Self-Supporting Flexible Paper-Based Electrode Reinforced by Gradient Network Structure
Abstract
:1. Introduction
2. Experiment Section
2.1. Materials
2.2. Preparation of LFP Paper-Based Electrode
2.3. Assembly of Lithium Iron Phosphate Battery
2.4. Characterization
3. Results and Discussions
3.1. Mechanical Properties and Thickness of the Paper-Based Electrodes
3.2. Conductivity of Paper-Based Electrode
3.3. Contact Angle Analysis
3.4. Electrochemical Performance of Paper-Based Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Mei, H.; Cao, Y.; Yan, X.; Yan, J.; Gao, H.; Luo, H.; Wang, S.; Jia, X.; Kachalova, L.; et al. Recent Advances and Challenges of Electrode Materials for Flexible Supercapacitors. Coord. Chem. Rev. 2021, 438, 213910. [Google Scholar] [CrossRef]
- Chen, R.; Li, X.; Huang, Q.; Ling, H.; Yang, Y.; Wang, X. Self-Assembled Porous Biomass Carbon/RGO/Nanocellulose Hybrid Aerogels for Self-Supporting Supercapacitor Electrodes. Chem. Eng. J. 2021, 412, 128755. [Google Scholar] [CrossRef]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 2017, 4, 1700107. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, T.; Zhao, Z.; Ni, Y. Recent Progress in the Development of Smart Supercapacitors. SmartMat 2023, 4, e1158. [Google Scholar] [CrossRef]
- Michelin, M.; Gomes, D.G.; Romaní, A.; Polizeli, M.d.L.T.M.; Teixeira, J.A. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules 2020, 25, 3411. [Google Scholar] [CrossRef]
- Said, M.A.; Hassan, H. Impact of Energy Storage of New Hybrid System of Phase Change Materials Combined with Air-Conditioner on Its Heating and Cooling Performance. J. Energy Storage 2021, 36, 102400. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; et al. Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Adv. Energy Mater. 2018, 8, 1802398. [Google Scholar] [CrossRef]
- Shi, J.; Zu, L.; Gao, H.; Hu, G.; Zhang, Q. Silicon-Based Self-Assemblies for High Volumetric Capacity Li-Ion Batteries via Effective Stress Management. Adv. Funct. Mater. 2020, 30, 2002980. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, Y.; Kim, S.; Seo, J.; Lee, S.; Nyholm, L. Why Cellulose-Based Electrochemical Energy Storage Devices? Adv. Mater. 2021, 33, 2000892. [Google Scholar] [CrossRef]
- Zhou, G.; Li, L.; Wang, D.-W.; Shan, X.; Pei, S.; Li, F.; Cheng, H.-M. A Flexible Sulfur-Graphene-Polypropylene Separator Integrated Electrode for Advanced Li-S Batteries. Adv. Mater. 2015, 27, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xiao, W.; Guo, W.H.; Yang, Y.X.; Lei, J.L.; Luo, H.Q.; Li, N.B. Macroporous Array Induced Multiscale Modulation at the Surface/Interface of Co(OH)2 /NiMo Self-Supporting Electrode for Effective Overall Water Splitting. Adv. Funct. Mater. 2021, 31, 2102117. [Google Scholar] [CrossRef]
- Sun, Z.; Qu, K.; You, Y.; Huang, Z.; Liu, S.; Li, J.; Hu, Q.; Guo, Z. Overview of Cellulose-Based Flexible Materials for Supercapacitors. J. Mater. Chem. A 2021, 9, 7278–7300. [Google Scholar] [CrossRef]
- Xiao, Q.; Yang, J.; Wang, X.; Deng, Y.; Han, P.; Yuan, N.; Zhang, L.; Feng, M.; Wang, C.; Liu, R. Carbon-based Flexible Self-supporting Cathode for Lithium-sulfur Batteries: Progress and Perspective. Carbon Energy 2021, 3, 271–302. [Google Scholar] [CrossRef]
- Mohit, H.; Arul Mozhi Selvan, V. A Comprehensive Review on Surface Modification, Structure Interface and Bonding Mechanism of Plant Cellulose Fiber Reinforced Polymer Based Composites. Compos. Interfaces 2018, 25, 629–667. [Google Scholar] [CrossRef]
- Wang, D.; Han, C.; Mo, F.; Yang, Q.; Zhao, Y.; Li, Q.; Liang, G.; Dong, B.; Zhi, C. Energy Density Issues of Flexible Energy Storage Devices. Energy Storage Mater. 2020, 28, 264–292. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, M.-Q.; Anasori, B.; Maleski, K.; Ren, C.E.; Li, J.; Byles, B.W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous Heterostructured MXene/Carbon Nanotube Composite Paper with High Volumetric Capacity for Sodium-Based Energy Storage Devices. Nano Energy 2016, 26, 513–523. [Google Scholar] [CrossRef]
- Li, D.; Ning, X.; Yuan, Y.; Hong, Y.; Zhang, J. Ion-Exchange Polymers Modified Bacterial Cellulose Electrodes for the Selective Removal of Nitrite Ions from Tail Water of Dyeing Wastewater. J. Environ. Sci. 2020, 91, 62–72. [Google Scholar] [CrossRef]
- Gaikwad, A.M.; Arias, A.C. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries. ACS Appl. Mater. Interfaces 2017, 9, 6390–6400. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Tsai, M.-L.; Chen, C.-W.; Di Dong, C. Genetic Modification for Enhancing Bacterial Cellulose Production and Its Applications. Bioengineered 2021, 12, 6793–6807. [Google Scholar] [CrossRef]
- Cao, S.; Ge, W.; Yang, Y.; Huang, Q.; Wang, X. High Strength, Flexible, and Conductive Graphene/Polypropylene Fiber Paper Fabricated via Papermaking Process. Adv. Compos. Hybrid Mater. 2022, 5, 104–112. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.; Wu, H.; Li, Q.; Fan, S.; Wang, J. Progress and Challenges of Flexible Lithium Ion Batteries. J. Power Source 2020, 454, 227932. [Google Scholar] [CrossRef]
- Wang, L.; Hu, S.; Ullah, M.W.; Li, X.; Shi, Z.; Yang, G. Enhanced Cell Proliferation by Electrical Stimulation Based on Electroactive Regenerated Bacterial Cellulose Hydrogels. Carbohydr. Polym. 2020, 249, 116829. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Cheng, X.; Yan, M.; Yu, J.; Liu, H. Flexible Electronics Based on Micro/Nanostructured Paper. Adv. Mater. 2018, 30, 1801588. [Google Scholar] [CrossRef]
- Li, S.; Lin, Z.; He, G.; Huang, J. Cellulose Substance Derived Nanofibrous Activated Carbon as a Sulfur Host for Lithium-Sulfur Batteries. Colloids Surf. Physicochem. Eng. Asp. 2020, 602, 125129. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Wang, Y.; Fan, C.; Liu, C.; Peng, Q.; Chen, J.; Feng, Z. Preparation and Characterization of Flexible Lithium Iron Phosphate/Graphene/Cellulose Electrode for Lithium Ion Batteries. J. Colloid Interface Sci. 2018, 512, 398–403. [Google Scholar] [CrossRef]
- Bi, J.; Wu, H.; Wang, L.; Pang, X.; Li, Y.; Meng, Q.; Wang, L. A Mass Production Paper-Making Method to Prepare Superior Flexible Electrodes and Asymmetric Supercapacitors with High Volumetric Capacitance. Electrochimica Acta 2021, 367, 137409. [Google Scholar] [CrossRef]
- Chen, J.; Xie, J.; Jia, C.Q.; Song, C.; Hu, J.; Li, H. Economical Preparation of High-Performance Activated Carbon Fiber Papers as Self-Supporting Supercapacitor Electrodes. Chem. Eng. J. 2022, 450, 137938. [Google Scholar] [CrossRef]
- Jamesh, M.-I. Recent Advances on Flexible Electrodes for Na-Ion Batteries and Li–S Batteries. J. Energy Chem. 2019, 32, 15–44. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.C.-Y.; Sui, P.-C.; Zhang, J. A Review of Recycling Spent Lithium-Ion Battery Cathode Materials Using Hydrometallurgical Treatments. J. Energy Storage 2021, 35, 102217. [Google Scholar] [CrossRef]
- Kong, L.; Tang, C.; Peng, H.; Huang, J.; Zhang, Q. Advanced Energy Materials for Flexible Batteries in Energy Storage: A Review. SmartMat 2020, 1, smm2.1007. [Google Scholar] [CrossRef]
- Mao, J.; Iocozzia, J.; Huang, J.; Meng, K.; Lai, Y.; Lin, Z. Graphene Aerogels for Efficient Energy Storage and Conversion. Energy Environ. Sci. 2018, 11, 772–799. [Google Scholar] [CrossRef]
- Venkatarajan, S.; Athijayamani, A. An Overview on Natural Cellulose Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 37, 3620–3624. [Google Scholar] [CrossRef]
- Wang, J.; Zang, N.; Xuan, C.; Jia, B.; Jin, W.; Ma, T. Self-Supporting Electrodes for Gas-Involved Key Energy Reactions. Adv. Funct. Mater. 2021, 31, 2104620. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L.; Bi, J.; Li, Y.; Pang, X.; Li, Z.; Meng, Q.; Liu, H.; Wang, L. Local Concentration Effect-Derived Heterogeneous Li2S2/Li2S Deposition on Dual-Phase MWCNT/Cellulose Nanofiber/NiCo2S4Self-Standing Paper for High Performance of Lithium Polysulfide Batteries. ACS Appl. Mater. Interfaces 2020, 12, 15228–15238. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Liu, X.; Lv, C.; Li, Y.; Wei, D.; Liu, Z. Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics. Adv. Mater. 2019, 31, 1800716. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, R.; Fan, Y.; Li, B.; Zhang, J.; Peng, F.; Du, Y.; Yang, W. Flexible Self-Supporting Electrode for High Removal Performance of Arsenic by Capacitive Deionization. Sep. Purif. Technol. 2022, 299, 121732. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Wang, B.; Wang, M.; Zhang, Y.; Wang, Q.; Wu, H. Construction of Electrocatalytic and Heat-Resistant Self-Supporting Electrodes for High-Performance Lithium–Sulfur Batteries. Nano-Micro Lett. 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Krause, A.; Dörfler, S.; Piwko, M.; Wisser, F.M.; Jaumann, T.; Ahrens, E.; Giebeler, L.; Althues, H.; Schädlich, S.; Grothe, J.; et al. High Area Capacity Lithium-Sulfur Full-Cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability. Sci. Rep. 2016, 6, 27982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Du, H.; Liu, H.; Liu, W.; Zhang, X.; Si, C.; Liu, P.; Zhang, K. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices. Adv. Mater. 2021, 33, 2101368. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Li, Z.; Li, J.; Wei, H.; Guo, Y.; Li, H.; Yan, P.; Wu, H. Self-Supporting Flexible Paper-Based Electrode Reinforced by Gradient Network Structure. Polymers 2023, 15, 1334. https://doi.org/10.3390/polym15061334
Kang S, Li Z, Li J, Wei H, Guo Y, Li H, Yan P, Wu H. Self-Supporting Flexible Paper-Based Electrode Reinforced by Gradient Network Structure. Polymers. 2023; 15(6):1334. https://doi.org/10.3390/polym15061334
Chicago/Turabian StyleKang, Shaoran, Zhijian Li, Jinbao Li, Hairu Wei, Yanbo Guo, Haiwen Li, Peng Yan, and Haiwei Wu. 2023. "Self-Supporting Flexible Paper-Based Electrode Reinforced by Gradient Network Structure" Polymers 15, no. 6: 1334. https://doi.org/10.3390/polym15061334
APA StyleKang, S., Li, Z., Li, J., Wei, H., Guo, Y., Li, H., Yan, P., & Wu, H. (2023). Self-Supporting Flexible Paper-Based Electrode Reinforced by Gradient Network Structure. Polymers, 15(6), 1334. https://doi.org/10.3390/polym15061334