Starch Nanoparticles: Preparation, Properties and Applications
Abstract
:1. Introduction
2. Starch Nanoparticles
3. Preparation Method of Starch Nanoparticles
3.1. Physical Methods
3.2. Chemical Methods
3.3. Enzymatic Methods
3.4. Nanoprecipitation
3.5. Combined Methods
4. Properties of Starch Nanoparticles
4.1. Amylose Content
4.2. Particle Morphology and Size Distribution
4.3. Starch Crystallinity
4.4. Thermal Properties
4.5. Functional Properties
4.6. Digestibility Properties
5. Applications
5.1. Pickering Emulsion
5.2. Bioplastic Filler
5.3. Antimicrobial Agent
5.4. Fat Replacer
5.5. Encapsulating Agent
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Olayil, R.; Arumuga Prabu, V.; DayaPrasad, S.; Naresh, K.; Rama Sreekanth, P.S. A Review on the Application of Bio-Nanocomposites for Food Packaging. Mater. Today Proc. 2022, 56, 1302–1306. [Google Scholar] [CrossRef]
- Paulos, G.; Mrestani, Y.; Heyroth, F.; Gebre-Mariam, T.; Neubert, R.H.H. Fabrication of Acetylated Dioscorea Starch Nanoparticles: Optimization of Formulation and Process Variables. J. Drug Deliv. Sci. 2016, 31, 83–92. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of High Pressure on Starch Properties: A Review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- Montero, B.; Rico, M.; Rodriguez-Llamazares, S.; Barral, L.; Bouza, R. Effect of Nanocellulose as a Filler on Biodegradable Thermoplastic Starch Films from Tuber, Cereal and Legume. Carbohydr. Polym. 2017, 157, 1094–1104. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q. Characterization of Starch Nanoparticles Prepared by Nanoprecipitation: Influence of Amylose Content and Starch Type. Ind. Crops Prod. 2016, 87, 182–190. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M.; Arcot, J.; Tensiska, T. A Comparative Study on the Physicochemical and Pasting Properties of Starch and Flour from Different Banana (Musa Spp.) Cultivars Grown in Indonesia. Int. J. Food Prop. 2019, 22, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Vilpoux, O.F.; Brito, V.H.; Cereda, M.P. Starch Extracted from Corms, Roots, Rhizomes, and Tubers for Food Application. In Starches for Food Application; Academic Press: Cambridge, MA, USA, 2019; pp. 103–165. [Google Scholar]
- Waterschoot, J.; Gomand, S.V.; Fierens, E.; Delcour, J.A. Production, Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch-Stärke 2015, 67, 14–29. [Google Scholar] [CrossRef]
- Ashfaq, A.; Khursheed, N.; Fatima, S.; Anjum, Z.; Younis, K. Application of Nanotechnology in Food Packaging: Pros and Cons. J. Agric.Res. 2022, 7, 100270. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Y. Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. J. Agric. Food Chem. 2021, 69, 6929–6942. [Google Scholar] [CrossRef]
- Colussi, R.; Pinto, V.Z.; El Halal, S.L.; Vanier, N.L.; Villanova, F.A.; Marques, E.S.R.; da Rosa Zavareze, E.; Dias, A.R. Structural, Morphological, and Physicochemical Properties of Acetylated High-, Medium-, and Low-Amylose Rice Starches. Carbohydr. Polym. 2014, 103, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaochanpong, N.; Puttanlek, C.; Rungsardthong, V.; Puncha-arnon, S.; Uttapap, D. Physicochemical and Structural Properties of Debranched Waxy Rice, Waxy Corn and Waxy Potato Starches. Food Hydrocoll. 2015, 45, 218–226. [Google Scholar] [CrossRef]
- Ogunsona, E.; Ojogbo, E.; Mekonnen, T. Advanced Material Applications of Starch and Its Derivatives. Eur. Polym. J. 2018, 108, 570–581. [Google Scholar] [CrossRef]
- Tagliapietra, B.L.; de Melo, B.G.; Sanches, E.A.; Plata-Oviedo, M.; Campelo, P.H.; Clerici, M.T.P.S. From Micro to Nanoscale: A Critical Review on the Concept, Production, Characterization, and Application of Starch Nanostructure. Starch-Stärke 2021, 73, 2100079. [Google Scholar] [CrossRef]
- Chavan, P.; Sinhmar, A.; Nehra, M.; Thory, R.; Pathera, A.K.; Sundarraj, A.A.; Nain, V. Impact on Various Properties of Native Starch after Synthesis of Starch Nanoparticles: A Review. Food. Chem. 2021, 364, 130416. [Google Scholar] [CrossRef]
- Suma, P.F.; Urooj, A. Isolation and Characterization of Starch from Pearl Millet (Pennisetum typhoidium) Flours. Int. J. Food Prop. 2015, 18, 2675–2687. [Google Scholar] [CrossRef] [Green Version]
- Żarski, A.; Bajer, K.; Kapusniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M. Densely Packed-Matrices of Heat Moisture Treated-Starch Determine the Digestion Rate Constant as Revealed by Logarithm of Slope Plots. J. Food Sci. Technol. 2021, 58, 2237–2245. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M.; Pramafisi, G. The Properties, Modification, and Application of Banana Starch. Polymers 2022, 14, 3092. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Bintang, S.; Soeherman, G.P.; Djali, M. Physicochemical and Pasting Properties of Corn Starch as Affected by Hydrothermal Modification by Various Methods. Int. J. Food Prop. 2022, 25, 792–812. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Arifin, H.R.; Khairani, L. Comparing the Effect of Four Different Thermal Modifications on Physicochemical and Pasting Properties of Breadfruit (Artocarpus altilis) Starch. Int. Food Res J. 2019, 26, 269–276. [Google Scholar]
- Cahyana, Y.; Wijaya, E.; Halimah, T.S.; Marta, H.; Suryadi, E.; Kurniati, D. The Effect of Different Thermal Modifications on Slowly Digestible Starch and Physicochemical Properties of Green Banana Flour (Musa acuminata colla). Food Chem. 2019, 274, 274–280. [Google Scholar] [CrossRef]
- Marta, H.; Hasya, H.N.L.; Lestari, Z.I.; Cahyana, Y.; Arifin, H.R.; Nurhasanah, S. Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon Sp.) Using Physical and Chemical Treatment. Polymers 2022, 14, 4845. [Google Scholar] [CrossRef]
- Cahyana, Y.; Rangkuti, A.; Siti Halimah, T.; Marta, H.; Yuliana, T. Application of Heat-Moisture-Treated Banana Flour as Composite Material in Hard Biscuit. CYTA J. Food 2020, 18, 599–605. [Google Scholar] [CrossRef]
- Alves, M.J.d.S.; Chacon, W.D.C.; Gagliardi, T.R.; Agudelo Henao, A.C.; Monteiro, A.R.; Ayala Valencia, G. Food Applications of Starch Nanomaterials: A Review. Starch-Stärke 2021, 73, 2100046. [Google Scholar] [CrossRef]
- Qiu, C.; Hu, Y.; Jin, Z.; McClements, D.J.; Qin, Y.; Xu, X.; Wang, J. A Review of Green Techniques for the Synthesis of Size-Controlled Starch-Based Nanoparticles and Their Applications as Nanodelivery Systems. Trends Food Sci. Technol. 2019, 92, 138–151. [Google Scholar] [CrossRef]
- Le Corre, D.; Angellier-Coussy, H. Preparation and Application of Starch Nanoparticles for Nanocomposites: A Review. React. Funct. Polym. 2014, 85, 97–120. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A.; Hassan, I.; Huang, Q.; Shabbir, H. Production and Characterization of Starch Nanoparticles by Mild Alkali Hydrolysis and Ultra-Sonication Process. Sci. Rep. 2020, 10, 3533. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Park, S.S.; Lim, S.T. Preparation, Characterization and Utilization of Starch Nanoparticles. Colloids. Surf. B Biointerfaces 2015, 126, 607–620. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers 2021, 13, 4198. [Google Scholar] [CrossRef]
- Morán, D.; Gutiérrez, G.; Blanco-López, M.C.; Marefati, A.; Rayner, M.; Matos, M. Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. Appl. Sci. 2021, 11, 4547. [Google Scholar] [CrossRef]
- Marta, H.; Wijaya, C.; Sukri, N.; Cahyana, Y.; Mohammad, M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers 2022, 14, 4875. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Xiong, L.; Li, M.; Liu, J.; Yang, J.; Chang, R.; Liang, C.; Sun, Q. Characterizations of Pickering Emulsions Stabilized by Starch Nanoparticles: Influence of Starch Variety and Particle Size. Food. Chem. 2017, 234, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Campelo, P.H.; Sant’Ana, A.S.; Pedrosa Silva Clerici, M.T. Starch Nanoparticles: Production Methods, Structure, and Properties for Food Applications. Curr. Opin. Food Sci. 2020, 33, 136–140. [Google Scholar] [CrossRef]
- Le Corre, D.; Bras, J.; Dufresne, A. Starch Nanoparticles: A Review. Biomacromolecules 2010, 11, 1139–1153. [Google Scholar] [CrossRef]
- Acevedo-Guevara, L.; Nieto-Suaza, L.; Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of Native and Modified Banana Starch Nanoparticles as Vehicles for Curcumin. Int. J. Biol. Macromol. 2018, 111, 498–504. [Google Scholar] [CrossRef]
- Dularia, C.; Sinhmar, A.; Thory, R.; Pathera, A.K.; Nain, V. Development of Starch Nanoparticles Based Composite Films from Non-Conventional Source-Water Chestnut (Trapa bispinosa). Int. J. Biol. Macromol. 2019, 136, 1161–1168. [Google Scholar] [CrossRef]
- Maryam; Kasim, A.; Novelina; Emriadi. Preparation and Characterization of Sago (Metroxylon Sp.) Starch Nanoparticles Using Hydrolysis-Precipitation Method. J. Phys. Con. Ser. 2020, 1481, 012021. [Google Scholar] [CrossRef]
- Wang, F.; Chang, R.; Ma, R.; Tian, Y. Eco-Friendly and Superhydrophobic Nano-Starch Based Coatings for Self-Cleaning Application and Oil-Water Separation. Carbohydr. Polym. 2021, 271, 118410. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G.; Sharma, S.; Jeet, K. Cereal Starch Nanoparticles—A Prospective Food Additive: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1097–1107. [Google Scholar] [CrossRef]
- Yu, M.; Ji, N.; Wang, Y.; Dai, L.; Xiong, L.; Sun, Q. Starch-Based Nanoparticles: Stimuli Responsiveness, Toxicity, and Interactions with Food Components. Compr. Rev. Food. Sci. Food. Saf. 2021, 20, 1075–1100. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of Nanomaterials Using Various Top-Down and Bottom-up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Wei, B.; Cai, C.; Tian, Y. Nano-Sized Starch: Preparations and Applications. In Functional Starch and Applications in Food; Springer: Berlin/Heidelberg, Germany, 2018; pp. 147–176. [Google Scholar]
- Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.; Lvov, Y. Top-Down and Bottom-up Approaches in Production of Aqueous Nanocolloids of Low Solubility Drug Paclitaxel. Phys. Chem. Chem. Phys. 2011, 13, 9014–9019. [Google Scholar] [CrossRef] [Green Version]
- Lamanna, M.; Morales, N.J.; Garcia, N.L.; Goyanes, S. Development and Characterization of Starch Nanoparticles by Gamma Radiation: Potential Application as Starch Matrix Filler. Carbohydr. Polym. 2013, 97, 90–97. [Google Scholar] [CrossRef]
- González Seligra, P.; Eloy Moura, L.; Famá, L.; Druzian, J.I.; Goyanes, S. Influence of Incorporation of Starch Nanoparticles in Pbat/Tps Composite Films. Polym. Int. 2016, 65, 938–945. [Google Scholar] [CrossRef]
- Ahmad, A.N.; Lim, S.A.; Navaranjan, N.; Hsu, Y.-I.; Uyama, H. Green Sago Starch Nanoparticles as Reinforcing Material for Green Composites. Polymer 2020, 202, 122646. [Google Scholar] [CrossRef]
- Apostolidis, E.; Mandala, I. Modification of Resistant Starch Nanoparticles Using High-Pressure Homogenization Treatment. Food Hydrocol. 2020, 103, 105677. [Google Scholar] [CrossRef]
- Bel Haaj, S.; Thielemans, W.; Magnin, A.; Boufi, S. Starch Nanocrystals and Starch Nanoparticles from Waxy Maize as Nanoreinforcement: A Comparative Study. Carbohydr. Polym. 2016, 143, 310–317. [Google Scholar] [CrossRef]
- Bel Haaj, S.; Magnin, A.; Petrier, C.; Boufi, S. Starch Nanoparticles Formation Via High Power Ultrasonication. Carbohydr. Polym. 2013, 92, 1625–1632. [Google Scholar] [CrossRef]
- Da Silva, N.M.C.; Correia, P.R.C.; Druzian, J.I.; Fakhouri, F.M.; Fialho, R.L.L.; de Albuquerque, E.C.M.C. Pbat/Tps Composite Films Reinforced with Starch Nanoparticles Produced by Ultrasound. Int. J. Polym. Sci. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boufi, S.; Bel Haaj, S.; Magnin, A.; Pignon, F.; Imperor-Clerc, M.; Mortha, G. Ultrasonic Assisted Production of Starch Nanoparticles: Structural Characterization and Mechanism of Disintegration. Ultrason. Sonochem. 2018, 41, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Remanan, M.K.; Zhu, F. Encapsulation of Rutin Using Quinoa and Maize Starch Nanoparticles. Food Chem 2021, 353, 128534. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Thory, R.; Sinhmar, A.; Pathera, A.K.; Nain, V. Development and Characterization of Nano Starch-Based Composite Films from Mung Bean (Vigna radiata). Int. J. Biol. Macromol. 2020, 144, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Lee, J.H.; Kim, J.-Y.; Lim, W.-J.; Lim, S.-T. Characterization of Nanoparticles Prepared by Acid Hydrolysis of Various Starches. Starch-Stärke 2012, 64, 367–373. [Google Scholar] [CrossRef]
- Perez Herrera, M.; Vasanthan, T. Rheological Characterization of Gum and Starch Nanoparticle Blends. Food Chem. 2018, 243, 43–49. [Google Scholar] [CrossRef]
- Torres, F.G.; Arroyo, J.; Tineo, C.; Troncoso, O. Tailoring the Properties of Native Andean Potato Starch Nanoparticles Using Acid and Alkaline Treatments. Starch-Stärke 2019, 71, 1800234. [Google Scholar] [CrossRef]
- Jeong, O.; Shin, M. Preparation and Stability of Resistant Starch Nanoparticles, Using Acid Hydrolysis and Cross-Linking of Waxy Rice Starch. Food Chem. 2018, 256, 77–84. [Google Scholar] [CrossRef]
- Kim, H.Y.; Park, D.J.; Kim, J.Y.; Lim, S.T. Preparation of Crystalline Starch Nanoparticles Using Cold Acid Hydrolysis and Ultrasonication. Carbohydr. Polym 2013, 98, 295–301. [Google Scholar] [CrossRef]
- Hedayati, S.; Niakousari, M.; Mohsenpour, Z. Production of Tapioca Starch Nanoparticles by Nanoprecipitation-Sonication Treatment. Int. J. Biol. Macromol. 2020, 143, 136–142. [Google Scholar] [CrossRef]
- Lin, X.; Sun, S.; Wang, B.; Zheng, B.; Guo, Z. Structural and Physicochemical Properties of Lotus Seed Starch Nanoparticles Prepared Using Ultrasonic-Assisted Enzymatic Hydrolysis. Ultrason. Sonochem. 2020, 68, 105199. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, M.; Li, Y.; Xiong, L. Effect of Retrogradation Time on Preparation and Characterization of Proso Millet Starch Nanoparticles. Carbohydr. Polym. 2014, 111, 133–138. [Google Scholar] [CrossRef]
- Suriya, M.; Reddy, C.K.; Haripriya, S.; Harsha, N. Influence of Debranching and Retrogradation Time on Behavior Changes of Amorphophallus Paeoniifolius Nanostarch. Int. J. Biol. Macromol. 2018, 120, 230–236. [Google Scholar] [CrossRef]
- Winarti, C.; Sunarti, T.C.; Mangunwidjaja, D.; Richana, N. Preparation of Arrowroot Starch Nanoparticles by Butanol-Complex Precipitation, and Its Application as Bioactive Encapsulation Matrix. Int. Food Res. J. 2014, 21, 2207–2213. [Google Scholar]
- Caicedo Chacon, W.D.; Ayala Valencia, G.; Aparicio Rojas, G.M.; Agudelo Henao, A.C. Mathematical Models for Prediction of Water Evaporation and Thermal Degradation Kinetics of Potato Starch Nanoparticles Obtained by Nanoprecipitation. Starch-Stärke 2019, 71, 1800081. [Google Scholar] [CrossRef] [Green Version]
- BeMiller, J.N. Physical Modification of Starch. In Starch in Food; Woodhead Publishing: Cambridge, UK, 2018; pp. 223–253. [Google Scholar]
- Sun, Q. Starch Nanoparticles. In Starch in Food; Woodhead Publishing: Cambridge, UK, 2018; pp. 691–745. [Google Scholar]
- Zhu, F. Impact of Ultrasound on Structure, Physicochemical Properties, Modifications, and Applications of Starch. Trends Food Sci. Technol. 2015, 43, 1–17. [Google Scholar] [CrossRef]
- Minakawa, A.F.K.; Faria-Tischer, P.C.S.; Mali, S. Simple Ultrasound Method to Obtain Starch Micro- and Nanoparticles from Cassava, Corn and Yam Starches. Food Chem. 2019, 283, 11–18. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1081–1097. [Google Scholar] [CrossRef]
- Hassan, N.A.; Darwesh, O.M.; Smuda, S.S.; Altemimi, A.B.; Hu, A.; Cacciola, F.; Haoujar, I.; Abedelmaksoud, T.G. Recent Trends in the Preparation of Nano-Starch Particles. Molecules 2022, 27, 5497. [Google Scholar] [CrossRef]
- Angellier, H.; Choisnard, L.; Molina-Boisseau, S.; Ozil, P.; Dufresne, A. Optimization of the Preparation of Aqueous Suspensions of Waxy Maize Starch Nanocrystals Using a Response Surface Methodology. Biomacromolecules 2004, 5, 1545–1551. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, D.J.; Lim, S.T. Fragmentation of Waxy Rice Starch Granules by Enzymatic Hydrolysis. Cer. Chem. 2008, 85, 182–187. [Google Scholar] [CrossRef]
- Foresti, M.L.; Williams Mdel, P.; Martinez-Garcia, R.; Vazquez, A. Analysis of a Preferential Action of Alpha-Amylase from B. Licheniformis Towards Amorphous Regions of Waxy Maize Starch. Carbohydr. Polym. 2014, 102, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, G.; Dai, L.; Ji, N.; Xiong, L. Green Preparation and Characterisation of Waxy Maize Starch Nanoparticles through Enzymolysis and Recrystallisation. Food Chem. 2014, 162, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chang, Y.; Fu, Y.; Ren, L.; Tong, J.; Zhou, J. Effects of Non-Solvent and Starch Solution on Formation of Starch Nanoparticles by Nanoprecipitation. Starch-Stärke 2016, 68, 258–263. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, K.; Li, L.; Liu, C.; Song, C.; Wang, P. Fabrication of Size-Controlled Starch-Based Nanospheres by Nanoprecipitation. ACS Appl. Mater. Interfaces 2009, 1, 956–959. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lim, S.-T. Complex Formation between Amylomaize Dextrin and N-Butanol by Phase Separation System. Carbohydr. Polym. 2010, 82, 264–269. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Yoon, J.-W.; Lim, S.-T. Formation and Isolation of Nanocrystal Complexes between Dextrins and N-Butanol. Carbohydr. Polym. 2009, 78, 626–632. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical Properties, Modifications and Applications of Starches from Different Botanical Sources. Food Sci Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Bajer, D. Nano-Starch for Food Applications Obtained by Hydrolysis and Ultrasonication Methods. Food Chem. 2023, 402, 134489. [Google Scholar] [CrossRef]
- Hernandez-Jaimes, C.; Bello-Perez, L.A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Plantain Starch Granules Morphology, Crystallinity, Structure Transition, and Size Evolution Upon Acid Hydrolysis. Carbohydr. Polym. 2013, 95, 207–213. [Google Scholar] [CrossRef]
- Shabana, S.; Prasansha, R.; Kalinina, I.; Potoroko, I.; Bagale, U.; Shirish, S.H. Ultrasound Assisted Acid Hydrolyzed Structure Modification and Loading of Antioxidants on Potato Starch Nanoparticles. Ultrason. Sonochem. 2019, 51, 444–450. [Google Scholar] [CrossRef]
- LeCorre, D.; Bras, J.; Dufresne, A. Evidence of Micro- and Nanoscaled Particles During Starch Nanocrystals Preparation and Their Isolation. Biomacromolecules 2011, 12, 3039–3046. [Google Scholar] [CrossRef]
- Kumari, S.; Yadav, B.S.; Yadav, R.B. Synthesis and Modification Approaches for Starch Nanoparticles for Their Emerging Food Industrial Applications: A Review. Food Res. Int. 2020, 128, 108765. [Google Scholar] [CrossRef]
- Dufresne, A. Crystalline Starch Based Nanoparticles. Curr. Opin.Colloid Interface Sci. 2014, 19, 397–408. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Yan, Y.; Hu, D.; Yang, L.; Shen, R. Application of Raman Spectroscopy in Structure Analysis and Crystallinity Calculation of Corn Starch. Starch-Stärke 2015, 67, 612–619. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The Molecular Structures of Starch Components and Their Contribution to the Architecture of Starch Granules: A Comprehensive Review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Li, H.; Gidley, M.J.; Dhital, S. High-Amylose Starches to Bridge the “Fiber Gap”: Development, Structure, and Nutritional Functionality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Jian, R.; Chang, P.R.; Yu, J. Fabrication and Characterization of Citric Acid-Modified Starch Nanoparticles/Plasticized-Starch Composites. Biomacromolecules 2008, 9, 3314–3320. [Google Scholar] [CrossRef]
- Ali Razavi, S.M.; Amini, A.M. Starch Nanomaterials: A state-of-the-Art Review and Future Trends. In Novel Approaches of Nanotechnology in Food; Academic Press: Cambridge, MA, USA, 2016; pp. 237–269. [Google Scholar]
- Ding, Y.; Zheng, J.; Zhang, F.; Kan, J. Synthesis and Characterization of Retrograded Starch Nanoparticles through Homogenization and Miniemulsion Cross-Linking. Carbohydr. Polym. 2016, 151, 656–665. [Google Scholar] [CrossRef]
- Szymońska, J.; Targosz-Korecka, M.; Krok, F. Characterization of Starch Nanoparticles. J. Phys: Conf. Ser. 2009, 146, 012027. [Google Scholar] [CrossRef]
- Li, F.; Zhu, A.; Song, X.; Ji, L. Novel Surfactant for Preparation of Poly(L-Lactic Acid) Nanoparticles with Controllable Release Profile and Cytocompatibility for Drug Delivery. Colloids Surf. B: Biointerfaces 2014, 115, 377–383. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, S.; Han, Z.; Xiong, L.; Sun, Q. In vitro Digestion of Nanoscale Starch Particles and Evolution of Thermal, Morphological, and Structural Characteristics. Food Hydrocoll. 2016, 61, 344–350. [Google Scholar] [CrossRef]
- Nagahata, Y.; Kobayashi, I.; Goto, M.; Nakaura, Y.; Inouchi, N. The Formation of Resistant Starch During Acid Hydrolysis of High-Amylose Corn Starch. J. Appl. Glycosci. 2013, 60, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.M.; Lee, B.H.; Seo, D.H.; Choi, H.W.; Kim, B.Y.; Baik, M.Y. Starch Nanoparticles Prepared by Enzymatic Hydrolysis and Self-Assembly of Short-Chain Glucans. Food Sci. Biotechnol. 2020, 29, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.D.; Hong, J.S.; Pyo, S.M.; Ko, E.; Shin, H.Y.; Kim, J.Y. Starch Nanoparticles Produced Via Acidic Dry Heat Treatment as a Stabilizer for a Pickering Emulsion: Influence of the Physical Properties of Particles. Carbohydr. Polym. 2020, 239, 116241. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering Emulsions: Versatility of Colloidal Particles and Recent Applications. Curr. Opin Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef]
- Ben Ayed, E.; Magnin, A.; Putaux, J.-L.; Boufi, S. Vinyltriethoxysilane-Functionalized Starch Nanocrystals as Pickering Stabilizer in Emulsion Polymerization of Acrylic Monomers. Application in Nanocomposites and Pressure-Sensitive Adhesives. J. Colloid Interface Sci. 2020, 578, 533–546. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Schroen, K. Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Ann.Rev. Food Sci. Technol. 2015, 6, 263–297. [Google Scholar] [CrossRef]
- Xu, T.; Yang, J.; Hua, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Characteristics of Starch-Based Pickering Emulsions from the Interface Perspective. Trends Food Sci. Technol. 2020, 105, 334–346. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Sjoo, M.; Emek, S.C.; Hall, T.; Rayner, M.; Wahlgren, M. Barrier Properties of Heat Treated Starch Pickering Emulsions. J. Colloid Interface Sci. 2015, 450, 182–188. [Google Scholar] [CrossRef]
- Tavernier, I.; Wijaya, W.; Van der Meeren, P.; Dewettinck, K.; Patel, A.R. Food-Grade Particles for Emulsion Stabilization. Trends Food Sci. Technol. 2016, 50, 159–174. [Google Scholar] [CrossRef]
- Wei, B.; Xu, X.; Jin, Z.; Tian, Y. Surface Chemical Compositions and Dispersity of Starch Nanocrystals Formed by Sulfuric and Hydrochloric Acid Hydrolysis. PLoS ONE 2014, 9, e86024. [Google Scholar] [CrossRef]
- Tao, S.; Jiang, H.; Gong, S.; Yin, S.; Li, Y.; Ngai, T. Pickering Emulsions Simultaneously Stabilized by Starch Nanocrystals and Zein Nanoparticles: Fabrication, Characterization, and Application. Langmuir 2021, 37, 8577–8584. [Google Scholar] [CrossRef]
- Cazotti, J.C.; Smeltzer, S.E.; Smeets, N.M.B.; Dubé, M.A.; Cunningham, M.F. Starch Nanoparticles Modified with Styrene Oxide and Their Use as Pickering Stabilizers. Polym. Chem. 2020, 11, 2653–2665. [Google Scholar] [CrossRef]
- Fonseca-Florido, H.A.; Vázquez-García, H.G.; Méndez-Montealvo, G.; Basilio-Cortés, U.A.; Navarro-Cortés, R.; Rodríguez-Marín, M.L.; Castro-Rosas, J.; Gómez-Aldapa, C.A. Effect of Acid Hydrolysis and Osa Esterification of Waxy Cassava Starch on Emulsifying Properties in Pickering-Type Emulsions. LWT-Food Sci. Technol. 2018, 91, 258–264. [Google Scholar] [CrossRef]
- Haaj, S.B.; Thielemans, W.; Magnin, A.; Boufi, S. Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance. ACS Appl. Mater. Interfaces 2014, 6, 8263–8273. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Z.; Lu, X. Facile Synthesis of Starch-Based Nanoparticle Stabilized Pickering Emulsion: Its Ph-Responsive Behavior and Application for Recyclable Catalysis. Green Chem. 2018, 20, 1538–1550. [Google Scholar] [CrossRef]
- Qian, X.; Lu, Y.; Xie, W.; Wu, D. Viscoelasticity of Olive Oil/Water Pickering Emulsions Stabilized with Starch Nanocrystals. Carbohydr. Polym. 2020, 230, 115575. [Google Scholar] [CrossRef]
- Li, C.; Sun, P.; Yang, C. Emulsion Stabilized by Starch Nanocrystals. Starch-Stärke 2012, 64, 497–502. [Google Scholar] [CrossRef]
- Shao, P.; Zhang, H.; Niu, B.; Jin, W. Physical Stabilities of Taro Starch Nanoparticles Stabilized Pickering Emulsions and the Potential Application of Encapsulated Tea Polyphenols. Int. J. Biol. Macromol. 2018, 118, 2032–2039. [Google Scholar] [CrossRef]
- Sánchez de la Concha, B.B.; Agama-Acevedo, E.; Agurirre-Cruz, A.; Bello-Pérez, L.A.; Alvarez-Ramírez, J. Osa Esterification of Amaranth and Maize Starch Nanocrystals and Their Use in “Pickering” Emulsions. Starch-Stärke 2020, 72, 1900271. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Sun, P.; Yang, C. Starch Nanocrystals as Particle Stabilisers of Oil-in-Water Emulsions. J. Sci. Food. Agric. 2014, 94, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Harsanto, B.W.; Pranoto, Y.; Supriyanto; Kartini, I. Breadfruit-Based Starch Nanoparticles Prepared Using Nanoprecipitation to Stabilize a Pickering Emulsion. J. Southwest Jiaotong Univ. 2021, 56, 372–383. [Google Scholar] [CrossRef]
- Ye, F.; Miao, M.; Jiang, B.; Campanella, O.H.; Jin, Z.; Zhang, T. Elucidation of Stabilizing Oil-in-Water Pickering Emulsion with Different Modified Maize Starch-Based Nanoparticles. Food Chem. 2017, 229, 152–158. [Google Scholar] [CrossRef]
- Javidi, F.; Razavi, S.M.A.; Mohammad Amini, A. Cornstarch Nanocrystals as a Potential Fat Replacer in Reduced Fat O/W Emulsions: A Rheological and Physical Study. Food Hydrocoll. 2019, 90, 172–181. [Google Scholar] [CrossRef]
- Daniel, T.H.G.; Bedin, A.C.; Souza, É.C.F.; Lacerda, L.G.; Demiate, I.M. Pickering Emulsions Produced with Starch Nanocrystals from Cassava (Manihot esculenta crantz), Beans (Phaseolus vulgaris L.), and Corn (Zea mays L.). Starch-Stärke 2020, 72, 1900326. [Google Scholar] [CrossRef]
- Miao, M.; Li, R.; Jiang, B.; Cui, S.W.; Zhang, T.; Jin, Z. Structure and Physicochemical Properties of Octenyl Succinic Esters of Sugary Maize Soluble Starch and Waxy Maize Starch. Food Chem. 2014, 151, 154–160. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Li, Y.; Huang, Q. Assembly of Pickering Emulsions Using Milled Starch Particles with Different Amylose/Amylopectin Ratios. Food Hydrocoll. 2018, 84, 47–57. [Google Scholar] [CrossRef]
- Chang, S.; Chen, X.; Liu, S.; Wang, C. Novel Gel-Like Pickering Emulsions Stabilized Solely by Hydrophobic Starch Nanocrystals. Int. J. Biol. Macromol. 2020, 152, 703–708. [Google Scholar] [CrossRef]
- Mao, L.; Miao, S. Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Eng. Rev. 2015, 7, 439–451. [Google Scholar] [CrossRef]
- Ogunlaja, S.B.; Pal, R.; Sarikhani, K. Effects of Starch Nanoparticles on Phase Inversion of Pickering Emulsions. Can. J. Chem. Eng. 2018, 96, 1089–1097. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Maulida; Kartika, T.; Harahap, M.B.; Ginting, M.H.S. Utilization of Mango Seed Starch in Manufacture of Bioplastic Reinforced with Microparticle Clay Using Glycerol as Plasticizer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 309, 012068. [Google Scholar]
- Hosseini, S.N.; Pirsa, S.; Farzi, J. Biodegradable Nano Composite Film Based on Modified Starch-Albumin/Mgo; Antibacterial, Antioxidant and Structural Properties. Polym. Test. 2021, 97, 107182. [Google Scholar] [CrossRef]
- Fan, H.; Ji, N.; Zhao, M.; Xiong, L.; Sun, Q. Characterization of Starch Films Impregnated with Starch Nanoparticles Prepared by 2,2,6,6-Tetramethylpiperidine-1-Oxyl (Tempo)-Mediated Oxidation. Food Chem. 2016, 192, 865–872. [Google Scholar] [CrossRef]
- Martinez, S.; Rivon, C.; Troncoso, O.P.; Torres, F.G. Botanical Origin as a Determinant for the Mechanical Properties of Starch Films with Nanoparticle Reinforcements. Starch-Stärke 2016, 68, 935–942. [Google Scholar] [CrossRef]
- Li, X.; Qiu, C.; Ji, N.; Sun, C.; Xiong, L.; Sun, Q. Mechanical, Barrier and Morphological Properties of Starch Nanocrystals-Reinforced Pea Starch Films. Carbohydr. Polym. 2015, 121, 155–162. [Google Scholar] [CrossRef]
- Hakke, V.S.; Landge, V.K.; Sonawane, S.H.; Babu, G.U.; Ashokkumar, M.; Flores, E.M. The Physical, Mechanical, Thermal and Barrier Properties of Starch Nanoparticle (Snp)/Polyurethane (Pu) Nanocomposite Films Synthesised by an Ultrasound-Assisted Process. Ultrason. Sonochem. 2022, 88, 106069. [Google Scholar] [CrossRef]
- Dai, L.; Qiu, C.; Xiong, L.; Sun, Q. Characterisation of Corn Starch-Based Films Reinforced with Taro Starch Nanoparticles. Food Chem. 2015, 174, 82–88. [Google Scholar] [CrossRef]
- Mukurumbira, A.R.; Mellem, J.J.; Amonsou, E.O. Effects of Amadumbe Starch Nanocrystals on the Physicochemical Properties of Starch Biocomposite Films. Carbohydr. Polym. 2017, 165, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, Y.; Pei, X.; Han, C.; Tan, Y.; Dong, L. Polycaprolactone Nanocomposite Reinforced by Bioresource Starch-Based Nanoparticles. Int. J. Biol. Macromol. 2017, 102, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Zhang, F.; Huang, J.; Chang, P.R.; Su, Z.; Yu, J. Effects of Starch Nanocrystals on Structure and Properties of Waterborne Polyurethane-Based Composites. Carbohydr. Polym. 2011, 85, 824–831. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Cross-Linked Starch-Based Edible Coating Reinforced by Starch Nanocrystals and Its Preservation Effect on Graded Huangguan Pears. Food Chem. 2019, 311, 125891. [Google Scholar] [CrossRef]
- Al-Aseebee, M.D.F.; Rashid, A.H.; Naje, A.S.; Jayaraj, J.J.; Maridurai, T. Influence of Rice Starch Nanocrystals on the Film Properties of the Bionanocomposite Edible Films Produced from Native Rice Starch. Dig. J. Nanomater. Biostructures 2021, 16, 697–704. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Paran, S.M.R.; Jannesari, A.; Saeb, M.R. ‘Cure Index’ for Thermoset Composites. Prog. Org. Coat. 2019, 127, 429–434. [Google Scholar] [CrossRef]
- Wahyuningtiyas, N.E.; Suryanto, H. Properties of Cassava Starch Based Bioplastic Reinforced by Nanoclay. J. Mech. Eng. Sci. Technol. 2018, 2, 20–26. [Google Scholar] [CrossRef]
- Piyada, K.; Waranyou, S.; Thawien, W. Mechanical, Thermal and Structural Properties of Rice Starch Films Reinforced with Rice Starch Nanocrystals. Int. Food Res. J. 2013, 20, 439–449. [Google Scholar]
- Balakrishnan, P.; Gopi, S.; MS, S.; Thomas, S. Uv Resistant Transparent Bionanocomposite Films Based on Potato Starch/Cellulose for Sustainable Packaging. Starch-Stärke 2018, 70, 1700139. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, C.; Wang, X.; Xiong, L.; Sun, Q. Physicochemical Properties of Starch Nanocomposite Films Enhanced by Self-Assembled Potato Starch Nanoparticles. LWT-Food Sci. Technol. 2016, 69, 251–257. [Google Scholar] [CrossRef]
- Raigond, P.; Sood, A.; Kalia, A.; Joshi, A.; Kaundal, B.; Raigond, B.; Dutt, S.; Singh, B.; Chakrabarti, S.K. Antimicrobial Activity of Potato Starch-Based Active Biodegradable Nanocomposite Films. Potato Res. 2018, 62, 69–83. [Google Scholar] [CrossRef]
- Alzate, P.; Zalduendo, M.M.; Gerschenson, L.; Flores, S.K. Micro and Nanoparticles of Native and Modified Cassava Starches as Carriers of the Antimicrobial Potassium Sorbate. Starch-Stärke 2016, 68, 1038–1047. [Google Scholar] [CrossRef] [Green Version]
- Alzate, P.; Gerschenson, L.; Flores, S. Ultrasound Application for Production of Nano-Structured Particles from Esterified Starches to Retain Potassium Sorbate. Carbohydr. Polym. 2020, 247, 116759. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, J.; Qiu, C.; Hu, Y.; Xu, X.; Jin, Z. Self-Assembly of Metal–Phenolic Networks as Functional Coatings for Preparation of Antioxidant, Antimicrobial, and Ph-Sensitive-Modified Starch Nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 17379–17389. [Google Scholar] [CrossRef]
- Nieto-Suaza, L.; Acevedo-Guevara, L.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Characterization of Aloe Vera-Banana Starch Composite Films Reinforced with Curcumin-Loaded Starch Nanoparticles. Food Struct. 2019, 22, 100131. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Cruxen, C.; Bruni, G.P.; Fiorentini, A.M.; Zavareze, E.D.R.; Lim, L.T.; Dias, A.R.G. Development of Antimicrobial and Antioxidant Electrospun Soluble Potato Starch Nanofibers Loaded with Carvacrol. Int. J. Biol. Macromol. 2019, 139, 1182–1190. [Google Scholar] [CrossRef]
- Nallasamy, P.; Ramalingam, T.; Nooruddin, T.; Shanmuganathan, R.; Arivalagan, P.; Natarajan, S. Polyherbal Drug Loaded Starch Nanoparticles as Promising Drug Delivery System: Antimicrobial, Antibiofilm and Neuroprotective Studies. Process Biochem. 2020, 92, 355–364. [Google Scholar] [CrossRef]
- Dai, X.; Guo, Q.; Zhao, Y.; Zhang, P.; Zhang, T.; Zhang, X.; Li, C. Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS Appl. Mater. Interfaces 2016, 8, 25798–25807. [Google Scholar] [CrossRef]
- Ismail, N.S.; Gopinath, S.C.B. Enhanced Antibacterial Effect by Antibiotic Loaded Starch Nanoparticle. J. Assoc. Arab Univ. Basic Appl. Sci. 2018, 24, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Xue, L.; Hu, Y.; Qiu, C.; Jin, Z.; Xu, X.; Wang, J. Green Fabrication and Characterization of Debranched Starch Nanoparticles Via Ultrasonication Combined with Recrystallization. Ultrason. Sonochem. 2020, 66, 105074. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G.; Sharma, S. Corn Starch Nanoparticles: Preparation, Characterization, and Utilization as a Fat Replacer in Salad Dressing. Acta Aliment. 2019, 48, 204–212. [Google Scholar] [CrossRef]
- Surendra Babu, A.; Parimalavalli, R.; Jagan Mohan, R. Effect of Modified Starch from Sweet Potato as a Fat Replacer on the Quality of Reduced Fat Ice Creams. J. Food Meas. Charact. 2018, 12, 2426–2434. [Google Scholar] [CrossRef]
- Altan, A.; Aytac, Z.; Uyar, T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly(Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018, 81, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Dandekar, P.; Jain, R.; Stauner, T.; Loretz, B.; Koch, M.; Wenz, G.; Lehr, C.M. A Hydrophobic Starch Polymer for Nanoparticle-Mediated Delivery of Docetaxel. Macromol. Biosci. 2012, 12, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Hasanvand, E.; Fathi, M.; Bassiri, A. Production and Characterization of Vitamin D3 Loaded Starch Nanoparticles: Effect of Amylose to Amylopectin Ratio and Sonication Parameters. J. Food Sci. Technol. 2018, 55, 1314–1324. [Google Scholar] [CrossRef]
- Mwangi, W.W.; Lim, H.P.; Low, L.E.; Tey, B.T.; Chan, E.S. Food-Grade Pickering Emulsions for Encapsulation and Delivery of Bioactives. Trends Food Sci. Technol. 2020, 100, 320–332. [Google Scholar] [CrossRef]
- Sharif, H.R.; Abbas, S.; Majeed, H.; Safdar, W.; Shamoon, M.; Khan, M.A.; Shoaib, M.; Raza, H.; Haider, J. Formulation, Characterization and Antimicrobial Properties of Black Cumin Essential Oil Nanoemulsions Stabilized by Osa Starch. J. Food Sci. Technol. 2017, 54, 3358–3365. [Google Scholar] [CrossRef]
- Liu, C.; Ge, S.; Yang, J.; Xu, Y.; Zhao, M.; Xiong, L.; Sun, Q. Adsorption Mechanism of Polyphenols onto Starch Nanoparticles and Enhanced Antioxidant Activity under Adverse Conditions. J. Funct. Foods 2016, 26, 632–644. [Google Scholar] [CrossRef]
- Bhatia, M.; Rohilla, S. Formulation and Optimization of Quinoa Starch Nanoparticles: Quality by Design Approach for Solubility Enhancement of Piroxicam. Saudi Pharm. J. 2020, 28, 927–935. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Yang, F.; Wu, W.; Wu, M.; Li, Y.; Zhang, X. Loading Paclitaxel into Porous Starch in the Form of Nanoparticles to Improve Its Dissolution and Bioavailability. Int. J. Biol. Macromol. 2019, 138, 207–214. [Google Scholar] [CrossRef]
- Kheradvar, S.A.; Nourmohammadi, J.; Tabesh, H.; Bagheri, B. Starch Nanoparticle as a Vitamin E-Tpgs Carrier Loaded in Silk Fibroin-Poly(Vinyl Alcohol)-Aloe Vera Nanofibrous Dressing. Colloids Surf. B Biointerfaces 2018, 166, 9–16. [Google Scholar] [CrossRef]
- Ahmad, M.; Mudgil, P.; Gani, A.; Hamed, F.; Masoodi, F.A.; Maqsood, S. Nano-Encapsulation of Catechin in Starch Nanoparticles: Characterization, Release Behavior and Bioactivity Retention During Simulated in-Vitro Digestion. Food Chem. 2019, 270, 95–104. [Google Scholar] [CrossRef]
- Escobar-Puentes, A.A.; García-Gurrola, A.; Rincón, S.; Zepeda, A.; Martínez-Bustos, F. Effect of Amylose/Amylopectin Content and Succinylation on Properties of Corn Starch Nanoparticles as Encapsulants of Anthocyanins. Carbohydr. Polym. 2020, 250, 116972. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A. Ultrasonicated Resveratrol Loaded Starch Nanocapsules: Characterization, Bioactivity and Release Behaviour under in-Vitro Digestion. Carbohydr. Polym. 2020, 251, 117111. [Google Scholar] [CrossRef]
- Mahmoudi Najafi, S.H.; Baghaie, M.; Ashori, A. Preparation and Characterization of Acetylated Starch Nanoparticles as Drug Carrier: Ciprofloxacin as a Model. Int. J. Biol. Macromol. 2016, 87, 48–54. [Google Scholar] [CrossRef]
- Yang, J.; He, H.; Gu, Z.; Cheng, L.; Li, C.; Li, Z.; Hong, Y. Conjugated Linoleic Acid Loaded Starch-Based Emulsion Nanoparticles: In Vivo Gastrointestinal Controlled Release. Food Hydrocoll. 2020, 101, 105477. [Google Scholar] [CrossRef]
- Liu, Q.; Cai, W.; Zhen, T.; Ji, N.; Dai, L.; Xiong, L.; Sun, Q. Preparation of Debranched Starch Nanoparticles by Ionic Gelation for Encapsulation of Epigallocatechin Gallate. Int. J. Biol. Macromol. 2020, 161, 481–491. [Google Scholar] [CrossRef]
- Zhu, F. Encapsulation and Delivery of Food Ingredients Using Starch Based Systems. Food Chem. 2017, 229, 542–552. [Google Scholar] [CrossRef]
- Qi, L.; Ji, G.; Luo, Z.; Xiao, Z.; Yang, Q. Characterization and Drug Delivery Properties of Osa Starch-Based Nanoparticles Prepared in [C3ohmim]Ac-in-Oil Microemulsions System. ACS Sustain. Chem. Eng. 2017, 5, 9517–9526. [Google Scholar] [CrossRef]
- Zhu, F. Interactions between Starch and Phenolic Compound. Trends Food Sci. Technol. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Karunaratne, R.; Zhu, F. Physicochemical Interactions of Maize Starch with Ferulic Acid. Food Chem 2016, 199, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Ceborska, M.; Zimnicka, M.; Wszelaka-Rylik, M.; Troć, A. Characterization of Folic Acid/Native Cyclodextrins Host–Guest Complexes in Solution. J. Mol. Struct. 2016, 1109, 114–118. [Google Scholar] [CrossRef]
- Chin, S.F.; Mohd Yazid, S.N.A.; Pang, S.C. Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin. Int. J. Polym Sci. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
Starch Source | Preparation Method | Preparation Condition | %Yield | Ref. |
---|---|---|---|---|
| ||||
Cassava Waxy maize | Gamma irradiation | Doses 20 kGy (14 kG/h) | NR | [46] |
Cassava | Gamma irradiation | Doses 20 kGy | NR | [47] |
Green Sago | High-pressure homogenization | 250 Mpa/5 passes 1 h (Refrigerated for 30 min/after time) | NR | [48] |
High amylose maize | High-pressure homogenization | Starch was dispersed high-pressure homogenization was performed at 140, 200, and 250 MPa for 1–4 cycles | NR | [49] |
Waxy maize | Ultrasonication | Ultrasonication (80% power, 8 °C, 20 kHz, 75 min | NR | [50] |
Waxy maize | Ultrasonication | Sonication (80% power, 8 °C, 24 kHz, 75 min | NR | [51] |
Cassava | Ultrasonication | Ultrasonication 8 ◦C, 24 kHz, 75 min | NR | [52] |
Corn | Ultrasonication | mixture water-isopropanol (50/50 wt%) ultrasonication (100% power, 10 °C, 20 kHz, 75 min | NR | [53] |
Quinoa Maize | Ultrasonication | The suspension is heated in solution NaOH (ultrasonication 20 kHz, 30 min) | NR | [54] |
Waxy maize | Acid hydrolysis | 3.16 M H2SO4, hydrolysis at 40 °C for 5 days | NR | [46] |
Mung bean | Acid hydrolysis | 3.16 M H2SO4, hydrolysis at 40 °C for 7 days | 33.2 | [55] |
Waxy maize Normal maize High AM maize Potato Mungbean | Acid hydrolysis | 3.16 M H2SO4, hydrolysis at 40 °C for 7 days | NR | [56] |
Waxy maize High amylose maize | Acid hydrolysis | 3.16 M H2SO4 hydrolysis at 40 °C for 6 days | NR | [57] |
Water chesnut | Acid hydrolysis | 3.16 M H2SO4 hydrolysis at 40 °C for 7 days | 27.5 | [38] |
Andean potato | Acid hydrolysis | 3.16 M H2SO4 hydrolysis at 40 °C for 5 days | NR | [58] |
Waxy rice | Acid hydrolysis | 2.2 M HCl hydrolysis at 35 °C for 7–10 days | NR | [59] |
Sago | Acid hydrolysis | 2.2 M HCl hydrolysis 35 °C for 12–48 h | 72–80 | [39] |
Sago | Combined acid hydrolysis and precipitation | HCl 2.2 M hydrolysis 35 °C for 12–48 h, then precipitation with ethanol HCl 2.2 M hydrolysis 35 °C for 12–48 h, then precipitation with butanol | 20–25% 22–23% | [39] |
Andean potato | Combined acid hydrolysis and –ultrasonication | 3.16 M H2SO4 hydrolysis at 40 °C for 5 days, then sonication 4 °C, 26 kHz | NR | [58] |
Waxy maize SNP | Combined cid hydrolysis and ultrasonication | 3.16 M H2SO4 hydrolysis at 4/40 °C for 1–6 days, then ultrasonication 20 kHz, 3 min | 78% | [60] |
Tapioca | Combined nanoprecipitations and ultrasonication | Precipitation using aceton, then ultrasonication 60 min, 20 kHz, and 150 W | NR | [61] |
Lotus seed | Combined enzymatic hydrolysis and ultrasonication | Hydrolysis with pullulanase enzyme (pH 4.6) at (30 ASPU/g of dry starch), 58 °C, 8 h, then ultrasonication 25 ± 1 kHz. Acid Stable Pullulanase Units (ASPU) is ASPU is defined as the amount of enzyme that liberates 1.0 mg glucose from starch in 1 min at pH 4.4 and 60 °C | NR | [62] |
Waxy maize | Combined enzymatic hydrolysis and recrystallization | Hydrolysis with pullulanase enzyme (pH 5) at (30 ASPU/g of dry starch), 58 °C, 8 h. Followed by recrystallization at 4 °C 8 h | 85% | [63] |
Elephant foot yam | Combined enzymatic hydrolysis and recrystallization | Debranching by pullulanase, followed by recrystallization at 4 °C 12–24 h | 56.66–61.33% | [64] |
Waxy maize | Combined enzymatic hydrolysis and recrystallization | Hydrolysis with pullulanase enzyme at 58 OC 24 h, then recrystallized 5 °C | NR | [40] |
| ||||
Dry high amylose Corn Potato Tapioca Sweet potato Waxy corn | Nanoprecipitation | Absolute ethanol as a precipitate | NR | [6] |
Green banana | Nanoprecipitation | Starch mixed in acetone and precipitated with water | NR | [37] |
Tapioca | Nanoprecipitation | Produced with acetone | NR | [61] |
Waxy maize | Nanoprecipitation | Starch mixed with ethanol | NR | [40] |
Arrowroot | Nanoprecipitation | Produced by butanol | 20.65–23.8 | [65] |
Potato | Nanoprecipitation | Produced by ethanol | NR | [66] |
Source | Preparation Method | Shape | Size (nm) | Ref. |
---|---|---|---|---|
Cassava | Gamma irradiation | Agglomerates | 50 | [47] |
Cassava Waxy maize | Gamma irradiation | Laminar laminar Aggregates are formed | 20 20–30 | [46] |
High amylose maize | High-pressure homogenization | Aggregates and porous. | 540 | [49] |
Green sago | High-pressure homogenization | Spherical | 23.112 | [48] |
Cassava | Ultrasonication | Spherical | 77.51 | [52] |
Quinoa Maize | Ultrasonication | flaky and porous flaky and porous | 99 214 | [54] |
Waxy maize | Ultrasonication | Platelet-like | 40 | [53] |
Waxy maize | Ultrasonication | Ellipsoidal | 37 | [50] |
Waxy maize Normal maize High AM maize Potato Mungbean | Acid hydrolysis | Round or oval shapes | 41.4 41.0 69.7 43.2 53.7 | [56] |
Andean potato | Acid hydrolysis | Elliptical-polyhedral shape | 132.56–263.38 | [58] |
Waxy rice | Acid hydrolysis | Round but irregular | 220–279.4 | [59] |
Unripe plantain fruits | Acid hydrolysis | Oval shape but fractured granules. | NR | [83] |
Waxy maize High amylose maize | Acid hydrolysis | flat elliptical Round-polygonal | >500 268 | [57] |
Mungbean | Acid hydrolysis | slightly oval/irregular | 141.772 | [55] |
Water chesnut | Acid hydrolysis | Irregular and rough surface | 396 | [38] |
Sago | Acid hydrolysis | NR | 789.30 | [39] |
Dry high-amylose corn Pea potato Corn Tapioca Sweet potato Waxy corn | Nanoprecipitation | Spherical and elliptical | 20–80 30–150 50–225 15–80 30–110 40–100 20–200 | [6] |
Potato | Nanoprecipitation | Spherical and elliptical | 50–150 | [66] |
Arrowroot | Nanoprecipitation | non-granular morphologies with porous | 261.4 | [65] |
Green banana | Nanoprecipitation | NR | 135.1 | [37] |
Waxy maize starch | Nanoprecipitation | Irregular | 201.67 | [40] |
Tapioca | Nanoprecipitation | Spherical | 219 | [61] |
Lotus seed | Enzymatic hydrolysis | irregular shapes | NR | [62] |
Waxy rice | Enzymatic hydrolysis | Irregular shape | 500 | [74] |
Waxy maize | Enzymatic hydrolysis | Irregular with erosion surface | NR | [75] |
Sago | Combined acid hydrolysis and precipitation method with butanol Combined acid hydrolysis and precipitation method with ethanol | NR NR | 7.57–178 21.98–97.50 | [39] |
Andean potato | Combined acid hydrolysis and ultrasonication | elliptical-polyhedral shape | 153.63–366.76 | [58] |
Potato | Combined acid hydrolysis and ultrasonication | Spherical | 40 | [84] |
Waxy maize | Combined acid hydrolysis and ultrasonication | Globular | 40–90 | [60] |
Tapioca | Combined nanoprecipitation and ultrasonication | Spherical | 163 | [61] |
lotus seed | Combined enzyme hydrolysis and ultrasonication | irregular shapes with the uneven surface | 16.7–2420 | [62] |
Elephant foot yam | Combination enzyme and recrystallization | irregular to spherical shapes | 182.07–198.1 | [64] |
Waxy maize | Combined enzyme hydrolysis and recrystallization | Spherical microscale coralloid aggregates | 156 | [40] |
Waxy maize | Combined enzyme hydrolysis and recrystallization | Irregular | 80–120 | [63] |
Starch Source | Preparation Method | Crystallinity (%) | Crystalline Type | Ref. | |
---|---|---|---|---|---|
Native Starch | NSPs | ||||
Cassava Waxy maize | Gamma irradiation | Decrease Decrease | NR NR | Amorphous Amorphous | [46] |
High amylose maize starch | High-pressure Homogenization | 7.8 | B-type | B-type | [49] |
Cassava | Ultrasonication | Decrease | C-Type | Amorphous | [52] |
Quinoa Maize | Ultrasonication | Decrease Decrease | A-Type A-Type | Amorphous Amorphous | [54] |
Waxy maize | Ultrasonication | - | A-Type | Amorphous | [53] |
Waxy maize | Ultrasonication | Decrease | A-Type | Amorphous | [50] |
High AM maize Potato | Acid hydrolysis | 61.4 89.4 | A-type B-type | B-type B-type | [56] |
Andean potato | Acid hydrolysis | 42.2 | B-type | B-type | [58] |
Waxy rice | Acid hydrolysis | No change | A-type | A-type | [59] |
Waxy maize High amylose maize | Acid hydrolysis | NR NR | A-type B-type | A-type A-type | [57] |
Waxy maize | Acid hydrolysis | 53 | NR | A-type | [46] |
Sago | Acid hydrolysis | 36 | NR | NR | [39] |
Dry high amylose corn Pea Potato Corn Tapioca Sweet potato Waxy corn | Nanoprecipitation | 39.8 31.5 26.3 23.2 19.3 20.7 7.1 | B-type C-type B-type A-type A-type A-type A-type | V-type | [6] |
Potato | Nanoprecipitation | 23.5 | B-type | V-type | [66] |
Arrowroot | Nanoprecipitation | 28.36–45.12 | A-type | V-type | [65] |
Waxy maize | Nanoprecipitation | NR | NR | V-type | [40] |
Tapioca | Nanoprecipitation | 12.53 | A-type | V-type | [61] |
lotus seed | Enzyme hydrolysis | 65.07 | B-type | B-type | [62] |
Waxy rice | Enzymatic hydrolysis | NR | A-type | A-type | [74] |
Waxy maize | Enzymatic hydrolysis | Increase | A-type | NR | [75] |
Sago | Combined acid hydrolysis and precipitation method with ethanol Combined acid hydrolysis and precipitation method with butanol | 41 34 | NR NR | NR NR | [39] |
Waxy maize | Combined cid hydrolysis andultrasonication | 27.68 | A-type | A-type | [60] |
Tapioca | Combined nanoprecipitation and ultrasonication | 6.49–15.21 | A-type | V-type | [61] |
lotus seed | Combined enzyme hydrolysis and ultrasonication | 57.5–61.3 | B-type | B-type | [62] |
Elephant foot yam | Combined enzyme and recrystallization | 41.30–43.22 | C-type | B-type | [64] |
Waxy maize starch | Combined enzyme hydrolysis and recrystallization | NR | NR | B +V-type | [40] |
Waxy maize starch | Combined enzyme hydrolysis and recrystallization | 45.28 | A-type | B +V-type | [63] |
Starch Source | Preparation Method | Technique | Result | Ref. |
---|---|---|---|---|
Cassava, waxy maize starch | Gamma irradiation | TGA | Degraded at a lower temperature than native starch and sudden decrease in weight loss | [46] |
Green sago | High-Pressure homogenization | TGA | High degradation temperature | [48] |
Cassava | Ultrasonication | TGA/DSC | SNPs are more thermally unstable and have low gelatinization temperature | [52] |
Quinoa Maize | Ultrasonication | DSC | To, Tp, Tc and ∆H decreased To, Tp and Tc decreased but ∆H increased | [54] |
Waxy maize | Ultrasonication | DSC | ∆H decreased | [53] |
Waxy maize | Ultrasonication | DSC | ∆H decreased | [50] |
Waxy maize Normal maize | Acid hydrolysis | DSC | Tp and Tc and ∆H, but To decreased | [56] |
Waxy rice | Acid hydrolysis | DSC | Tp and Tc increased as the hydrolysis time increased, but To and ΔT decreased | [59] |
Unripe plantain fruit | Acid hydrolysis | DSC | Tp, Tc and ΔT increased as the hydrolysis time increased, but To decreased | [83] |
Potato | Nanoprecipitation | TGA | Thermal degradation of SNPs started earlier than for native starch | [66] |
Arrowroot | Nanoprecipitation | DSC | Tp decreased, To and ∆H increased | [65] |
High amylose corn | Nanoprecipitation | DSC | To, Tp and Tc decreased, but ∆H increased | [6] |
Potato | Nanoprecipitation | DSC | To and ∆H decreased, but Tp increased | |
Pea corn Tapioca Sweet potato Waxy corn | Nanoprecipitation | DSC | To, Tp, Tc and ∆H decreased | |
Tapioca | Combined nanoprecipitation and ultrasonication | DSC | To, Tp, Tc and ∆H decreased | [61] |
Elephant foot yam | Combined enzyme and recrystallization | DSC | Tp, To, Tc increased, but Tc decreased at 24 h of hydrolysis | [64] |
Waxy maize starch | Combined enzyme hydrolysis and recrystallization | TGA | Maximum degradation temperature decreased | [63] |
Type Starch | Aqueous Phase | Oil Phase | Emulsion Type | Emulsification Method | Result | Ref. |
---|---|---|---|---|---|---|
Maize SNC | Water | Paraffin | o/w | Homogenization (10,000 rpm, 4 min) |
| [114] |
Taro SNP | NaCl | MCT oil | o/w | Homogenization (12,000 rpm, 2 min) | Emulsion with the best stability at an SNP concentration of 7% with an oil fraction of 0.5, up to 28 days | [115] |
OSA amaranth and maize SNC | Phosphate buffer pH 7 (NaCl 0.2 M) | Canola oil | o/w | High shear mixer (22,000 rpm, 3 min) | the best emulsion stability on amaranth OSA starch nanocrystals (emulsion index 1.0 ± 0.02), for 10 days of storage | [116] |
Waxy Maize SNC | Water | Parrafin | o/w and w/o | pH difference using HCl or NaOH, homogenization (10,000 rpm, 4 min) |
| [117] |
Tapioca, corn, and sweet potato SNC | NaCl | Soybean oil | o/w | High-speed homogenizer (10,000 rpm, 2 min) |
| [34] |
Breadfruit SNC | NaOH (0.1875 and 0.375 M) | MCT oil | o/w | Homogenization (10,000 rpm, 5 min) | Treatment of 5% starch concentration with 0.1875 M NaOH resulted in the best starch stability for 2 weeks of storage with the lowest cream index and the smallest droplets. | [118] |
Maize SNC | Water | Corn oil | o/w | Homogenization (20,000 rpm, 3 min) |
| [99] |
Waxy maize SNC | Water | MCT oil | o/w | High-speed homogenizer (18,000 rpm, 4 min) | No o/w emulsion phase separation was detected during 30 days of storage | [119] |
Corn SNC | Water | Sunflower oil | o/w | Homogenization (12,000 rpm, 5 min) | No cream was observed in the emulsion after storage for 6 months. | [120] |
Oxidation of cassava, corn, and bean SNC | Water | Soybean oil | o/w | Homogenization 1 min |
| [121] |
Manufacturing Technique | Bioplastic Composition | Result | Ref. |
---|---|---|---|
Casting | Pea starch (5 g) + glycerol (1.5 g) + waxy maize acid hydrolysis SNC (5%) | There was a decrease in elongation, YM and TS by 57%, 305%, 73%, respectively. WVP reduction up to 62% | [133] |
Casting | PU resin (polyurethane) + maize corn acid hydrolysis-ultrasonication SNP (20%) | The addition of 20% SNPs reduces WVP to 60% and oxygen permeability decreases to 75%. There was an increase in the value of Tg, Tm, and ∆H | [134] |
Casting | Corn starch (7.5 g + glycerol (3 g) + taro enzymolysis SNP (10%) | Decrease in elongation and WVP by 24% and 56%, respectively, an increase in TS 161%. There was an increase in the value of Tg, Tm, and ∆H | [135] |
Casting | Amanduble starch + glycerol + amadumbe acid hydrolysis SNC (2.5%) | There was an increase in TS of 62% and a decrease in WVP of 8.7%. There was an increase in the value of Tg, Tm, and ∆H | [136] |
Casting | Potato starch + glycerol + amadumbe acid hydrolysis SNC (2.5%) | There was an increase in TS 288% and a decrease in WVP 11% | [136] |
Casting | Polycaprolactone (PCL) + corn SNP (5%) | There was a decrease in the elongation value of 9%, an increase in YM 12% and TS 44%. Tm and ∆H decreased | [137] |
Casting | Waterborne polyurethane (WPU) + pea SNC (10%) | The addition of SNCs by 10% showed a decrease in elongation by 27%, but there is an increase in TS and YM by 169% and 3733%, respectively | [138] |
Casting | Cross-linked cassava starch + glycerol 2.5 g) + cassava SNC (6%) | Increase in young modulus and tensile strength, but decrease in elongation and water vapor permeability | [139] |
Casting | Composite sago starch + sago SNP (6%) | Increase in elongation, YM and TS by 34%, 9% and 8%, respectively. WVP decrease up to 51% | [48] |
Extrusion | PBA/TPS (70:30) + glycerol (7.5%), citric acid (0.6%), and stearic acid (0.3%) + cassava gamma irradiation SNP (0.6%) | There was an increase of about 20% in YM and TS. Tg: −34 °C and Tm: 117 °C | [47] |
Extrusion | PBA/TPS (70:30) + glycerol (7.0%), citric acid (%) and stearic acid (0.3%) + cassava ultrasonication SNP 1% | The addition of 1% SNP can increase elongation by 35%, YM by 36%, TS by 27%, and decrease WVP up to 21.3% | [52] |
Type of Starch | Preparation Method | Encapsulation Compound | %Encaptulation Efficiency | Ref. |
---|---|---|---|---|
| ||||
Banana starch | Nanoprecipitation | Curcumin | 85.23 | [37] |
Waxy maize | Nanoprecipitation | Polyphenols | 60–70 | [163] |
Quiona | Nanoprecipitation | Piroxicam | 84 | [164] |
Insoluble porous starch | Nanoprecipitation | Paclitaxel | 73.92 | [165] |
Soluble SNPs | Ethanol precipitate | Vitamin E | 91.63 | [166] |
Horse chestnut Water chesnut Lotus Stem | Acid hydrolysis | Catechin | 59.09 48.30 55 | [167] |
Quiona Maize starch | Ultasonication | Rutin | 67.4 63.1 | [54] |
Normal corn high-amylose Waxy corn | Ultrasonication | Anthocyanin | 52.5 45.5 49.4 | [168] |
Horse chestnut Lotus Stem Water chesnut | Ball milling | Resveratrol | 81.46 75.83 73.37 | [169] |
| ||||
Acetylated Banana | Nanoprecipitation | Curcumin | 82.23–92.12 | [150] |
Acetylated Banana | Nanoprecipitation | Curcumin | 90.63 | [37] |
Acetylated corn | Nanoprecipitation | Ciprofloxacin | 20.5–89.1 | [170] |
OSA Waxy maize | Emulsion-diffusion | Conjugated linoleic acid | >97 | [171] |
Debranched Waxy corn | Enzyme hydrolysis with pullulanase | Epigallocatechin gallate | 84.4 | [172] |
Debranched waxy maize SNPs | Ultrasonication combined with recrystallization | Epigallocatechin gallate | >80 | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marta, H.; Rizki, D.I.; Mardawati, E.; Djali, M.; Mohammad, M.; Cahyana, Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers 2023, 15, 1167. https://doi.org/10.3390/polym15051167
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers. 2023; 15(5):1167. https://doi.org/10.3390/polym15051167
Chicago/Turabian StyleMarta, Herlina, Dina Intan Rizki, Efri Mardawati, Mohamad Djali, Masita Mohammad, and Yana Cahyana. 2023. "Starch Nanoparticles: Preparation, Properties and Applications" Polymers 15, no. 5: 1167. https://doi.org/10.3390/polym15051167
APA StyleMarta, H., Rizki, D. I., Mardawati, E., Djali, M., Mohammad, M., & Cahyana, Y. (2023). Starch Nanoparticles: Preparation, Properties and Applications. Polymers, 15(5), 1167. https://doi.org/10.3390/polym15051167