Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries
Abstract
:1. Introduction
2. Challenges of All-Solid-State Rechargeable Lithium Batteries
3. Solid-State Polymer Electrolytes
3.1. Polymer Matrix
3.1.1. PEO
3.1.2. PMMA
3.1.3. PVDF
3.1.4. PAN
3.2. Solid-State Polymer Electrolytes
3.2.1. All-Solid-State Polymer Electrolyte
3.2.2. Polymer-Inorganic Composite Electrolytes
3.2.3. Porous Polymer Electrolyte
3.3. Summary
4. Polymer Electrode Materials
4.1. Composite Polymer Electrode Materials
4.2. Porours Polymer Electrode Material
4.3. Summary
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wei, T.; Wang, Z.M.; Zhang, Q.; Zhou, Y.; Sun, C.; Wang, M.; Liu, Y.; Wang, S.; Yu, Z.; Qiu, X.; et al. Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review. Crystengcomm 2022, 24, 5014–5030. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Almehmadi, F.A.; Alqaed, S.; Mustafa, J.; Jamil, B.; Sharifpur, M.; Cheraghian, G. Combining an active method and a passive method in cooling lithium-ion batteries and using the generated heat in heating a residential unit. J. Energy Storage 2022, 49, 104181. [Google Scholar] [CrossRef]
- Alqaed, S.; Almehmadi, F.A.; Mustafa, J.; Husain, S.; Cheraghian, G. Effect of nano phase change materials on the cooling process of a triangular lithium battery pack. J. Energy Storage 2022, 51, 104326. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 2021, 34, 282–300. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Fan, P.; Liu, H.; Marosz, V.; Samuels, N.T.; Suib, S.L.; Sun, L.; Liao, L. High Performance Composite Polymer Electrolytes for Lithium-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2101380. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials 2019, 12, 3892. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D.P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front. Chem. 2019, 7, 522. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174. [Google Scholar] [CrossRef]
- Cui, G.; Tominaga, Y. Polymer Electrolytes toward Next-Generation Batteries. Macromol. Chem. Phys. 2022, 223, 2200013. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, P.; Li, Z.; Wen, X.; Wen, W.; Liu, Y.; Zhao, H.; Zhang, S.; Zhou, H.; Zhang, L. Application of a Modified Porphyrin in a Polymer Electrolyte with Superior Properties for All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 48569–48581. [Google Scholar] [CrossRef] [PubMed]
- Grundish, N.S.; Goodenough, J.B.; Khani, H. Designing composite polymer electrolytes for all-solid-state lithium batteries. Curr. Opin. Electrochem. 2021, 30, 100828. [Google Scholar] [CrossRef]
- Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A.K. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. J. Phys. Chem. Lett. 2015, 6, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Dolocan, A.; Cui, Z.; Xin, S.; Xue, L.; Xu, H.; Park, K.; Goodenough, J.B. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. J. Am. Chem. Soc. 2018, 140, 6448–6455. [Google Scholar] [CrossRef]
- Ke, X.; Wang, Y.; Ren, G.; Yuan, C. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 2020, 26, 313–324. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Appl. Energy Mater. 2020, 3, 2916–2924. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, Y.; Cao, M.; Gu, Q.; Wang, H.; Yu, J.; Guo, Z.; Zhou, X. Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. J. Adv. Ceram. 2022, 11, 835–861. [Google Scholar] [CrossRef]
- Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Rep. 2019, 136, 27–46. [Google Scholar] [CrossRef]
- Rosero-Navarro, N.C.; Kajiura, R.; Miura, A.; Tadanaga, K. Organic–Inorganic Hybrid Materials for Interface Design in All-Solid-State Batteries with a Garnet-Type Solid Electrolyte. ACS Appl. Energy Mater. 2020, 3, 11260–11268. [Google Scholar] [CrossRef]
- Hong, S.; Lee, Y.; Kim, U.; Bak, C.; Lee, Y.M.; Cho, W.; Hah, H.J.; Sun, Y.; Kim, D. All-Solid-State Lithium Batteries: Li+-Conducting Ionomer Binder for Dry-Processed Composite Cathodes. ACS Energy Lett. 2022, 7, 1092–1100. [Google Scholar] [CrossRef]
- Cho, S.; Kim, S.; Kim, W.; Kim, S.; Ahn, S. All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte. Polymers 2018, 10, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Pardo, A.; Aguesse, F.; Fernández-Carretero, F.; Siriwardana, A.I.; García-Luis, A.; Llordés, A. Improved Electromechanical Stability of the Li Metal/Garnet Ceramic Interface by a Solvent-Free Deposited OIPC Soft Layer. ACS Appl. Energy Mater. 2021, 4, 2388–2397. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, M.; Zhu, Y.; Xu, R.; Chen, Z.; Zhang, P.; Lu, Z.; Wang, P.; Wang, C. Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries. Sustainability 2022, 14, 9090. [Google Scholar] [CrossRef]
- Sheng, O.; Jin, C.; Chen, M.; Ju, Z.; Liu, Y.; Wang, Y.; Nai, J.; Liu, T.; Zhang, W.; Tao, X. Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed via cryo-transmission electron microscopy. J. Mater. Chem. A 2020, 8, 13541–13547. [Google Scholar] [CrossRef]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Shan, Z.; Wu, M.; Du, Y.; Xu, B.; He, B.; Wu, X.; Zhang, G. Covalent Organic Framework-Based Electrolytes for Fast Li+ Conduction and High-Temperature Solid-State Lithium-Ion Batteries. Chem. Mater. 2021, 33, 5058–5066. [Google Scholar] [CrossRef]
- Zou, J.; Trewin, A.; Ben, T.; Qiu, S. High Uptake and Fast Transportation of LiPF6 in a Porous Aromatic Framework for Solid-State Li-Ion Batteries. Angewandte Chemie 2020, 132, 779–784. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.; Peng, X.; Wu, M.; Zhao, T. A High-Capacity Polyethylene Oxide-Based All-Solid-State Battery Using a Metal–Organic Framework Hosted Silicon Anode. ACS Appl. Mater. Inter. 2022, 14, 24798–24805. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Liu, X.; Zhong, H.; Xu, H.; Xu, Z.; Shao, H.; Ding, F. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Xin, S.; Yin, Y.; Li, J.; Guo, Y.; Wan, L. Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; He, P.; Wang, G.; Shen, Y.; Nan, C.W.; Fan, L.Z. Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2020, 10, 1903376. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, H.; Wu, H.B. Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries. Chem.-A Eur. J. 2018, 24, 18293–18306. [Google Scholar] [CrossRef]
- Fan, W.; Li, N.; Zhang, X.; Zhao, S.; Cao, R.; Yin, Y.; Xing, Y.; Wang, J.; Guo, Y.; Li, C. A Dual-Salt Gel Polymer Electrolyte with 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries. Adv. Sci. 2018, 5, 1800559. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochem. Energy Rev. 2019, 2, 574–605. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Zhao, C.; Yao, Y.; Liu, H.; Zhang, Q. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem 2019, 5, 74–96. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Chen, J.; He, T.; Zhao, J.; Liu, J.; Huo, Y. Inorganic Solid Electrolytes for the Lithium-Ion Batteries. Prog. Chem. 2021, 33, 1344–1361. [Google Scholar] [CrossRef]
- Famprikis, T.; Canepa, P.; Dawson, J.A.; Islam, M.S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291. [Google Scholar] [CrossRef]
- Yang, H.; Wu, N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Yang, J.; Wang, J.; Hirano, S. Polymer electrolytes for rechargeable lithium metal batteries. Sustain. Energy Fuels 2020, 4, 5469–5487. [Google Scholar] [CrossRef]
- Hallinan, D.T.; Balsara, N.P. Polymer Electrolytes. Annu. Rev. Mater. Res. 2013, 43, 503–525. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Fenton, D.E. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Xi, G.; Xiao, M.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2021, 31, 2007598. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. 2021, 8, 2003675. [Google Scholar] [CrossRef] [PubMed]
- Ni’Mah, Y.L.; Cheng, M.; Cheng, J.H.; Rick, J.; Hwang, B. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J. Power Sources 2015, 278, 375–381. [Google Scholar] [CrossRef]
- Jia, W.; Li, Z.; Wu, Z.; Wang, L.; Wu, B.; Wang, Y.; Cao, Y.; Li, J. Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics 2018, 315, 7–13. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Li, M.X.; Chang, Z.; Wang, Y.F.; Gao, J.; Zhu, Y.S.; Wu, Y.P.; Huang, W. A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery. Electrochim. Acta 2017, 245, 752–759. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, Z.; Zhang, Y.; Fang, R.; Yuan, Z.; Miao, C.; Yan, X.; Jiang, Y. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J. Power Sources 2018, 382, 128–134. [Google Scholar] [CrossRef]
- Chen, S.; Che, H.; Feng, F.; Liao, J.; Wang, H.; Yin, Y.; Ma, Z. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries. ACS Appl. Mater. Interfaces 2019, 11, 43056–43065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Ma, J.; Xu, G.; Dong, T.; Cui, G. Polymer Electrolytes for High Energy Density Ternary Cathode Material-Based Lithium Batteries. Electrochem. Energy Rev. 2019, 2, 128–148. [Google Scholar] [CrossRef]
- Cui, Y.; Chai, J.; Du, H.; Duan, Y.; Xie, G.; Liu, Z.; Cui, G. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 9, 8737–8741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, L.; Wu, X.; Wang, J.; Li, Q.; Pan, K.; He, J. Research Progress and Application of PEO-Based Solid State Polymer Composite Electrolytes. Front. Energy Res. 2021, 9, 571. [Google Scholar] [CrossRef]
- Su Ait, M.S.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.A. Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochim. Acta 2011, 57, 123–131. [Google Scholar] [CrossRef]
- Su’Ait, M.S.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.A. Preparation and characterization of PMMA–MG49–LiClO4 solid polymeric electrolyte. J. Phys. D Appl. Phys. 2009, 42, 55410. [Google Scholar] [CrossRef]
- Hussain, R.; Mohammad, D. X-ray diffraction study of the changes induced during the thermal degradation of poly (methyl methacrylate) and poly (methacryloyl chloride). Turk. J. Chem. 2004, 28, 725–729. [Google Scholar]
- Xu, H.; Zhang, H.; Ma, J.; Xu, G.; Dong, T.; Chen, J.; Cui, G. Overcoming the Challenges of 5 V Spinel LiNi0.5Mn1.5O4 Cathodes with Solid Polymer Electrolytes. ACS Energy Lett. 2019, 4, 2871–2886. [Google Scholar] [CrossRef]
- Osada, Y.; Kajiwara, K.; Fushimi, T.; Irasa, O.; Hirokawa, Y.; Matsunaga, T.; Shimomura, T.; Wang, L.; Ishida, H. Gels Handbook; Elsevier: Amsterdam, The Netherlands, 2001; Volume 3, pp. 421–444. [Google Scholar]
- Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84. [Google Scholar] [CrossRef]
- Aziz, S.B.; Woo, T.J.; Kadir, M.F.Z.; Ahmed, H.M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Devices 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Mathies, L.; Diddens, D.; Dong, D.; Bedrov, D.; Leipner, H. Transport mechanism of lithium ions in non-coordinating P(VdF-HFP) copolymer matrix. Solid State Ionics 2020, 357, 115497. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Singh, V.P.; Ramani, R.; Pal, V.; Prakash, A.; Alam, S. Microstructure and properties of novel fluorescent pyrene functionalized PANI/P(VDF-HFP) blend. J. Appl. Polym. Sci. 2014, 131, 40162. [Google Scholar] [CrossRef]
- Dhatarwal, P.; Sengwa, R.J. Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos. Commun. 2020, 17, 182–191. [Google Scholar] [CrossRef]
- Laxmayyaguddi, Y.; Mydur, N.; Shankar Pawar, A.; Hebri, V.; Vandana, M.; Sanjeev, G.; Hundekal, D. Modified Thermal, Dielectric, and Electrical Conductivity of PVDF-HFP/LiClO4 Polymer Electrolyte Films by 8 MeV Electron Beam Irradiation. ACS Omega 2018, 3, 14188–14200. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Mück-Lichtenfeld, C.; Studer, A. Hydrogen Atom Transfer Induced Boron Retaining Coupling of Organoboronic Esters and Organolithium Reagents. J. Am. Chem. Soc. 2019, 141, 14126–14130. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 2016, 4, 10070–10083. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, K.; Liu, Y.; Gao, H.; Bai, Y.; Wang, X.; Wu, C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater. 2020, 33, 26–54. [Google Scholar] [CrossRef]
- Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J. Power Sources 2010, 195, 559–566. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, B.; Xue, R.; Huang, X.; Chen, L. Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics 1999, 121, 141–156. [Google Scholar] [CrossRef]
- Rahman, M.Y.A.; Ahmad, A.; Ismail, L.H.C.; Salleh, M.M. Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2-LiClO4. J. Appl. Polym. Sci. 2010, 115, 2144–2148. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Chen, L. Some studies on electrolytes for lithium ion batteries. J. Power Sources 2005, 146, 51–57. [Google Scholar] [CrossRef]
- Saito, Y.; Kataoka, H.; Capiglia, C.; Yamamoto, H. Ionic Conduction Properties of PVDF−HFP Type Gel Polymer Electrolytes with Lithium Imide Salts. J. Phys. Chem. B 2000, 104, 2189–2192. [Google Scholar] [CrossRef]
- Bruce, P.G. Structure and electrochemistry of polymer electrolytes. Electrochim. Acta 1995, 40, 2077–2085. [Google Scholar] [CrossRef]
- Chen, W.; Duan, H.; Shi, J.; Qian, Y.; Wan, J.; Zhang, X.; Sheng, H.; Guan, B.; Wen, R.; Yin, Y.; et al. Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte. J. Am. Chem. Soc. 2021, 143, 5717–5726. [Google Scholar] [CrossRef]
- Guo, Y.; Ouyang, Y.; Li, D.; Wei, Y.; Zhai, T.; Li, H. PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode. Energy Storage Mater. 2019, 16, 203–211. [Google Scholar] [CrossRef]
- Choi, K.; Cho, S.; Kim, S.; Kwon, Y.H.; Kim, J.Y.; Lee, S. Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries. Adv. Funct. Mater. 2014, 24, 44–52. [Google Scholar] [CrossRef]
- Devaux, D.; Glé, D.; Phan, T.N.T.; Gigmes, D.; Giroud, E.; Deschamps, M.; Denoyel, R.; Bouchet, R. Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries. Chem. Mater. 2015, 27, 4682–4692. [Google Scholar] [CrossRef]
- Aihara, Y.; Kuratomi, J.; Bando, T.; Iguchi, T.; Yoshida, H.; Ono, T.; Kuwana, K. Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance. J. Power Sources 2003, 114, 96–104. [Google Scholar] [CrossRef]
- Watanabe, M.; Hirakimoto, T.; Mutoh, S.; Nishimoto, A. Polymer electrolytes derived from dendritic polyether macromonomers. Solid State Ionics 2002, 148, 399–404. [Google Scholar] [CrossRef]
- Patla, S.K.; Ray, R.; Asokan, K.; Karmakar, S. Investigation of ionic conduction in PEO–PVDF based blend polymer electrolytes. J. Appl. Phys. 2018, 123, 125102. [Google Scholar] [CrossRef]
- Chandra, A. Hot-pressed PEO-PVP blended solid polymer electrolytes: Ion transport and battery application. Polym. Bull. 2016, 73, 2707–2718. [Google Scholar] [CrossRef]
- Ghosh, A.; Kofinas, P. PEO based Block Copolymer as Solid State Lithium Battery Electrolyte. ECS Trans. 2008, 11, 131–137. [Google Scholar] [CrossRef]
- Lee, D.; Jung, H.Y.; Park, M.J. Solid-State Polymer Electrolytes Based on AB3-Type Miktoarm Star Copolymers. ACS Macro Lett. 2018, 7, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huang, Y.; Feng, X.; Zhang, Z.; Liu, P. High electrochemical performance poly(ethylene oxide)/2,4-toluene diisocyante/polyethylene glycol as electrolytes for all-solid-state lithium batteries. J. Membr. Sci. 2019, 587, 117179. [Google Scholar] [CrossRef]
- Olmedo-Martínez, J.L.; Meabe, L.; Riva, R.; Guzmán-González, G.; Porcarelli, L.; Forsyth, M.; Mugica, A.; Calafel, I.; Müller, A.J.; Lecomte, P.; et al. Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries. Polym. Chem. 2021, 12, 3441–3450. [Google Scholar] [CrossRef]
- Phan, T.N.; Issa, S.; Gigmes, D. Poly(ethylene oxide)-based block copolymer electrolytes for lithium metal batteries. Polym. Int. 2019, 68, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xu, Q.; Huang, Z.; Zhao, Y.; Chen, S.; Xu, X. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J. Power Sources 2016, 331, 322–331. [Google Scholar] [CrossRef]
- Fu, F.; Zheng, Y.; Jiang, N.; Liu, Y.; Sun, C.; Zhang, A.; Teng, H.; Sun, L.; Xie, H. A Dual-Salt PEO-based polymer electrolyte with Cross-Linked polymer network for High-Voltage lithium metal batteries. Chem. Eng. J. 2022, 450, 137776. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Zhou, N.; Shen, J. Design and Construction of Cross-Linked PEO with the Integration of Helical Polyurethane as an Advanced All-Solid-State Polymer Electrolyte for Lithium Batteries. J. Chem. Educ. 2020, 97, 3758–3765. [Google Scholar] [CrossRef]
- Ben Youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, S.; Armand, M. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochim. Acta 2016, 220, 587–594. [Google Scholar] [CrossRef]
- Sakakibara, T.; Kitamura, M.; Honma, T.; Kohno, H.; Uno, T.; Kubo, M.; Imanishi, N.; Takeda, Y.; Itoh, T. Cross-linked polymer electrolyte and its application to lithium polymer battery. Electrochim. Acta 2019, 296, 1018–1026. [Google Scholar] [CrossRef]
- Tsai, Y.; Chiu, C. Solute Diffusivity and Local Free Volume in Cross-Linked Polymer Network: Implication of Optimizing the Conductivity of Polymer Electrolyte. Polymers 2022, 14, 2061. [Google Scholar] [CrossRef] [PubMed]
- Weston, J.E.; Steele, B.C.H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Lonics 1982, 7, 75–79. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Choi, J.; Lee, C.; Yu, J.; Doh, C.; Lee, S. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 2015, 274, 458–463. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Li, S.; Fan, L.; Nan, C.; Goodenough, J.B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184. [Google Scholar] [CrossRef]
- Hu, J.; He, P.; Zhang, B.; Wang, B.; Fan, L. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020, 26, 283–289. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Hu, J.; Liu, Y.; Liu, Y.; Feng, Q.; Zhu, G.; Fan, L. Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes. J. Power Sources 2019, 442, 227230. [Google Scholar] [CrossRef]
- Li, Y.; Xu, B.; Xu, H.; Duan, H.; Lü, X.; Xin, S.; Zhou, W.; Xue, L.; Fu, G.; Manthiram, A.; et al. Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angew. Chem. 2017, 129, 771–774. [Google Scholar] [CrossRef]
- He, K.; Chen, C.; Fan, R.; Liu, C.; Liao, C.; Xu, Y.; Tang, J.; Li, R.K.Y. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries. Compos. Sci. Technol. 2019, 175, 28–34. [Google Scholar] [CrossRef]
- Zhu, P.; Yan, C.; Dirican, M.; Zhu, J.; Zang, J.; Selvan, R.K.; Chung, C.; Jia, H.; Li, Y.; Kiyak, Y.; et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2018, 6, 4279–4285. [Google Scholar] [CrossRef]
- Bae, J.; Li, Y.; Zhang, J.; Zhou, X.; Zhao, F.; Shi, Y.; Goodenough, J.B.; Yu, G. A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. Angew. Chem. Int. Ed. 2018, 57, 2096–2100. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zha, J.; Du, P.; Cheng, S.H.; Liu, C.; Dang, Z.; Li, R.K.Y. Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li0.33La0.557TiO3 nanofibers for all-solid-state lithium ion batteries. Dalton Trans. 2019, 48, 3263–3269. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ma, N.; Wu, Y.; Lu, Y.; Xiao, Q.; Li, Z.; Lei, G. Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 2018, 325, 112–119. [Google Scholar] [CrossRef]
- Bonizzoni, S.; Ferrara, C.; Berbenni, V.; Anselmi-Tamburini, U.; Mustarelli, P.; Tealdi, C. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys. Chem. Chem. Phys. 2019, 21, 6142–6149. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Enhanced Interfacial Stability of Hybrid-Electrolyte Lithium-Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity. Adv. Funct. Mater. 2019, 29, 1805996. [Google Scholar] [CrossRef]
- Wang, C.; Adair, K.R.; Liang, J.; Li, X.; Sun, Y.; Li, X.; Wang, J.; Sun, Q.; Zhao, F.; Lin, X.; et al. Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2019, 29, 1900392. [Google Scholar] [CrossRef]
- Li, D.; Cao, L.; Liu, C.; Cao, G.; Hu, J.; Chen, J.; Shao, G. A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte. Appl. Surf. Sci. 2019, 493, 1326–1333. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, P.; Liu, H.; Hu, Y. Interface-Enabled Ion Conduction in Li10GeP2S12-Poly(ethylene Oxide) Hybrid Electrolytes. ACS Appl. Energy Mater. 2019, 2, 1452–1459. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Wang, T.; Fan, L. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078. [Google Scholar] [CrossRef] [PubMed]
- Buannic, L.; Orayech, B.; López Del Amo, J.; Carrasco, J.; Katcho, N.A.; Aguesse, F.; Manalastas, W.; Zhang, W.; Kilner, J.; Llordés, A. Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte. Chem. Mater. 2017, 29, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yin, Y.; Yang, C.; Guo, Y. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Adv. Mater. 2016, 28, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Adv. Mater. 2005, 17, 918–921. [Google Scholar] [CrossRef]
- Wen, K.; Tan, X.; Chen, T.; Chen, S.; Zhang, S. Fast Li-ion transport and uniform Li-ion flux enabled by a double–layered polymer electrolyte for high performance Li metal battery. Energy Storage Mater. 2020, 32, 55–64. [Google Scholar] [CrossRef]
- Hou, G.; Ma, X.; Sun, Q.; Ai, Q.; Xu, X.; Chen, L.; Li, D.; Chen, J.; Zhong, H.; Li, Y.; et al. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2018, 10, 18610–18618. [Google Scholar] [CrossRef]
- Chen, X.; He, W.; Ding, L.; Wang, S.; Wang, H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 2019, 12, 938–944. [Google Scholar] [CrossRef]
- Pan, K.; Zhang, L.; Qian, W.; Wu, X.; Dong, K.; Zhang, H.; Zhang, S. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries. Adv. Mater. 2020, 32, e2000399. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Chen, T.; Chen, S.; Chen, Y.; Zhao, M.; Losic, D.; Zhang, S. Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Mater. Chem. Front. 2021, 5, 1771–1794. [Google Scholar] [CrossRef]
- Wiers, B.M.; Foo, M.; Balsara, N.P.; Long, J.R. A Solid Lithium Electrolyte via Addition of Lithium Isopropoxide to a Metal–Organic Framework with Open Metal Sites. J. Am. Chem. Soc. 2011, 133, 14522–14525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Wu, Y.; Liang, Z.; Gao, L.; Xia, W.; Zhao, Y.; Zou, R. Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386–2403. [Google Scholar] [CrossRef]
- Du, L.; Zhang, B.; Deng, W.; Cheng, Y.; Xu, L.; Mai, L. Hierarchically Self-Assembled MOF Network Enables Continuous Ion Transport and High Mechanical Strength. Adv. Energy Mater. 2022, 12, 2200501. [Google Scholar] [CrossRef]
- Han, X.; Wu, T.; Gu, L.; Tian, D. A Li-based MOF-derived multifunctional PEO polymer solid-state electrolyte for lithium energy storage. New J. Chem. 2022, 46, 3747–3753. [Google Scholar] [CrossRef]
- Chen, L.; Xue, P.; Liang, Q.; Liu, X.; Tang, J.; Li, J.; Liu, J.; Tang, M.; Wang, Z. A Single-Ion Polymer Composite Electrolyte Via In Situ Polymerization of Electrolyte Monomers into a Porous MOF-Based Fibrous Membrane for Lithium Metal Batteries. ACS Appl. Energy Mater. 2022, 5, 3800–3809. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, L.; Zhang, H.; Xu, H.; Dong, P.; Zhang, Y.; Long, D. Hexagonal Rodlike Cu-MOF-74-Derived Filler-Reinforced Composite Polymer Electrolyte for High-Performance Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2022, 5, 1095–1105. [Google Scholar] [CrossRef]
- Han, D.; Zhao, Z.; Wang, W.; Wang, H.; Wang, H.; Zheng, L.; Shi, J.; Li, X. Metal organic framework optimized hybrid solid polymer electrolytes with a high lithium-ion transference number and excellent electrochemical stability. Sustain. Energy Fuels 2022, 6, 4528–4538. [Google Scholar] [CrossRef]
- Wang, G.; He, P.; Fan, L.Z. Asymmetric Polymer Electrolyte Constructed by Metal–Organic Framework for Solid-State, Dendrite-Free Lithium Metal Battery. Adv. Funct. Mater. 2021, 31, 2007198. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J.; Liu, P. MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries. J. Energy Chem. 2021, 60, 259–271. [Google Scholar] [CrossRef]
- Lu, G.; Wei, H.; Shen, C.; Zhou, F.; Zhang, M.; Chen, Y.; Jin, H.; Li, J.; Chen, G.; Wang, J.; et al. Bifunctional MOF Doped PEO Composite Electrolyte for Long-Life Cycle Solid Lithium Ion Battery. ACS Appl. Mater. Interfaces 2022, 14, 45476–45483. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, T.; Song, S.; Li, Y.; Bae, J. HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature. Nanomaterials 2021, 11, 736. [Google Scholar] [CrossRef]
- Angulakshmi, N.; Zhou, Y.; Suriyakumar, S.; Dhanalakshmi, R.B.; Satishrajan, M.; Alwarappan, S.; Alkordi, M.H.; Stephan, A.M. Microporous Metal–Organic Framework (MOF)-Based Composite Polymer Electrolyte (CPE) Mitigating Lithium Dendrite Formation in All-Solid-State-Lithium Batteries. ACS Omega 2020, 5, 7885–7894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, S.; Wang, A.; Liu, X.; Chen, J.; Zeng, Q.; Zhang, L.; Liu, W.; Zhang, L. Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. J. Mater. Chem. A 2018, 6, 17227–17234. [Google Scholar] [CrossRef]
- Xu, W.; Pei, X.; Diercks, C.S.; Lyu, H.; Ji, Z.; Yaghi, O.M. A Metal–Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526. [Google Scholar] [CrossRef]
- Huo, H.; Wu, B.; Zhang, T.; Zheng, X.; Ge, L.; Xu, T.; Guo, X.; Sun, X. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, R.; Fang, J.; Liang, Z.; Gao, L.; Bian, J.; Zhu, J.; Zhao, Y. Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries. Front. Chem. 2022, 10, 1013965. [Google Scholar] [CrossRef]
- Li, X.; Loh, K.P. Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors. ACS Mater. Lett. 2019, 1, 327–335. [Google Scholar] [CrossRef]
- Zhang, G.; Hong, Y.; Nishiyama, Y.; Bai, S.; Kitagawa, S.; Horike, S. Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte. J. Am. Chem. Soc. 2019, 141, 1227–1234. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.W.; Li, Z.; Wang, T.X.; Zhao, F.; Ding, X.; Feng, W.; Han, B.H. Defective 2D Covalent Organic Frameworks for Postfunctionalization. Adv. Funct. Mater. 2020, 30, 1909267. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, J.; Xie, M.; Lu, D.; Zhao, Z.; Li, Y.; Cheng, Z.; Zhang, S.; Chen, H. Ultrathin Aramid/COF Heterolayered Membrane for Solid-State Li-Metal Batteries. Nano Lett. 2020, 20, 8120–8126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Niu, C.; Yu, C.; Zhang, L.; Xu, Y. Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries. Nano Res. 2022, 15, 8083–8090. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Cheng, T.; Liu, Y.; Li, Q.; Bai, M.; Liu, X.; Geng, H.; Lai, W.; Huang, W. Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J. Mater. Chem. A 2022, 10, 8761–8771. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Mu, Z.; Cao, C.; Li, Z.; Wang, T.; Li, Y.; Ding, X.; Han, B.; Feng, W. Cationic covalent organic framework based all-solid-state electrolytes. Mater. Chem. Front. 2020, 4, 1164–1173. [Google Scholar] [CrossRef]
- Jeong, K.; Park, S.; Jung, G.Y.; Kim, S.H.; Lee, Y.; Kwak, S.K.; Lee, S. Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885. [Google Scholar] [CrossRef]
- Hu, Y.; Dunlap, N.; Wan, S.; Lu, S.; Huang, S.; Sellinger, I.; Ortiz, M.; Jin, Y.; Lee, S.; Zhang, W. Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. J. Am. Chem. Soc. 2019, 141, 7518–7525. [Google Scholar] [CrossRef]
- Dong, D.; Zhang, H.; Zhou, B.; Sun, Y.; Zhang, H.; Cao, M.; Li, J.; Zhou, H.; Qian, H.; Lin, Z.; et al. Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun. 2019, 55, 1458–1461. [Google Scholar] [CrossRef]
- Du, W.; Du, X.; Ma, M.; Huang, S.; Sun, X.; Xiong, L. Polymer Electrode Materials for Lithium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2110871. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Campo, F.J.D.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Zhu, H.; Yin, J.; Zhao, X.; Wang, C.; Yang, X. Humic acid as promising organic anodes for lithium/sodium ion batteries. Chem. Commun. 2015, 51, 14708–14711. [Google Scholar] [CrossRef]
- He, J.; Liao, Y.; Hu, Q.; Zeng, Z.; Yi, L.; Wang, Y.; Lu, H.; Pan, M. Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries. J. Power Sources 2020, 451, 227792. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, G.; He, Y.; Cui, X.; Yang, Y. Chain engineering-tailored microstructures and lithium storage performance of hydrothermally-synthesized linear polyimides. Mater. Today Chem. 2020, 17, 100341. [Google Scholar] [CrossRef]
- Wang, N.; Hou, D.; Li, Q.; Zhang, P.; Wei, H.; Mai, Y. Two-Dimensional Interface Engineering of Mesoporous Polydopamine on Graphene for Novel Organic Cathodes. ACS Appl. Energy Mater. 2019, 2, 5816–5823. [Google Scholar] [CrossRef]
- Piątek, J.; Afyon, S.; Budnyak, T.M.; Budnyk, S.; Sipponen, M.H.; Slabon, A. Sustainable Li-Ion Batteries: Chemistry and Recycling. Adv. Energy Mater. 2021, 11, 2003456. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Q. Recent progress in aqueous monovalent-ion batteries with organic materials as promising electrodes. Mater. Today Energy 2020, 18, 100547. [Google Scholar] [CrossRef]
- Han, J.H.; Shin, K.H.; Lee, Y.J. Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 6375–6384. [Google Scholar] [CrossRef]
- Tsutsumi, H.; Fukuzawa, S.; Ishikawa, M.; Morita, M.; Matsuda, Y. Polyaniline-poly[p-styrenesulfonic acid-co-methoxyoligo(ethylene glycol)acrylate] Composite Electrode for All-Solid-State Rechargeable Lithium Battery. J. Electrochem. Soc. 1995, 142, 168–170. [Google Scholar] [CrossRef]
- Sun, Z.; Xi, K.; Chen, J.; Abdelkader, A.; Li, M.Y.; Qin, Y.; Lin, Y.; Jiang, Q.; Su, Y.Q.; Vasant, K.R.; et al. Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode. Nat. Commun. 2022, 13, 3209. [Google Scholar] [CrossRef]
- Li, S.; Lorandi, F.; Wang, H.; Liu, T.; Whitacre, J.F.; Matyjaszewski, K. Functional polymers for lithium metal batteries. Prog. Polym. Sci. 2021, 122, 101453. [Google Scholar] [CrossRef]
- Gao, S.; Li, Z.; Liu, N.; Liu, G.; Yang, H.; Cao, P.F. Are Porous Polymers Practical to Protect Li-Metal Anodes? Current Strategies and Future Opportunities. Adv. Funct. Mater. 2022, 32, 2202013. [Google Scholar] [CrossRef]
- Yang, X.; Hu, Y.; Dunlap, N.; Wang, X.; Huang, S.; Su, Z.; Sharma, S.; Jin, Y.; Huang, F.; Wang, X.; et al. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Angew. Chem. Int. Ed. 2020, 59, 20385–20389. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Li, G.; Yang, X.; Park, S.; Han, D.; Mi, L.; Wang, Y.; Li, Z.; Lee, S.Y. 30 Li+-Accommodating Covalent Organic Frameworks as Ultralong Cyclable High-Capacity Li-Ion Battery Electrodes. Adv. Funct. Mater. 2022, 32, 2108798. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Y.; Wang, H.; Yang, X.; Zhang, P.; Wang, K.; Jiang, J. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2203605. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.S.; Liu, X.; Wang, Y.; Fan, L.Z. High Areal Capacity Dendrite-Free Li Anode Enabled by Metal–Organic Framework-Derived Nanorod Array Modified Carbon Cloth for Solid State Li Metal Batteries. Adv. Funct. Mater. 2021, 31, 2001973. [Google Scholar] [CrossRef]
- Gong, H.; Xue, H.; Lu, X.; Gao, B.; Wang, T.; He, J.; Ma, R. All solid-state lithium–oxygen batteries with MOF-derived nickel cobaltate nanoflake arrays as high-performance oxygen cathodes. Chem. Commun. 2019, 55, 10689–10692. [Google Scholar] [CrossRef]
- Singh, T.I.; Rajeshkhanna, G.; Kshetri, T.; Kim, N.H.; Lee, J.H. High-performance solid-state hybrid supercapacitor enabled by metal–organic framework-derived multi-component hybrid electrodes of Co–N–C nanofibers and Co2−xFexP-N-C micropillars. J. Mater. Chem. A 2020, 8, 26158–26174. [Google Scholar] [CrossRef]
- Luo, D.; Li, M.; Ma, Q.; Wen, G.; Dou, H.; Ren, B.; Liu, Y.; Wang, X.; Shui, L.; Chen, Z. Porous organic polymers for Li-chemistry-based batteries: Functionalities and characterization studies. Chem. Soc. Rev. 2022, 51, 2917–2938. [Google Scholar] [CrossRef]
Solid-State Electrolyte Materials | Ionic Conductivity (S cm−1) | Li+ Transference Number | Electrochemical Stability Window (V) | Condition | Battery Performance (mAh g−1) | Ref. |
---|---|---|---|---|---|---|
Li-ILs @ HPCN | 1.91 × 10−4 | 0.5 | 5.2 | 0.2 C | 152.9 | [131] |
0.5 C | 140.0 | |||||
Cu-MOF-74 | 5.5 × 10 −5 | 0.36 | 4.8 | 0.5 C | 152 | [128] |
PEO-MOF-2 | 5.20 × 10 −4 | 0.36 | 5.0 | 1.0 C | 149.92 | [132] |
SIPCE-MOF | 1.14 × 10−5 (30 °C) | 0.80 | 5.68 | 2 C | 105 | [127] |
2.23 × 10−5 (60 °C) | ||||||
HKUST-1@IL-Li | 0.68 × 10−4 (25 °C) | 0.46 (25 °C) | 0.5 C | 144 | [133] | |
6.85 × 10−4 (100 °C) | 0.68 (100 °C) | |||||
UiO-66-NH2@SiO2 | 10−5 (70 °C) | 0.68 | 3.45 | 0.1 C | 151 (60 °C) | [134] |
M-UIO-66-NH2/PEGDA (1:8) | 4.31 × 10−5 (30 °C) | 5.5 | 1 C | 80 (30 °C) | [135] | |
2 C | 110 (60 °C) | |||||
MOF-688 | 3.4 × 10−4 (20 °C) | 0.87 | 30 mA g−1 | 149 | [136] | |
P@CMOF | 6.3 × 10−4 (60 °C) | 0.72 | 4.97 | 1 C | 107 | [137] |
ZIF-67 (PLM-2) | 1.40 × 10−6 (25 °C) | 0.41 | 5.3 | 0.2 C | 130 | [138] |
Solid-State Electrolyte Materials | Ionic Conductivity (S cm−1) | Li+ Transference Number | Electrochemical Stability Window (V) | Condition | Battery Performance (mAh g−1) | Ref. |
---|---|---|---|---|---|---|
L@K/C | 1.62 × 10−4 (30 °C) | 0.32 | 4.2 | 0.2 C | 129 | [142] |
4.6 × 10−4 (70 °C) | ||||||
COF-PVEC | 1.11 × 10−4 (40 °C) | 0.6 | 4.6 | 1 C | 102.8 | [143] |
3D-SpCOF | 6.4 × 10−4 | 0.7 | 4.5 | 0.5 C | 141 | [144] |
Im-COF-TFSI | 2.92 × 10−5 (30 °C) | 0.62 ± 0.02 | 4.2 | 0.1 C | 123.3 | [145] |
4.64 × 10−4 (80 °C) | ||||||
4.04 × 10−3 (150 °C) | ||||||
dCOF-ImTFSI-60@Li | 7.05 × 10−3 (150 °C) | 0.72 ± 0.02 | 5.32 | 0.1 C | 143.7 | [141] |
TpPa-SO3Li | 2.7 × 10−5 (RT) | 0.9 | 4.0 | [146] | ||
CF3-Li-ImCOF | 7.2 × 10−3 (RT) | 0.81 | 4.5 | [147] | ||
COF-PEO-9-Li | 1.33 × 10−3 (200 °C) | 5.2 | 3.0 mAg−1 | 120 (100 °C) | [140] | |
PVDF/H-COF-1@10 | 2.5 × 10−4 | 0.71 | 4.3 | 1 C | 128 | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Ben, T. Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Polymers 2022, 14, 4804. https://doi.org/10.3390/polym14224804
Zou J, Ben T. Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Polymers. 2022; 14(22):4804. https://doi.org/10.3390/polym14224804
Chicago/Turabian StyleZou, Junyan, and Teng Ben. 2022. "Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries" Polymers 14, no. 22: 4804. https://doi.org/10.3390/polym14224804
APA StyleZou, J., & Ben, T. (2022). Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Polymers, 14(22), 4804. https://doi.org/10.3390/polym14224804