R.F. Hydrogel-Forming Microneedles for Rapid and Efficient Skin Deposition of Controlled Release Tip-Implants. Mater. Sci. Eng. C 2021, 127, 112226. [Google Scholar] [CrossRef]
- Singh, T.R.R.; Laverty, G.; Donnelly, R. (Eds.) Hydrogels: Design, Synthesis and Application in Drug Delivery and Regenerative Medicine; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Mohammadzadeh Pakdel, P.; Peighambardoust, S.J. Review on Recent Progress in Chitosan-Based Hydrogels for Wastewater Treatment Application. Carbohydr. Polym. 2018, 201, 264–279. [Google Scholar] [CrossRef]
- Garg, S.; Garg, A. Hydrogel: Classification, Properties, Preparation and Technical Features. Asian J. Biomater. Res. 2016, 2, 163–170. [Google Scholar]
- Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P.-E.; Noolandi, J.; Ta, C.N.; Frank, C.W. Progress in the Development of Interpenetrating Polymer Network Hydrogels. Polym. Adv. Technol. 2008, 19, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Mueller, K.F.; Heiber, S.J. Gradient-IPN-Modified Hydrogel Beads: Their Synthesis by Diffusion–Polycondensation and Function as Controlled Drug Delivery Agents. J. Appl. Polym. Sci. 1982, 27, 4043–4064. [Google Scholar] [CrossRef]
- Strassburg, A.; Petranowitsch, J.; Paetzold, F.; Krumm, C.; Peter, E.; Meuris, M.; Köller, M.; Tiller, J.C. Cross-Linking of a Hydrophilic, Antimicrobial Polycation toward a Fast-Swelling, Antimicrobial Superabsorber and Interpenetrating Hydrogel Networks with Long Lasting Antimicrobial Properties. ACS Appl. Mater. Interfaces 2017, 9, 36573–36582. [Google Scholar] [CrossRef]
- Xu, L.Q.; Yao, F.; Fu, G.D.; Kang, E.T. Interpenetrating Network Hydrogels via Simultaneous “Click Chemistry” and Atom Transfer Radical Polymerization. Biomacromolecules 2010, 11, 1810–1817. [Google Scholar] [CrossRef]
- Panteli, P.A.; Patrickios, C.S. Multiply Interpenetrating Polymer Networks: Preparation, Mechanical Properties, and Applications. Gels 2019, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Sperling, L.H. Interpenetrating Polymer Networks: An Overview. In Interpenetrating Polymer Networks; Klempner, D., Sperling, L.H., Utracki, L.A., Eds.; Advances in Chemistry series; American Chemical Society: Washington, DC, USA, 1994; Volume 239, pp. 3–38. [Google Scholar] [CrossRef] [Green Version]
- İsmail, O.; Gökçe Kocabay, Ö. Absorption and Adsorption Studies of Polyacrylamide/Sodium Alginate Hydrogels. Colloid Polym. Sci. 2021, 299, 783–796. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpaa, M. Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. J. Clean. Prod. 2021, 291, 125880. [Google Scholar] [CrossRef]
- Vieira, R.S.; Beppu, M.M. Interaction of Natural and Crosslinked Chitosan Membranes with Hg(II) Ions. Colloids Surf. A Physicochem. Eng. Asp. 2006, 279, 196–207. [Google Scholar] [CrossRef]
- Tu, H.; Yu, Y.; Chen, J.; Shi, X.; Zhou, J.; Deng, H.; Du, Y. Highly Cost-Effective and High-Strength Hydrogels as Dye Adsorbents from Natural Polymers: Chitosan and Cellulose. Polym. Chem. 2017, 8, 2913–2921. [Google Scholar] [CrossRef]
- Li, G.; Guo, L.; Chang, X.; Yang, M. Thermo-Sensitive Chitosan Based Semi-IPN Hydrogels for High Loading and Sustained Release of Anionic Drugs. Int. J. Biol. Macromol. 2012, 50, 899–904. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, W.; Li, Q.; Liu, X.; Guo, Z. Preparation of Cross-Linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing. Mar. Drugs 2021, 19, 479. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Cheng, B.; Pei, B.; Wang, Z.; Hu, Q. Advances in Chitosan-Based Superabsorbent Hydrogels. RSC Adv. 2017, 7, 42036–42046. [Google Scholar] [CrossRef] [Green Version]
- Dragan, E.S. Design and Applications of Interpenetrating Polymer Network Hydrogels. A Review. J. Chem. Eng. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Sereni, N.; Enache, A.; Sudre, G.; Montembault, A.; Rochas, C.; Durand, P.; Perrard, M.-H.; Bozga, G.; Puaux, J.-P.; Delair, T.; et al. Dynamic Structuration of Physical Chitosan Hydrogels. Langmuir 2017, 33, 12697–12707. [Google Scholar] [CrossRef]
- Bhullar, N.K.; Kumari, K.; Sud, D. Semi-Interpenetrating Networks of Biopolymer Chitosan/Acrylic Acid and Thiourea Hydrogels: Synthesis, Characterization and Their Potential for Removal of Cadmium. Iran. Polym. J. 2019, 28, 225–236. [Google Scholar] [CrossRef]
- Wan, J.; Zhu, C.; Hu, J.; Zhang, T.C.; Richter-Egger, D.; Feng, X.; Zhou, A.; Tao, T. Zirconium-Loaded Magnetic Interpenetrating Network Chitosan/Poly(Vinyl Alcohol) Hydrogels for Phosphorus Recovery from the Aquatic Environment. Appl. Surf. Sci. 2017, 423, 484–491. [Google Scholar] [CrossRef]
- Mohamed, R.R.; Seoudi, R.S.; Sabaa, M.W. Synthesis and Characterization of Antibacterial Semi-Interpenetrating Carboxymethyl Chitosan/Poly (Acrylonitrile) Hydrogels. Cellulose 2012, 19, 947–958. [Google Scholar] [CrossRef]
- Gavrila, A.-M.; Zaharia, A.; Paruch, L.; Perrin, F.X.; Sarbu, A.; Olaru, A.G.; Paruch, A.M.; Iordache, T.-V. Molecularly Imprinted Films and Quaternary Ammonium-Functionalized Microparticles Working in Tandem against Pathogenic Bacteria in Wastewaters. J. Hazard. Mater. 2020, 399, 123026. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Wei, X.; Wang, C.; Qu, M.; Schubert, D.W.; Zhang, C. An Outstanding Antichlorine and Antibacterial Membrane with Quaternary Ammonium Salts of Alkenes via in Situ Polymerization for Textile Wastewater Treatment. Chem. Eng. J. 2020, 384, 123306. [Google Scholar] [CrossRef]
- Ruan, T.; Song, S.; Wang, T.; Liu, R.; Lin, Y.; Jiang, G. Identification and Composition of Emerging Quaternary Ammonium Compounds in Municipal Sewage Sludge in China. Environ. Sci. Technol. 2014, 48, 4289–4297. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging Pollutants in the Environment: A Challenge for Water Resource Management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Vestby, L.K.; Nesse, L.L. Wound Care Antiseptics—Performance Differences against Staphylococcus Aureus in Biofilm. Acta Vet. Scand. 2015, 57, 22. [Google Scholar] [CrossRef] [Green Version]
- Gharibi, R.; Kazemi, S.; Yeganeh, H.; Tafakori, V. Utilizing Dextran to Improve Hemocompatibility of Antimicrobial Wound Dressings with Embedded Quaternary Ammonium Salts. Int. J. Biol. Macromol. 2019, 131, 1044–1056. [Google Scholar] [CrossRef]
- Oyervides-Muñoz, E.; Pollet, E.; Ulrich, G.; de Jesús Sosa-Santillán, G.; Avérous, L. Original Method for Synthesis of Chitosan-Based Antimicrobial Agent by Quaternary Ammonium Grafting. Carbohydr. Polym. 2017, 157, 1922–1932. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Wang, S.; Huang, Y.; Zhou, X.; Xu, H.H.K.; Ren, B.; Peng, X.; Weir, M.D.; Li, M.; Cheng, L. The Antibacterial Effects of Quaternary Ammonium Salts in the Simulated Presence of Inhibitors in Root Canals: A Preliminary In-Vitro Study. Coatings 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ. Sci. Technol. Lett. 2020, 7, 622–631. [Google Scholar] [CrossRef]
- Kwaśniewska, D.; Chen, Y.-L.; Wieczorek, D. Biological Activity of Quaternary Ammonium Salts and Their Derivatives. Pathogens 2020, 9, 459. [Google Scholar] [CrossRef]
- Miron, A.; Sarbu, A.; Zaharia, A.; Sandu, T.; Iovu, H.; Fierascu, R.C.; Neagu, A.-L.; Chiriac, A.-L.; Iordache, T.-V. A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes. Gels 2022, 8, 742. [Google Scholar] [CrossRef]
- Tolaimate, A.; Desbrieres, J.; Rhazi, M.; Alagui, A. Contribution to the Preparation of Chitins and Chitosans with Controlled Physico-Chemical Properties. Polymer 2003, 44, 7939–7952. [Google Scholar] [CrossRef]
- Chroni, A.; Forys, A.; Sentoukas, T.; Trzebicka, B.; Pispas, S. Poly[(Vinyl Benzyl Trimethylammonium Chloride)]-Based Nanoparticulate Copolymer Structures Encapsulating Insulin. Eur. Polym. J. 2022, 169, 111158. [Google Scholar] [CrossRef]
- Paruch, L.; Paruch, A.M.; Sørheim, R. DNA-Based Faecal Source Tracking of Contaminated Drinking Water Causing a Large Campylobacter Outbreak in Norway 2019. Int. J. Hyg. Environ. Health 2020, 224, 113420. [Google Scholar] [CrossRef]
- Paruch, L.; Paruch, A.M. Molecular Identification of Infectious Enteropathogens in Faeces of Healthy Horses. Microbiol. Insights 2022, 15, 11786361221089004. [Google Scholar] [CrossRef]
- Fernandes Queiroz, M.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef]
- Nhung, L.T.T.; Kim, I.Y.; Yoon, Y.S. Quaternized Chitosan-Based Anion Exchange Membrane Composited with Quaternized Poly(Vinylbenzyl Chloride)/Polysulfone Blend. Polymers 2020, 12, 2714. [Google Scholar] [CrossRef]
- Xia, Y.; Guo, T.; Song, M.; Zhang, B.; Zhang, B. Hemoglobin Recognition by Imprinting in Semi-Interpenetrating Polymer Network Hydrogel Based on Polyacrylamide and Chitosan. Biomacromolecules 2005, 6, 2601–2606. [Google Scholar] [CrossRef]
- Ninciuleanu, C.M.; Ianchiş, R.; Alexandrescu, E.; Mihăescu, C.I.; Scomoroşcenco, C.; Nistor, C.L.; Preda, S.; Petcu, C.; Teodorescu, M. The Effects of Monomer, Crosslinking Agent, and Filler Concentrations on the Viscoelastic and Swelling Properties of Poly(Methacrylic Acid) Hydrogels: A Comparison. Materials 2021, 14, 2305. [Google Scholar] [CrossRef]
Code | H2O (mL) | VBTAC (g) | MBA (wt. % rel. to Monomer Content) | ACVA (wt. % rel. to Monomer Content) | Chitosan (g) | Water: Acetic Acid (wt./wt.) ** | Chitosan: VBTAC (wt./wt.) |
---|---|---|---|---|---|---|---|
* CC-1 | 4 | 0 | 0.05 (g) | 0.01 (g) | 0.01 | 9:1 | - |
CC-IPN2 | 4 | 0.3 | 16.66 | 3.33 | 0.01 | 9:1 | 0.1:3 |
CC-IPN3 | 4 | 0.5 | 10 | 2 | 0.01 | 9:1 | 0.1:5 |
CC-IPN4 | 4 | 0.7 | 7.14 | 1.42 | 0.01 | 9:1 | 0.1:7 |
* CCH-1 | 4 | 0 | 0.05 (g) | 0.01 (g) | 0.01 | 9:1 | - |
CCH-IPN2 | 4 | 0.3 | 16.66 | 3.33 | 0.01 | 9:1 | 0.1:3 |
CCH-IPN3 | 4 | 0.5 | 10 | 2 | 0.01 | 9:1 | 0.1:5 |
CCH-IPN4 | 4 | 0.7 | 7.14 | 1.42 | 0.01 | 9:1 | 0.1:7 |
* SHC-1 | 4 | 0 | 0.05 (g) | 0.01 (g) | 0.01 | 5:5 | - |
SHC-IPN2 | 4 | 0.3 | 16.66 | 3.33 | 0.01 | 5:5 | 0.1:3 |
SHC-IPN3 | 4 | 0.5 | 10 | 2 | 0.01 | 5:5 | 0.1:5 |
SHC-IPN4 | 4 | 0.7 | 7.14 | 1.42 | 0.01 | 5:5 | 0.1:7 |
polyVBTAC | 4 | 1 | 5 | 1 | - | - | - |
Sample | Indicator * | Decrease Compared to Reference Sample | ||
---|---|---|---|---|
Coliforms ± SE, CFU·150 mL−1 | C. perfringens ± SE, CFU·150 mL−1 | Coliforms± SE, % | C. perfringens ± SE, % | |
Reference WW1 | 625.0 | 370.0 | ||
CC-IPN2 | 601.0 ± 2.3 | 351.3 ± 2.4 | 3.8 ± 3.7E-01 | 5.1 ± 6.5E-01 |
CC-IPN3 | 534.0 ± 5.5 | 323.7 ± 3.5 | 14.6 ± 8.8E-01 | 12.5 ± 9.5E-01 |
CC-IPN4 | 604.7 ± 2.9 | 361.0 ± 2.1 | 3.3 ± 4.7E-01 | 2.4 ± 5.6E-01 |
Reference WW2 | 498.0 | 163.0 | ||
CCH-IPN2 | 473.3 ± 3.8 | 161.0 ± 3.8 | 5.0 ± 7.7E-01 | 1.2 ± 2.3 |
CCH-IPN3 | 455.7 ± 2.9 | 152.7 ± 3.8 | 8.5 ± 5.9E-01 | 6.3 ± 2.4 |
CCH-IPN4 | 487.7 ± 1.3E+01 | 146.7 ± 4.8 | 2.1 ± 2.5 | 10.0 ± 2.9 |
Reference WW3 | 520.0 | 314.0 | ||
SHC-IPN2 | 451.3 ± 9.4 | 247.0 ± 2.3 | 13.2 ± 1.8 | 21.3 ± 7.4E-01 |
SHC-IPN3 | 425.0 ± 7.1 | 228.7 ± 4.5 | 18.3 ± 1.4 | 27.2 ± 1.4 |
SHC-IPN4 | 253.3 ± 7.2 | 147.7 ± 4.1 | 51.3 ± 1.4 | 53.0 ± 1.3 |
polyVBTAC | 208.0 ± 10.2 | 131.0 ± 2.9 | 60.0 ± 1.4 | 58.3 ± 1.0 |
(a) | ||||||||
---|---|---|---|---|---|---|---|---|
Sample | Enterococcus faecalis | Clostridium perfringens | Salmonella Typhimurium | Legionella pneumophila | ||||
CN ± SE·100 mL−1 | RR | CN ± SE·100 mL−1 | RR | CN ± SE·100 mL−1 | RR | CN ± SE·100 mL−1 | RR | |
WW1 | 4.85E+05 ± 6.17E+01 | 3.62E+03 ± 1.36E-01 | 4.00E+06 ± 8.57E+02 | 4.00E+02 ± 1.16E-01 | ||||
CC-IPN2 | 9.26E+04 ± 1.47E+01 | 80% | 2.40E+03 ± 2.81E-01 | 34% | 9.51E+05 ± 1.30E+00 | 76% | 2.57E+02 ± 1.60E-01 | 36% |
CC-IPN3 | 3.41E+05 ± 2.61E+01 | 25% | 3.90E+03 ± 4.31E-01 | 0% | 4.16E+06 ± 3.83E+02 | 0% | 4.57E+02 ± 5.97E-02 | 0% |
CC-IPN4 | 5.14E+05 ± 6.44E+01 | 0% | 1.59E+03 ± 1.89E-01 | 56% | 5.58E+06 ± 1.62E+02 | 0% | 6.97E+01 ± 1.29E-01 | 83% |
WW2 | 5.91E+05 ± 8.28E+01 | 2.18E+03 ± 1.00E-01 | 3.70E+06 ± 2.67E+01 | 9.90E+02 ± 8.75E-02 | ||||
CCH-IPN2 | 5.61E+04 ± 3.50E+00 | 91% | 1.01E+03 ± 3.87E-01 | 54% | 4.51E+03 ± 2.57E-01 | 100% | 6.17E+02 ± 1.45E-01 | 38% |
CCH-IPN3 | 6.82E+04 ± 5.90E+00 | 88% | 4.81E+02 ± 1.54E-01 | 78% | 5.96E+05 ± 1.88E+01 | 84% | 4.10E+02 ± 6.22E-02 | 59% |
CCH-IPN4 | 1.68E+05 ± 2.22E+01 | 72% | 1.43E+03 ± 2.09E-02 | 34% | 1.87E+06 ± 1.13E+02 | 50% | 6.64E+01 ± 1.03E-01 | 93% |
WW3 | 5.25E+05 ± 4.25E+01 | 1.27E+03 ± 1.22E-01 | 4.86E+05 ± 2.65E+00 | 9.00E+02 ± 5.76E-02 | ||||
SHC-IPN2 | 0.00E+00 ± 0.00E+00 | 100% | 2.85E+02 ± 1.01E-01 | 78% | 1.59E+03 ± 1.20E-01 | 100% | 3.17E+02 ± 2.65E-01 | 65% |
SHC-IPN3 | 0.00E+00 ± 0.00E+00 | 100% | 4.74E+02 ± 8.09E-02 | 63% | 7.46E+02 ± 1.90E-01 | 100% | 7.67E+02 ± 4.22E-01 | 15% |
SHC-IPN4 | 0.00E+00 ± 0.00E+00 | 100% | 1.28E+03 ± 3.43E-01 | 0% | 2.48E+04 ± 8.36E+00 | 95% | 4.51E+02 ± 5.38E-02 | 50% |
polyVBTAC | 1.35E+05 ± 1.25E+01 | 74% | 1.08E+03 ± 3.04E-01 | 51% | 4.23E+04 ± 1.84E+00 | 91% | 1.56E+02 ± 5.51E-03 | 84% |
(b) | ||||||||
Sample | Shigella spp. | Shiga toxin-producing Escherichia coli (STEC) | ||||||
stx1 | stx2 | eae | ||||||
CN ± SE·100 mL−1 | RR | CN ± SE·100 mL−1 | RR | CN ± SE·100 mL−1 | RR | CN ± SE·100 mL−1 | RR | |
WW1 | 4.00E+02 ± 1.33E-01 | 4.74E+06 ± 3.20E+01 | 1.80E+05 ± 1.82E+00 | 1.51E+04 ± 1.55E+00 | ||||
CC-IPN2 | 2.57E+02 ± 7.27E-02 | 36% | 2.57E+06 ± 1.22E+01 | 46% | 1.15E+05 ± 4.95E+00 | 36% | 1.13E+04 ± 9.67E-01 | 25% |
CC-IPN3 | 4.57E+02 ± 2.65E-01 | 0% | 2.68E+06 ± 1.01E+02 | 44% | 1.21E+05 ± 5.29E+00 | 33% | 1.07E+04 ± 2.20E-01 | 29% |
CC-IPN4 | 6.97E+01 ± 1.80E-01 | 83% | 2.92E+06 ± 4.00E+01 | 38% | 1.20E+05 ± 5.91E+00 | 33% | 1.30E+04 ± 4.40E-01 | 14% |
WW2 | 7.86E+03 ± 9.47E-01 | 4.22E+06 ± 2.20E+01 | 1.79E+05 ± 1.19E+00 | 1.62E+04 ± 1.55E+00 | ||||
CCH-IPN2 | 9.50E+02 ± 5.91E-01 | 88% | 2.29E+06 ± 3.42E+02 | 14% | 6.69E+04 ± 1.99E+00 | 63% | 9.98E+03 ± 7.45E-01 | 39% |
CCH-IPN3 | 1.27E+03 ± 4.76E-01 | 84% | 2.18E+06 ± 8.07E+01 | 18% | 7.08E+04 ± 3.57E-01 | 60% | 1.37E+04 ± 1.05E-01 | 15% |
CCH-IPN4 | 2.35E+03 ± 3.30E-01 | 70% | 2.71E+06 ± 1.93E+02 | 0% | 8.85E+04 ± 6.73E+00 | 50% | 9.89E+03 ± 1.07E+00 | 39% |
WW3 | 1.99E+03 ± 6.81E-02 | 3.81E+06 ± 2.80E+01 | 1.80E+05 ± 1.10E+00 | 1.59E+04 ± 3.49E-01 | ||||
SHC-IPN2 | 7.03E+02 ± 2.52E-01 | 65% | 2.49E+06 ± 1.14E+01 | 35% | 9.10E+04 ± 7.75E+00 | 49% | 3.09E+04 ± 6.24E-01 | 0% |
SHC-IPN3 | 1.02E+03 ± 5,66E-02 | 49% | 2.24E+06 ± 1,11E+02 | 41% | 8.53E+04 ± 1.23E+01 | 53% | 7.71E+03 ± 1.06E+00 | 52% |
SHC-IPN4 | 1.31E+03 ± 5.09E-03 | 34% | 2.53E+06 ± 2.64E+02 | 34% | 1.08E+05 ± 6.52E+00 | 40% | 9.99E+03 ± 1.49E+00 | 37% |
polyVBTAC | 2.01E+03 ± 4.72E-01 | 74% | 2.31E+06 ± 3.60E+01 | 46% | 9.25E+04 ± 2.77E+00 | 49% | 6.86E+03 ± 1.87E+00 | 55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neblea, I.E.; Chiriac, A.-L.; Zaharia, A.; Sarbu, A.; Teodorescu, M.; Miron, A.; Paruch, L.; Paruch, A.M.; Olaru, A.G.; Iordache, T.-V. Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters. Polymers 2023, 15, 1091. https://doi.org/10.3390/polym15051091
Neblea IE, Chiriac A-L, Zaharia A, Sarbu A, Teodorescu M, Miron A, Paruch L, Paruch AM, Olaru AG, Iordache T-V. Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters. Polymers. 2023; 15(5):1091. https://doi.org/10.3390/polym15051091
Chicago/Turabian StyleNeblea, Iulia E., Anita-L. Chiriac, Anamaria Zaharia, Andrei Sarbu, Mircea Teodorescu, Andreea Miron, Lisa Paruch, Adam M. Paruch, Andreea G. Olaru, and Tanta-V. Iordache. 2023. "Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters" Polymers 15, no. 5: 1091. https://doi.org/10.3390/polym15051091
APA StyleNeblea, I. E., Chiriac, A. -L., Zaharia, A., Sarbu, A., Teodorescu, M., Miron, A., Paruch, L., Paruch, A. M., Olaru, A. G., & Iordache, T. -V. (2023). Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters. Polymers, 15(5), 1091. https://doi.org/10.3390/polym15051091